Viscous hydrodynamics for relativistic heavy ion collisions

Matthew Luzum
Institut de physique théorique
CEA/Saclay, France

Excited QCD 2011
22 February, 2011
1 INTRODUCTION
- Relativistic viscous hydrodynamics
- Application to heavy ion collisions

2 RESULTS
- Past results
- Current status/future prospects
OUTLINE

1 INTRODUCTION
 - Relativistic viscous hydrodynamics
 - Application to heavy ion collisions

2 RESULTS
 - Past results
 - Current status/future prospects
Ideal (Relativistic) Hydrodynamic Equations

- Ideal hydro: isotropic energy-momentum tensor

\[T^0_i \text{rest} \equiv 0 \Rightarrow T^\mu_\nu = \begin{pmatrix} \epsilon & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ 0 & 0 & p & 0 \\ 0 & 0 & 0 & p \end{pmatrix} \]

\[T^{\mu\nu} = T^0_0 = (\epsilon + p) u^\mu u^\nu - p g^{\mu\nu} \]

- Conservation equations:

\[\partial_\mu T^{\mu\nu} = 0 \]

- Equation of State

\[p = p(\epsilon) \]

- Viscosity: gradient expansion

\[T^{\mu\nu} = T^0_0 + \eta \nabla \langle \mu u^\nu \rangle + \zeta \Delta^{\mu\nu} \nabla_\alpha u^\alpha + \ldots \]
Heavy Ion Collision Timeline

- **Pre-equilibrium**
- **Phase transition**
- **Thermalization (isotropization)**
- **Freeze-out**
- **Dilute gas/free streaming**
- **Hydrodynamics**

Timeline diagram showing the sequence of events in heavy ion collisions.
Complete hydro model

A complete model includes:

- Initial conditions:
 Minimal standard — boost-invariant I.C.s, transverse ϵ profile from simple model, no initial flow, free parameters τ_0, T_f

- Hydro parameters:
 Minimal standard — constant η/s, EoS with crossover, no bulk viscosity

- Freeze out:
 Minimal standard — Cooper-Frye freeze out with free parameter T_f
EXPERIMENTAL RESULT:
Collective behavior ("elliptic flow")
Collective behavior ("elliptic flow")

$$dN/dY d^2 p \propto \left(1 + \frac{2}{v^2} \cos 2(\phi - \psi_{RP}) + \frac{2}{v^4} \cos 4(\phi - \psi_{RP}) + \ldots\right)$$

Elliptic flow:

$$v_2 \equiv \langle \cos 2(\phi - \psi_{RP}) \rangle$$
Collective behavior ("elliptic flow")

The distribution of emitted particles:

\[
\frac{dN}{dY \, d^2p_T} \propto 1 + 2v_2 \cos 2(\phi - \psi_{RP}) + 2v_4 \cos 4(\phi - \psi_{RP}) + \ldots
\]
COLLECTIVE BEHAVIOR ("ELLiptic FLOW")

The distribution of emitted particles:

\[
\frac{dN}{dY \, d^2p_T} \propto 1 + 2v_2 \cos 2(\phi - \psi_{RP}) + 2v_4 \cos 4(\phi - \psi_{RP}) + \ldots
\]
The distribution of emitted particles:

\[
\frac{dN}{dY d^2p_T} \propto 1 + 2v_2 \cos 2(\phi - \psi_{RP}) + 2v_4 \cos 4(\phi - \psi_{RP}) + \ldots
\]

Elliptic flow: \(v_2 \equiv \langle \cos 2(\phi - \psi_{RP}) \rangle \)
INTRODUCTION

- Relativistic viscous hydrodynamics
- Application to heavy ion collisions

RESULTS

- Past results
- Current status/future prospects
Hydro works!

