Noncommutative geometry inspired black holes in higher dimensions at the LHC

> Doug Gingrich University of Alberta/TRIUMF

Introduction

- Embed model of noncommutative geometry inspired black holes into peridium of large extra dimension.
- Relate noncommutativity scale to higher-dimensional Planck scale.
- One of the main consequences is the prediction of a black hole remnant.
- Mass of remnant can be well above the Planck scale.
- Experimental signatures quite different from usual black hole studies at LHC.
- Discovery would result in additional mass threshold above Planck scale at which new physics occurs.

Noncommutivity

- Concept of quantization of spacetime considered to help regulate short-distance behaviour of point interactions.
- Geometry and noncommutative algebras developed in theory of noncommutative geometry.
- String theory and M-theory interested in generalization of quantum field theory to noncommutative coordinates.

Treat coordinates as operators in D dimensions

$$\left[\hat{x}^{A}, \hat{x}^{B}\right] = i\theta^{AB} \equiv i\frac{\epsilon^{AB}}{\Lambda_{\rm NC}^{2}}$$

 $\Lambda_{\rm NC}$ scale associates with noncommutative

Effective Theory of Quantum Gravity

- Noncommutative equivalent of general relativity not yet mature enough to allow phenomenological studies.
- Formulate model in which general relativity in usual commutative form, but smear matter distributions on a length scale of $O(1/\Lambda_{\rm NC}).$
- Effective approach could be considered as improvement to semiclassical gravity.

Smeared matter distribution

$$\rho = \frac{m}{(4\pi\theta)^{(n+3)/2}} e^{-r^2/(4\theta)}$$

We take
$$\sqrt{ heta}=1/\Lambda_{
m NC}$$

D-1 = n+3 space dimensions

Black Hole Production

- Replace delta-function mass distributions with smeared distributions in energy-momentum tensor.
- Solve for spherically symmetric and static metric.

$$\begin{split} \frac{m}{M_D} &= \frac{k_n}{P\left(\frac{n+3}{2}, \frac{r_g^2}{4\theta}\right)} \left(r_g M_D\right)^{n+1} & \text{Gravitational radius}\\ \text{not in closed form} \\ \hline k_n &= \frac{n+2}{2^n \pi^{(n-3)/2} \Gamma\left(\frac{n+3}{2}\right)} \\ \frac{m+3}{2}, \frac{r_g^2}{4\theta} &= \frac{1}{\Gamma\left(\frac{n+3}{2}\right)} \int_0^{r_g^2/(4\theta)} dt \, e^{-t} t^{(n+3)/2-1} & \text{Regularized}\\ \text{incomplete}\\ \text{gamma}\\ \text{function}\\ \text{from below} \end{split}$$

P

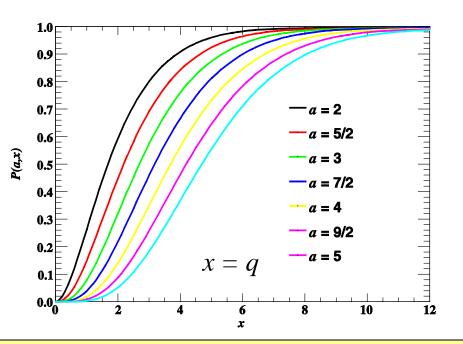
Incomplete Gamma Function

Since n integer, simpler notation

 $F_a(q) \equiv P\left[(n+3)/2, r_g^2/(4\theta)\right]$

$$a = (n+3)/2$$

 $q = r_g^2/(4 heta)$



- Can not approximate $F_a(q)$.
- Solve for r_g numerically.
- There is a minimum mass m_{\min} .
- Gravitational radius is double valued (two horizons) for $r_g > (r_g)_{\min}$.
- We need only consider outer gravitational radius.
- Insensitive to type of distribution function if $r_g > 1/\Lambda_{\rm NC}$

