Chiral properties of the baryon ground state

Excited QCD 11, les Houches 2011, 21-25 February

V. Dmitrašinović (ヴェリコ ドミトラシノビッチ)

Institute for Physics, Belgrade U., Serbia in collaboration with Hua-Xing Chen, Keitaro Nagata, Atsushi Hosaka Atsushi Hosaka 1, Keitaro Nagata 2 永田桂太郎1 RCNP, Osaka University, Japan2 Hiroshima University, Japan3 Peking University, Japan

Hua-Xing Chen 3 保坂淳 3 Peking University, PR China 4 Valencia U., Spain

Outline

- Intro: why chiral mixing? the axial F,D values and the flavour-singlet axial coupling ("nucleon spin problem")
- Method: three-quark baryon interpolating fields and chiral multiplets SU_L(3) x SU_R(3) and U_A(1) chiral (algebraic) properties of baryon fields.
- Chiral interactions: chiral $SU_L(3) \times SU_R(3)$ and $U_A(1)$ selection rules and their consequences: two permissible scenarios and predicted excited baryon masses.

Light quark chiral properties

$$\psi = \frac{1 - \gamma_5}{2}\psi + \frac{1 + \gamma_5}{2}\psi$$

Left handed Right handed

 $SU(3)_{I} \times SU(3)_{R} = (3, 1)$ (1, 3) *Naïve* $g_{A} = 1$ (1, 3) (3, 1) *Mirror* -1

Study chiral SU(3) multiplets of baryons:

M. Gell-Mann, Physics 1, 63 ('64); I. Gerstein & B.W. Lee, PRL14,676 ('65), *ibid.* 16, 114,1060 ('66); H. Harari, PRL16, 964, *ibid.* 17, 56 ('66), Altarelli, Gatto, Maiani, Preparatta, PRL16,377, 918('66); T. Cohen, X. Ji, PRD55, 6870 ('97); Chen, Dmitrasinovic, Hosaka, Nagata, Zhu, PRD78: 054021 ('08); Chen, Dmitrasinovic, Hosaka, PRD81:054002 ('10)

Baryon chiral multiplets

 Chiral multiplets of baryons that consist of three quarks are as follows

$$[(3,1) + (1,3)]^{3} = (1,1) + [(3,3) + (3,\overline{3})] + [(8,1) + (1,8)]$$

+ ((3,6) + (6,3)] + [(10,1) + (1,10)]
N, \Delta \Delta

- "naïve" vs. "mirror", i.e. (1,8) vs. (8,1), in chiral multiplets is not known *a priori*
- Total spin/angular momentum of three quarks is left unspecified by this CG series.

Two chiral multiplet mixing

- (N_2, Δ) chiral multiplet: $(6, 3) + (3, 6) -> g_A(N_2) = 5/3$
- mix with N₁ in chiral multiplet $[(3,3^*)+(3^*,3)]$ ("Harari"), or [(8,1)+(1,8)] ("Gerstein-Lee")-> $g_A(N_1)=1$
- Mixing leads to $g_A(N) = 1.267$
- This predicts the flavor-singlet and F,D axial couplings!

I. Gerstein & B.W. Lee, PRL14,676 ('65), *ibid*. 16, 114,1060 ('66)

$$1.267 = g_{A(\frac{1}{2},0)}^{(1)} \cos^2 \theta + g_{A(1,\frac{1}{2})}^{(1)} \sin^2 \theta,$$

= $g_{A}^{(1)} \cos^2 \theta + \frac{5}{3} \sin^2 \theta$

Weinberg, PR 177 (1969) 2604

$$\begin{split} g^{(0)}_{A \text{ mix.}} &= g^{(0)}_{A (\frac{1}{2}, 0)} \cos^2 \theta + g^{(0)}_{A (1, \frac{1}{2})} \sin^2 \theta \\ &= g^{(0)}_{A} \cos^2 \theta + \sin^2 \theta, \end{split}$$