- Ideal hydrodynamic models fit RHIC data surprisingly well (Kolb et al., Teaney et al., Huovinen et al., etc.):

 \[
 \frac{\eta}{s} \geq \frac{1}{4\pi} \simeq 0.08
 \]

RHIC Scientists Serve Up "Perfect" Liquid

New state of matter more remarkable than predicted -- raising many new questions

April 18, 2005

- Adding shear viscosity to the models shows that the collision medium is close to conjectured lower bound \(\frac{\eta}{s} \geq \frac{1}{4\pi} \simeq 0.08 \):
Even with significant uncertainties in the models, they provide strong evidence of a low viscosity/strongly interacting fluid
v_2 from ALICE is just as expected from viscous hydro:

\[(arXiv:1011.5173)\]
What are Hydro people working on now?

Progress is being made on several fronts:

- Improving freeze out prescription: A number of people are now using hybrid hydro/transport models (Hirano et al., Petersen et al., Heinz et al., etc.).
- Improving hydro stage: Investigations are ongoing into the effect of bulk viscosity and temperature-dependent shear viscosity (Song et al., Mota et al., etc.)
- Improving initial conditions: c.f., J. Albacete’s talk on CGC
- Investigating rapidity dependence (Schenke et al., Werner et al., Hama et al., etc.)
- Understanding flow fluctuations (Petersen et al., Schenke et al., Mota et al., Holopainen et al., Werner et al., etc.)
WHAT ARE HYDRO PEOPLE WORKING ON NOW?

Progress is being made on several fronts:

- Improving freeze out prescription: A number of people are now using hybrid hydro/transport models (Hirano et al., Petersen et al., Heinz et al., etc.).

- Improving hydro stage: Investigations are ongoing into the effect of bulk viscosity and temperature-dependent shear viscosity (Song et al., Mota et al., etc.)

- Improving initial conditions: c.f., J. Albacete’s talk on CGC

- Investigating rapidity dependence (Schenke et al., Werner et al., Hama et al., etc.)

- Understanding flow fluctuations (Petersen et al., Schenke et al., Mota et al., Holopainen et al., Werner et al., etc.)
WHAT ARE HYDRO PEOPLE WORKING ON NOW?

Progress is being made on several fronts:

- Improving freeze out prescription: A number of people are now using hybrid hydro/transport models (Hirano et al., Petersen et al., Heinz et al., etc.).

- Improving hydro stage: Investigations are ongoing into the effect of bulk viscosity and temperature-dependent shear viscosity (Song et al., Mota et al., etc.)

- Improving initial conditions: c.f., J. Albacete’s talk on CGC
 - Investigating rapidity dependence (Schenke et al., Werner et al., Hama et al., etc.)
 - Understanding flow fluctuations (Petersen et al., Schenke et al., Mota et al., Holopainen et al., Werner et al., etc.)
What are Hydro people working on now?

Progress is being made on several fronts:

- Improving freeze out prescription: A number of people are now using hybrid hydro/transport models (Hirano et al., Petersen et al., Heinz et al., etc.).

- Improving hydro stage: Investigations are ongoing into the effect of bulk viscosity and temperature-dependent shear viscosity (Song et al., Mota et al., etc.)

- Improving initial conditions: c.f., J. Albacete’s talk on CGC

- Investigating rapidity dependence (Schenke et al., Werner et al., Hama et al., etc.)

- Understanding flow fluctuations (Petersen et al., Schenke et al., Mota et al., Holopainen et al., Werner et al., etc.)
WHAT ARE HYDRO PEOPLE WORKING ON NOW?

Progress is being made on several fronts:

- Improving freeze out prescription: A number of people are now using hybrid hydro/transport models (Hirano *et al.*, Petersen *et al.*, Heinz *et al.*, etc.).

- Improving hydro stage: Investigations are ongoing into the effect of bulk viscosity and temperature-dependent shear viscosity (Song *et al.*, Mota *et al.*, etc.).

- Improving initial conditions: c.f., J. Albacete’s talk on CGC

- Investigating rapidity dependence (Schenke *et al.*, Werner *et al.*, Hama *et al.*, etc.)

