The QCD phase diagram (in chiral fluid dynamics)

Marlene Nahrgang

with Marcus Bleicher and Stefan Leupold (Uppsala)

Excited QCD 2011, Les Houches

Stipendiatenwerk der Stiftung Polytechnische Gesellschaft Frankfurt am Main

How to study the QCD phase diagram...

... be brave and solve

$$Z(T, \mu_B) = \int \mathcal{D}(A, q, q^{\dagger}) \mathrm{e}^{-S_{\mathrm{QCD}}^{E}}$$

ab initio and nonperturbatively,

... be strong and collide heavy ions at ultra-relativistic energies,

... be creative and study effective models of QCD.

 \mathcal{L}_{off}

Phase transitions - thermodynamically

first order phase transition

- two degenerate minima separated by a barrier
- nucleation
- spinodal decomposition

(I.N.Mishustin, Phys. Rev. Lett. 82 (4779) 1999; Ph.Chomaz, M.Colonna, J.Randrup, Physics Reports 389 (2004) 263)

critical point

•
$$m_{\sigma}^2 = \frac{\partial^2 V}{\partial \sigma^2} \to 0$$

- correlation length diverges $\xi = \frac{1}{m_{\sigma}} \rightarrow \infty$
- universality classes (for QCD: 3d Ising model) $\Rightarrow \langle \sigma^2 \rangle \propto \xi^2$
- critical opalescence

Being brave

The critical point in lattice QCD

strictly valid only for $\mu_B = 0$ methods to explore the $T - \mu_B$ -plane

- ▶ reweighting (Fodor, Katz): $\mu_B^c = 360 \pm 40$ MeV
- ► radius of convergence of the Taylor expansion of the pressure (Gavai, Gupta, RBC-Bielefeld): 250 MeV < µ^c_B < 400 MeV</p>
- imaginary μ_B (de Forcrand, Philipsen): $\mu_B^c > 500 \text{ MeV}$

(de Forcrand, Philipsen, hep-lat/0607017)

Being brave

Being strong

The critical point in heavy ion collisions

coupling to the order parameter of chiral symmetry \Rightarrow non-monotonic fluctuations in pion and proton multiplicities

$$\langle \Delta n_{\rho} \Delta n_{k} \rangle = v_{\rho}^{2} \delta_{\rho k} + \frac{1}{m_{\sigma}^{2}} \frac{G^{2}}{T} \frac{v_{\rho}^{2} v_{k}^{2}}{\omega_{\rho} \omega_{k}}$$

(M. A. Stephanov, K. Rajagopal and E. V. Shuryak, PRD 60

(1999), NA49 collaboration J. Phys. G 35 (2008))

BUT: critical slowing down

(B. Berdnikov and K. Rajagopal, PRD 61 (2000))

Being strong

Higher moments and the kurtosis

the kurtosis:
$$K^{\text{eff}} = \frac{\langle \delta N^4 \rangle}{\langle \delta N^2 \rangle} - 3 \langle \delta N^2 \rangle \propto \xi^7$$

(M. A. Stephanov, Phys. Rev. Lett. 102, 032301 (2009))

(MN, T.Schuster, M.Mitrovski, R.Stock and M.Bleicher, arXiv:0903.2911v2 [hep-ph], submitted to PLB)

(STAR collaboration, Phys. Rev. Lett. 105, 022302 (2010)

Being strong

Being creative

The linear sigma model with constituent quarks

$$\mathcal{L} = \overline{q} \left[i\gamma^{\mu} \partial_{\mu} - g \left(\sigma + i\gamma_{5}\tau \vec{\pi}\right) \right] q + \frac{1}{2} \left(\partial_{\mu}\sigma\right)^{2} + \frac{1}{2} \left(\partial_{\mu}\vec{\pi}\right)^{2} - U \left(\sigma, \vec{\pi}\right)$$
$$U \left(\sigma, \vec{\pi}\right) = \frac{\lambda^{2}}{4} \left(\sigma^{2} + \vec{\pi}^{2} - \nu^{2}\right)^{2} - h_{q}\sigma - U_{0}$$

(M.Gell-Mann, M.Levy, Nuovo Cim. 16, 705,1960)

the effective potential at $\mu_B = 0$

(O. Scavenius, A. Mocsy, I.N. Mishustin, D.H. Rischke, Phys. Rev. C64, 045202,2001)

Being creative

Chiral fluid dynamics

fluid dynamics + phase transition model + dissipation and noise

(I. N. Mishustin and O. Scavenius, PRL 83 (1999); K. Paech, H. Stoecker and A. Dumitru, PRC 68 (2003); MN, M. Bleicher, arXiv:1011.5379 [nucl-th])