H. Harari, PRL16, 964, *ibid*. 17, 56 ('66); Altarelli, Gatto, Maiani, Preparatta, PRL16,918('66)

Chiral $U_{A}(1)$ transformations of baryons

 $a \rightarrow \exp(i\nu h)a$

$$\begin{array}{l} \delta_{5}N_{1} = ib\gamma_{5}(N_{1} + 2N_{2}) \\ \delta_{5}N_{2} = ib\gamma_{5}(N_{2} + 2N_{1}) \end{array} \begin{array}{l} U(1)_{A} \\ \beta_{5}N_{2} = ib\gamma_{5}(N_{2} + 2N_{1}) \end{array} \begin{array}{l} U(1)_{A} \\ \beta_{5}N_{3} = -ib\gamma_{5}N_{3} \\ \beta_{5}N_{4} = -ib\gamma_{5}N_{4} \\ \delta_{5}N_{4} = -ib\gamma_{5}N_{4} \\ \delta_{5}N_{5} = +3ib\gamma_{5}N_{5}. \end{array}$$

- $U_A(1)$ transformation "mixes" two kinds of baryons:
- $U_A(1)$ transformation "mixes" two kinds of baryons: N_1, N_2 This " $U_A(1)$ symmetry doublet" reduces into two singlets $(N_1 \pm N_2)$ with different baryon axial "charges":-1/2, +3/2.
- Do these two kinds of baryons lead to "parity doublets"? •
- Gilman and Kugler identified the $U_A(1)$ axial charge with the intrinsic • quark spin S_{7} .

F.J. Gilman & M. Kugler, PRL30, 518 ('73)

Nucleon "spin-crisis"

- Nonrelativistic quark model predicts isoscalar ax. = 1:
- Whole of proton's spin is carried by constituent quarks!
- Basic problem for the NR quark model, but completely natural in relativistic chiral quark model.

8.1 Constituent quarks and $g_A^{(k)}$

First, consider the static quark model. The simple SU(6) proton wavefunction

$$|p\uparrow\rangle = \frac{1}{\sqrt{2}}|u\uparrow(ud)_{S=0}\rangle + \frac{1}{\sqrt{18}}|u\uparrow(ud)_{S=1}\rangle - \frac{1}{3}|u\downarrow(ud)_{S=1}\rangle \qquad (8.1)$$
$$-\frac{1}{3}|d\uparrow(uu)_{S=1}\rangle + \frac{\sqrt{2}}{3}|d\downarrow(uu)_{S=1}\rangle$$
$$yields g_A^{(3)} = \frac{5}{3} \text{ and } g_A^{(8)} = g_A^{(0)} = 1.$$

Two-field chiral mixing

TABLE II. The values of the baryon isoscalar axial coupling constant predicted from the naive mixing and $g_{Aexpt.}^{(1)} = 1.267$; compare with $g_{Aexpt.}^{(0)} = 0.33 \pm 0.03 \pm 0.05$, $F = 0.459 \pm 0.008$, and $D = 0.798 \pm 0.008$, leading to $F/D = 0.571 \pm 0.005$; see Ref. [2].

Case	$(g_A^{(1)},g_A^{(0)})$	$g^{(1)}_{A{ m mix.}}$	θ_{i}	$g^{(0)}_{A{ m mix.}}$	$g^{(0)}_{A{ m mix.}}$	F	F/D
Ι	(+1, -1)	$\frac{1}{3}(4-\cos 2\theta)$	39.3°	$-\cos 2\theta$	-0.20	0.267	0.267
II	(+1, +3)	$\frac{1}{3}(4-\cos 2\theta)$	39.3°	$(2\cos 2\theta + 1)$	2.20	0.866	2.16
III	(-1, +1)	$\frac{1}{3}(1-4\cos 2\theta)$	67.2°	1	1.00	0.567	0.81
IV	(-1, -3)	$\frac{1}{3}(1-4\cos 2\theta)$	67.2°	$-(2\cos 2\theta + 1)$	0.40	0.417	0.491

- In two cases (I and IV) the predictions are in the same ballpark as experiment.
- Case I is the "loffe current", case IV is the "mirror" image of the orthogonal complement to loffe (seldom used).
- Can one relate mixing angles to baryon masses? Yes.
- Can one construct mirror fields? Yes.

Chen, Dmitrasinovic, Hosaka, PRD81:054002 (2010)

Experimental input: flavor singlet and F,D axial couplings

• DIS shows that only about 1/3 of the nucleon's helicity is carried by quarks. This can be expressed as flavor-singlet axial coupling ~1/3

$$g_A^{(0)} = 0.33 \pm 0.03(stat.) \pm 0.05(syst.)$$
 Bass (2007)

$$g_A^{(0)} = 0.28 \pm 0.16$$

Fillipone, Ji (2001)

• The (semi-leptonic) weak decays of the hyperons yield F-0.459,

D=0.798 subject to SU(3) symmetry breaking corrections.