- Understanding flow fluctuations (Petersen *et al.*, Schenke *et al.*, Mota *et al.*, Holopainen *et al.*, Werner *et al.*, etc.)
Flow fluctuations

\[
\frac{dN}{dY \, d^2 p_t} \propto 1 + 2 v_2 \cos 2(\phi - \psi_{RP}) + 2 v_4 \cos 4(\phi - \psi_{RP}) + \ldots
\]
Flow fluctuations

\[
\frac{dN}{dY \, d^2p_t} \propto 1 + 2v_2 \cos 2(\phi - \psi_{RP}) + 2v_4 \cos 4(\phi - \psi_{RP}) + \ldots
\]
Flow fluctuations

\[
\frac{dN}{dY \, d^2 p_t} \propto 1 + 2v_2 \cos 2(\phi - \psi_{RP}) + 2v_4 \cos 4(\phi - \psi_{RP}) + \ldots
\]

\[
\frac{dN}{dY \, d^2 p_t} \propto 1 + \sum_{n=1}^{\infty} 2v_n \cos n(\phi - \psi_n) = \sum_{n=-\infty}^{\infty} v_n e^{i\psi_n} e^{-in\phi}
\]
Flow fluctuations

\[
\frac{dN}{dY \ d^2 p_t} \propto 1 + 2v_2 \cos 2(\phi - \psi_{RP}) + 2v_4 \cos 4(\phi - \psi_{RP}) + \ldots
\]

\[
\frac{dN}{dY \ d^2 p_t} \propto 1 + \sum_{n=1}^{\infty} 2v_n \cos n(\phi - \psi_n) = \sum_{n=-\infty}^{\infty} v_ne^{in\psi_n}e^{-in\phi}
\]

\[\psi_2 = \psi_{EP}\]
FLOW FLUCTUATIONS

\[
\frac{dN}{dY \, d^2 p_t} \propto 1 + 2v_2 \cos 2(\phi - \psi_{RP}) + 2v_4 \cos 4(\phi - \psi_{RP}) + \ldots \\
\frac{dN}{dY \, d^2 p_t} \propto 1 + \sum_{n=1}^{\infty} 2v_n \cos n(\phi - \psi_n) = \sum_{n=-\infty}^{\infty} v_n e^{i\psi_n} e^{-in\phi}
\]
Flow fluctuations

\[
\frac{dN}{dY \, d^2p_t} \propto 1 + 2v_2 \cos 2(\phi - \psi_{RP}) + 2v_4 \cos 4(\phi - \psi_{RP}) + \ldots
\]

\[
\frac{dN}{dY \, d^2p_t} \propto 1 + \sum_{n=1}^{\infty} 2v_n \cos n(\phi - \psi_n) = \sum_{n=-\infty}^{\infty} v_n e^{in\psi_n} e^{-in\phi}
\]

\[\Rightarrow \langle e^{in(\phi_1 - \phi_2)} \rangle = \langle e^{in\phi_1} \rangle \langle e^{-in\phi_2} \rangle = v_n^{(1)} v_n^{(2)}\]
These flow fluctuations provide a natural explanation for “ridge” and “shoulder” phenomena in heavy ion collisions.

(arXiv:1004.0805)

But they also imply new flow measurements that will constrain, e.g., the initial dynamics:

(arXiv:1008.0139)
TRIANGULAR FLOW, DIRECTED FLOW, etc.

From measurements of:
\(v_1, v_2\{2\}, v_2\{4\}, v_3\{2\}, v_3\{4\}, v_4\{\psi_2\}, v_4\{\psi_4\}, \ldots \)

we will be able to significantly constrain both hydro parameters, and initial dynamics.
SUMMARY

- Viscous hydrodynamic models have been very successful at describing heavy ion collisions at RHIC, and now LHC.
- In the future, look for more precision extraction of, e.g., η/s, as well as constraints on geometry and fluctuations of the early-time state.
- LHC will probe higher temperatures, but also provides better detection capabilities to measure all these flow observables (higher multiplicity, larger detector coverage, etc.).