Parameters Space

• $1 < m_{\min}/M_D < 14/M_D$ • Minimize gravitational						n 2 3	$\frac{M_D(\text{TeV})}{4}$)
radius and solve for mass.						4	0.94	
T		$2q_0^a e$	5		0.86			
F	$F_a(q_0) - \frac{2q_0^a e^{-q_0}}{(n+1)\Gamma(a)} = 0 \sqrt{q_0}/2 = (r_g)_{\min}/\sqrt{\theta}.$						0.80	
	n	$(r_g)_{\min}/\sqrt{ heta}$	$(m_{\min}/M_D)(\sqrt{\theta}M_D)^{-(n+1)}$	$\sqrt{ heta}_{\min}$	M_D	$\sqrt{ heta}_{ m m}$	$M_{\rm max}M_D$	
	2	2.51	65.2	0.24	8	0.	377	
	3	2.41	58.8	0.36	1	0.667		
	4	2.34	48.6	0.46	0	0.789		
	5	2.29	37.9	0.54	6	0.869		
	6	2.26	28.2	0.62	1 0.929		.929	
	7	2.23	20.3	0.68	6 0.982		.982	

21 February 2011

Restrict Parameter Space

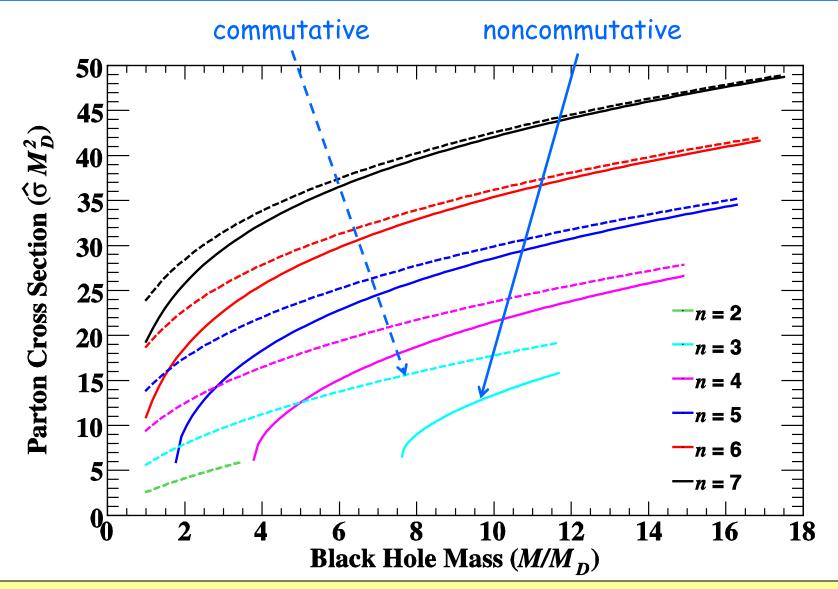
- 3 Parameters: $n, M_D, \forall \theta$
- Restricted by experimental lower bounds on M_D and maximum LHC energy reach.

• Pick
$$\sqrt{\theta}M_D = 0.6$$

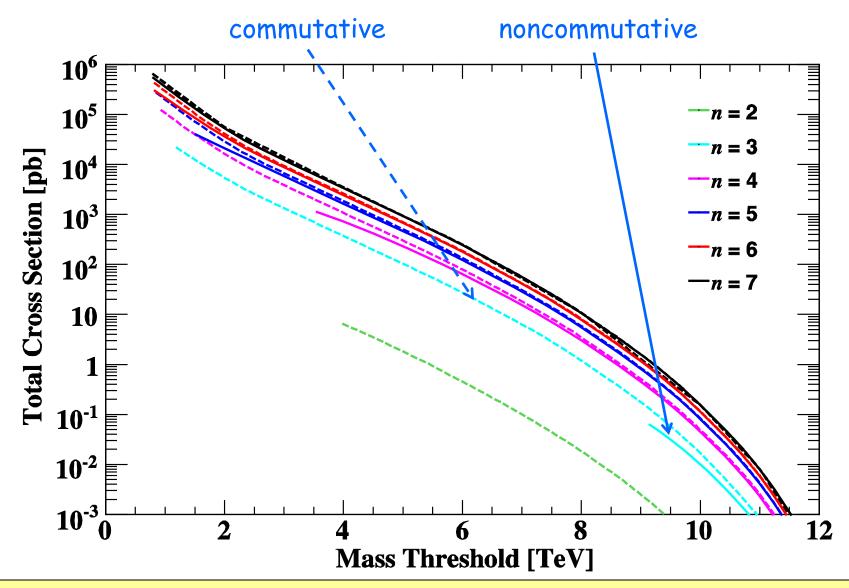
n	$(r_g)_{\min}M_D$	$m_{ m min}/M_D$		
2	1.51	14.09		
3	1.45	7.62		
4	1.40	3.78		
5	1.38	1.77		
6	1.35	0.79		
7	1.34	0.34		

- $n \le 2$, minimum mass above LHC energy reach.
- $n \ge 6$, minimum mass below Planck scale.
- $3 \le n \le 5$, minimum mass within LHC energy reach.