F=0.477 D=0.835 with SU(3) symmetry breaking corrections, or F=0.459 D=0.798 without

Yamanishi, PRD76: 014006 (2007)

Summary of J=1/2 SU(3) baryons

TABLE I. The Abelian and the non-Abelian axial charges (+ sign indicates naive, - sign mirror transformation properties) and the non-Abelian chiral multiplets of $J^P = \frac{1}{2}$, Lorentz representation ($\frac{1}{2}$, 0) nucleon and Δ fields; see Refs. [15–18].

Case	Field	$g^{(0)}_A$	$g^{(1)}_A$	F	D	$SU_L(3) \times SU_R(3)$
Ι	$N_1 - N_2$	-1	+1	0	+1	$(3, \overline{3}) \oplus (\overline{3}, 3)$
II	$N_1 + N_2$	+3	+1	+1	0	(8, 1) ⊕ (1, 8)
III	$N'_1 - N'_2$	+1	-1	0	-1	$(\bar{3},3) \oplus (3,\bar{3})$
IV	$N_{1}^{i} + N_{2}^{j}$	-3	-1	-1	0	(1, 8) ⊕ (8, 1)
0	$\partial_{\mu}(N_{3}^{\mu} + \frac{1}{3}N_{4}^{\mu})$	+1	$+\frac{5}{3}$	$+\frac{2}{3}$	+1	(6, 3) ⊕ (3, 6)

Chen, Dmitrasinovic, Hosaka, Nagata, Zhu, PRD78:054021('08) Chen, Dmitrasinovic, Hosaka, PRD81:054002 ('10)

$$g_{A}^{(0)} = 3F - D$$

Three-field chiral mixing

- With two mixing angles one can fit both axial couplings and predict F,D!
- But all three cases are identical! Why?
- The 3-quark fields satisfy

$$g_A^{(0)} = 3F - D$$

 The discrepancy between expt. and fit is due 5-quark contributions and/or SU(3) symmetry breaking.

$$\frac{5}{3}\sin^2\theta + \cos^2\theta \left(g_A^{(1)}\cos^2\varphi + g_A^{(1)'}\sin^2\varphi\right) = 1.267$$
$$\sin^2\theta + \cos^2\theta \left(g_A^{(0)}\cos^2\varphi + g_A^{(0)'}\sin^2\varphi\right) = 0.33$$

$$\cos^2\theta (F\cos^2\varphi + F'\sin^2\varphi) + \frac{2}{3}\sin^2\theta = F,$$

$$\cos^2\theta (D\cos^2\varphi + D'\sin^2\varphi) + \sin^2\theta = D.$$

TABLE III. The values of the mixing angles obtained from the simple fit to the baryon axial coupling constants and the predicted values of axial *F* and *D* couplings. The experimental values are $F = 0.459 \pm 0.008$ and $D = 0.798 \pm 0.008$, leading to $F/D = 0.571 \pm 0.005$; see Ref. [2].

	nenpa	o Aexpt.		φ		D	F/D
I-II	1.267	0.33	39.3°	$28.0^{\circ} \pm 2.3^{\circ}$	0.399 ± 0.02	0.868 ∓ 0.02	0.460 ± 0.04
I-III	1.267	0.33	$50.7^{o} \pm 1.8^{o}$	$23.9^{\circ} \pm 2.9^{\circ}$	0.399 ± 0.02	0.868 ∓ 0.02	0.460 ± 0.04
I-IV	1.267	0.33	$63.2^{o} \pm 4.0^{o}$	$54^{o} \pm 23^{o}$	0.399 ± 0.02	0.868 ∓ 0.02	0.460 ± 0.04

Chen, Dmitrasinovic, Hosaka, PRD81:054002 (2010)

Les Houches11, 20-25 Feb.

Can one reproduce this mixing dynamically i.e. from a model?

Baryon-meson chiral interactions

• Not all baryons' chiral multiplets allow chirally invariant interactions with the (σ,π) mesons: e.g.