The two-particle irreducible effective action

- resummation of subdiagrams \rightarrow full propagators
- restrict to the σ mean field and the quark propagators S^{ab}

$$\Gamma[\sigma, S] = S[\sigma] - i \operatorname{Tr} \ln S^{-1} - i \operatorname{Tr} S_0^{-1} S + \Gamma_2[\sigma, S]$$

equation of motion for the σ mean field and the quark propagators S^{ab}

$$\frac{\delta\Gamma[\sigma, S]}{\delta\sigma^{a}} = 0 \quad \text{and} \quad \frac{\delta\Gamma[\sigma, S]}{\delta S^{ab}} = 0$$

and the proper self-energy

$$-i\Sigma^{ab}(x,y) = -\frac{\delta\Gamma_2[\sigma,S]}{\delta S^{ab}(x,y)}$$

Dyson-Schwinger equation for S^{ab}

$$(i\partial - m_f)S^{ab}(x,y) - i\int_{\mathcal{C}} \mathrm{d}^4 z \Sigma^{ac}(x,z)S^{cb}(z,y) = i\delta^{ab}_{\mathcal{C}}(x-y)$$

The two-particle irreducible effective action

$$\Gamma_{2}[\sigma, S] = g \int_{\mathcal{C}} d^{4}x \operatorname{tr}(S^{++}(x, x)\sigma^{+}(x) + S^{--}(x, x)\sigma^{-}(x))$$

equation of motion for the σ mean field

$$-\frac{\delta S_{\rm cl}[\sigma]}{\delta \sigma^{a}} = \frac{\delta \Gamma_{\rm 2}[\sigma, S]}{\delta \sigma^{a}} = g {\rm tr} S^{aa}(x, x)$$

the effective action along the contour

$$\Gamma[\sigma, S] = g \operatorname{tr} S_{\operatorname{th}}^{++}(x, x) \Delta \sigma(x) - \frac{T}{V} \ln \mathcal{Z}_{\operatorname{th}} + \int d^4 x D[\bar{\sigma}](x) \Delta \sigma(x) + \frac{i}{2} \int d^4 x \int d^4 y \Delta \sigma(x) \mathcal{I}[\bar{\sigma}](x, y) \Delta \sigma(y)$$

with $\Delta \sigma = \sigma^+ - \sigma^-$ and $\bar{\sigma} = 1/2(\sigma^+ + \sigma^-)$ on the contour.

MN, S.Leupold, M.Bleicher, in preparation

Classical equations of motion for the chiral field

$$\partial_{\mu}\partial^{\mu}\sigma + \frac{\delta U}{\delta\sigma} - g \operatorname{tr} S_{\operatorname{th}}^{++}(x, x) + \eta \partial_{t}\sigma = \xi$$

damping term η and noise ξ for $\mathbf{k} = 0$

(T. S. Biro and C. Greiner, PRL 79 (1997))

$$\eta = \begin{cases} 20/\text{fm} & \text{for } m_{\sigma} > 2m_q \\ 3/\text{fm} & \text{for } m_{\sigma} < 2m_q \end{cases}$$

Fluid dynamics - the equation of state

pressure from the equilibrium $\Gamma_{eq}(\sigma, T)$ with $\Delta \sigma = 0$

$$\boldsymbol{p}(\sigma, T) = -\Gamma_{\rm eq}(\sigma, T)$$

energy density from thermodynamic consistency (guaranteed by the 2PIEA)

$$\mathbf{e}(\sigma, T) = T \frac{\partial \mathbf{p}(\sigma, T)}{\partial T} - \mathbf{p}(\sigma, T)$$

Energy-momentum conservation

Energy-momentum tensor of the entire system is conserved:

$$\partial_{\mu} T_{q}^{\mu\nu} = g \operatorname{tr} S^{++}(x, x)$$

$$\partial_{\mu} T_{\sigma}^{\mu\nu} = -g \operatorname{tr} S^{++}(x, x)$$

then $\partial_{\mu}(T_{q}^{\mu\nu} + T_{\sigma}^{\mu\nu}) = 0$ for the full propagator! HERE, approximation of an ideal fluid

$$\partial_{\mu} T_{q}^{\mu\nu} = g \operatorname{tr} S_{\operatorname{th}}^{++}(x, x)$$
$$= 2d_{q} \int \frac{\mathrm{d}^{3} p}{(2\pi)^{3}} \frac{p^{\mu} p^{\nu}}{E_{p}} f_{\operatorname{FD}}(E_{p})$$

and a sourceterm

$$S^{
u} = -\partial_{\mu} T^{\mu
u}_{\sigma}$$

MN, S.Leupold, M.Bleicher, in preparation

Intensity of sigma fluctuations

$$\frac{\mathrm{d}N_{\sigma}}{\mathrm{d}^{3}k} = \frac{a_{k}^{\dagger}a_{k}}{(2\pi)^{3}2\omega_{k}} = \frac{1}{(2\pi)^{3}2\omega_{k}}(\omega_{k}^{2}|\sigma_{k}|^{2} + |\partial_{t}\sigma_{k}|^{2})$$
$$\omega_{k} = \sqrt{|k|^{2} + m_{\sigma}^{2}}$$

$$m_{\sigma} = \sqrt{\frac{\partial^2 V_{\rm eff}}{\partial \sigma^2}}|_{\sigma = \sigma_{\rm eq}}$$

Intensity of sigma fluctuations - critical point

Fluctuations - critical point

Intensity of sigma fluctuations - first order PT

Fluctuations - first order PT

standard deviation in MeV

Summary & outlook