 $[(8,1) + (1,8)]^{2} \otimes (\overline{3},3) + (3,\overline{3}) = [(1,1) + (8,8)] \otimes [(\overline{3},3) + (3,\overline{3})]$ +[(8,1) + (1,8)] $\otimes [(\overline{3},3) + (3,\overline{3})] + [(10,1) + (1,10)] \otimes [(\overline{3},3) + (3,\overline{3})]$ +[($\overline{10},1$) + (1, $\overline{10}$)] $\otimes [(\overline{3},3) + (3,\overline{3})] + [(27,1) + (1,27)] \otimes [(\overline{3},3) + (3,\overline{3})]$

N

 Therefore [(1,8) + (8,1)] chiral multiplet may be discarded if stand-alone i.e. if no chiral mixing.
 Same with [(1,10) + (10,1)]!

First SU(3)xSU(3) chiral invariants constructed by J.A. Cronin, PR 161, 1483 ('67); B.W. Lee, PR170,1389 ('68); W. Bardeen, B.W.Lee, PR177,2389 ('69); Les Houches11, 20-25 Feb.

Baryon-meson chiral invariants I

$(SU_A(3), U_A(1))$	$(1,8)\oplus(8,1)[\mathrm{mir}]$	$(ar{3},3)\oplus(3,ar{3})[\mathrm{mir}]$	$({f 6},{f 3})\oplus ({f 3},{f 6})$	$\boxed{(1,10)\oplus(10,1)[\mathrm{mir}]}$
$(1,8)\oplus(8,1)[\mathrm{mir}]$	N/A	(,)	(,)	N/A
$(3,\mathbf{ar{3}})\oplus(\mathbf{ar{3}},3)[\mathrm{mir}]$	(,)	(,)	(,)	N/A
$(ar{6},ar{3})\oplus(ar{3},ar{6})$	(,)	(,)	(,)	(,)
$(1,\overline{10})\oplus(\overline{10},1)[\mathrm{mir}]$	N/A	N/A	(,)	N/A
$(SU_A(3), U_A(1))$	$({f 8},{f 1})\oplus ({f 1},{f 8})$	$({f 3},{f ar 3})\oplus ({f ar 3},{f 3})$	$(3,6)\oplus(6,3)[\mathrm{mir}]$	$({f 10},{f 1})\oplus ({f 1},{f 10})$
$({f 8},{f 1})\oplus ({f 1},{f 8})$	N/A	(,)	(,)	N/A
$(ar{3},3)\oplus(3,ar{3})$	(,)	(,)	(,)	N/A
$(ar{3},ar{6})\oplus(ar{6},ar{3})[\mathrm{mir}]$	(,)	(,)	(,)	(,)
$(\overline{f 10}, f 1) \oplus (f 1, \overline{f 10})$	N/A	N/A	(,)	N/A
$(SU_A(3), U_A(1))$	$({f 8},{f 1})\oplus ({f 1},{f 8})$	$(1,8)\oplus(8,1)[\mathrm{mir}]$		
$(ar{f 3},{f 3})\oplus ({f 3},ar{f 3})$	N/A	$(, \times)$		
$({f 3},{f ar 3})\oplus ({f ar 3},{f 3})[{ m mir}]$	$(\sqrt{, \times)}$	N/A		

 Chiral selection rules for baryons' chiral multiplets allow interactions with the (σ,π) mesons that are both SU(3)xSU(3) and U(1) chirally invariant, with only one off-diagonal exception.

Chen, Dmitrasinovic, Hosaka, PRD83:014015 (11);

Baryon-meson chiral invariants II

$(SU_A(3), U_A(1))$	$(8,1)\oplus(1,8)$	$({f 3},{f ar 3})\oplus ({f ar 3},{f 3})$	$(3,6)\oplus(6,3)[\mathrm{mir}]$	$({f 10},{f 1})\oplus ({f 1},{f 10})$
$(1,8)\oplus(8,1)[\mathrm{mir}]$	(,)	N/A	N/A	N/A
$(3, \mathbf{ar{3}}) \oplus (\mathbf{ar{3}}, 3) [ext{mir}]$	N/A	(,)	N/A	N/A
$(ar{f 6},ar{f 3})\oplus (ar{f 3},ar{f 6})$	N/A	N/A	(,)	N/A
$\overline{(1,\overline{10})\oplus(\overline{10},1)}[\mathrm{mir}]$	N/A	N/A	N/A	(,)

Chen, Dmitrasinovic, Hosaka, PRD83:014015 (11);

 Chiral selection rules for baryons' chiral multiplets allow interactions with the (σ,π) mesons that are both SU(3)xSU(3) and U(1) chirally invariant, with no exceptions.

$[(6,3)+(3,6)] - [(3^*,3)+(3,3^*)]$ mixing

- Possible parity assignments and candidate states for two state mixing
- [(6,3)+(3,6)]-[(3*,3)+(3,3*)]-[(3,3*)+(3*,3)] ("Harari") mixing scenario (Λ(1405) and Λ(1810) (*** PDG) are the best candidates.

$(N^{*P}, \Lambda^{P'}, \Delta^{P''})$	(N, N^*)	$\Lambda (MeV)$	$\Lambda_{\rm expt.}$ (MeV)	Δ (MeV)	$\Delta_{\text{expt.}}$ (MeV)
(-,+,+)	N(940), R(1535)	2330	-	2330	1910
(-, -, +)	N(940), R(1535)	1140	1405	2330	1910
(-,+,-)	N(940), R(1535)	2330	-	1140	-
(+, -, -)	N(940), R(1440)	2030,2730	-	2030,2730	-
(-, -, -)	N(940), R(1535)	1140	1405	1140	-

Chen, Dmitrasinovic, Hosaka, PRD83:014015 (11);

No.	g_1	g_2	g_3	g_4	g_5	Λ_1^P (MeV)	Λ_2^P (MeV)	Δ^P (MeV)
1	-4.7	8.4	-3.4	2.9	9.8	1370^{-}	1850	2170^{-}
2	-7.2	4.6	7.9	9.1	-4.2	1940^{+}	2430^{-}	1200-

• Predict ∆(2170)

H. Harari, PRL16, 964, ibid. 17, 56 ('66)

[(6,3)+(3,6)] - [(8,1)+(1,8)] mixing

- In general only possible with additional twomeson interaction
- Possible parity assignments and candidate states for two state mixing
- [(6,3)+(3,6)]-[(8,1)+(1,8)]-[(3*,3)+(3,3*)] ("Gerstein-Lee") mixing scenario
 (1600) (*** PDG) and
 (1800) (*** PDG) are the best candidates
- Predict ∆(2070) or ∆(2110)

$(N^{*P}, \Delta^{P'})$	(N, N^*)	Δ (MeV)	$\Delta_{\text{expt.}}$ (MeV)
(-,+)	N(940), R(1535)	2330	1910
(+, -)	N(940), R(1440)	2030,2730	-
(-, -)	N(940), R(1535)	1140	_

Chen, Dmitrasinovic, Hosaka, PRD83:014015 (11);

No.	g_1	g_2	g_3	g_4	g_5	Λ^P (MeV)	Δ^P (MeV)
1	4.6	8.0	-1.8	-6.1	9.7	1580^{+}	2070^{-}
2	-8.4	4.3	7.1	10.6	-2.4	2750^{-}	1124^{-}
3	-1.3	10.2	2.1	-2.5	9.8	640^{+}	2660^{-}
4	-8.7	8.1	7.3	7.1	2.9	1850^{-}	2110^{-}

I. Gerstein & B.W. Lee, PRL14,676 ('65), *ibid.* 16, 114,1060 ('66)

Chiral mixing – Delta mass

- We have fitted two axial constants while fixing the masses of the two nucleon states -> thus we predicted the Delta mass.
- Odd (-) parity assignment allowed! The predicted masses of 2070, 2110, 2170 MeV are all reasonably close to the (*PDG) resonance S31(2150).
- This chiral partner of N(940) is much heavier!

1	-()	– JJ	
	Δ (1950)	F ₃₇	****
	$\Delta(2000)$	F_{35}	**
	$\Delta(2150)$	<i>S</i> ₃₁	*
	$\Delta(2200)$	G ₃₇	*
	<i>∆</i> (2300)	H ₃₉	**
	<i>∆</i> (2350)	D ₃₅	*
	<i>∆</i> (2390)	F ₃₇	*
	<i>∆</i> (2400)	G_{39}	**
	$\Delta(2420)$	<i>H</i> 3,11	****
	$\Delta(2750)$	<i>I</i> _{3,13}	**
	<i>∆</i> (2950)	K _{3,15}	**

Summary

- We have used the chiral classification of qqq baryon interpolating fields. All bare axial couplings are pre-determined by the chiral multiplet.
- Mixing of two chiral configurations reveals new and simple explanations of the "spin content of the nucleon" and of the baryon's axial F,D values.
- We have constructed effective Lagrangians that reproduce this mixing and used them to fit observed baryons and to predict some high-lying members of baryons' chiral multiplets