Parton Cross Section



Proton Cross Section



21 February 2011

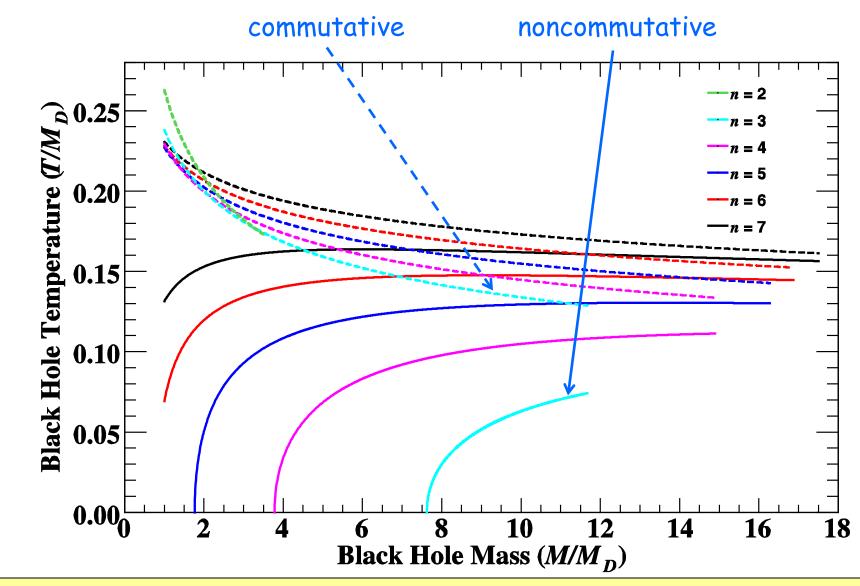
Black Hole Decays

Assume thermal decays over most of mass range.

$$T = \frac{n+1}{4\pi r_g M_D} \left[1 - \frac{2q^{(n+3)/2}e^{-q}}{F_n(q)(n+1)\Gamma\left(\frac{n+3}{2}\right)} \right]$$

- Black hole cold, so use canonical ensemble approach to decay.
- No need to invoke a terminal-decay phase near end of decay.
 - Decay lifetime infinite as BH approaches minimum radius.
 - Temperature vanishes when radius at minimum.
 - Heat capacity also vanishes at minimum radius.
 → take black hole remnant to be stable.
 - Remnant mass can be above Planck scale.

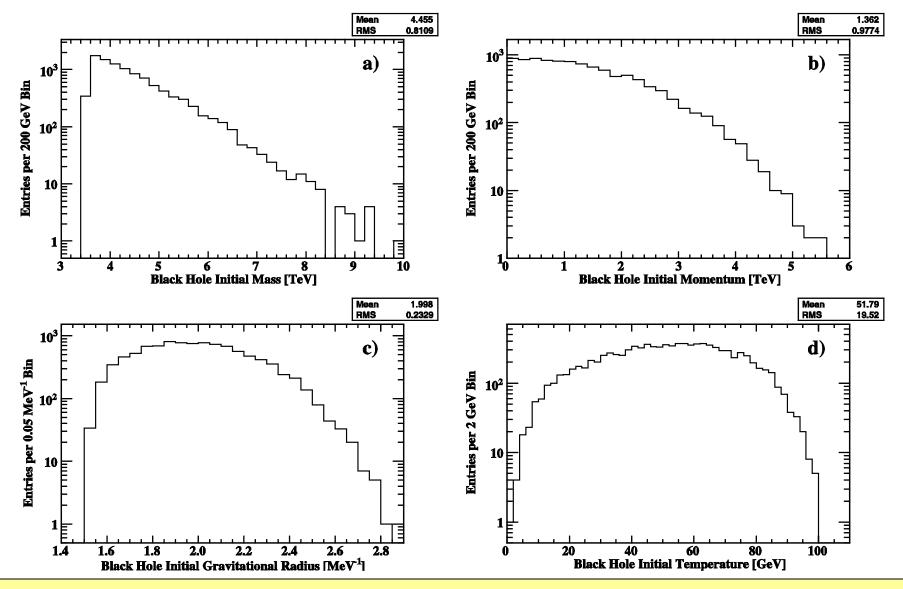
Temperature



Results

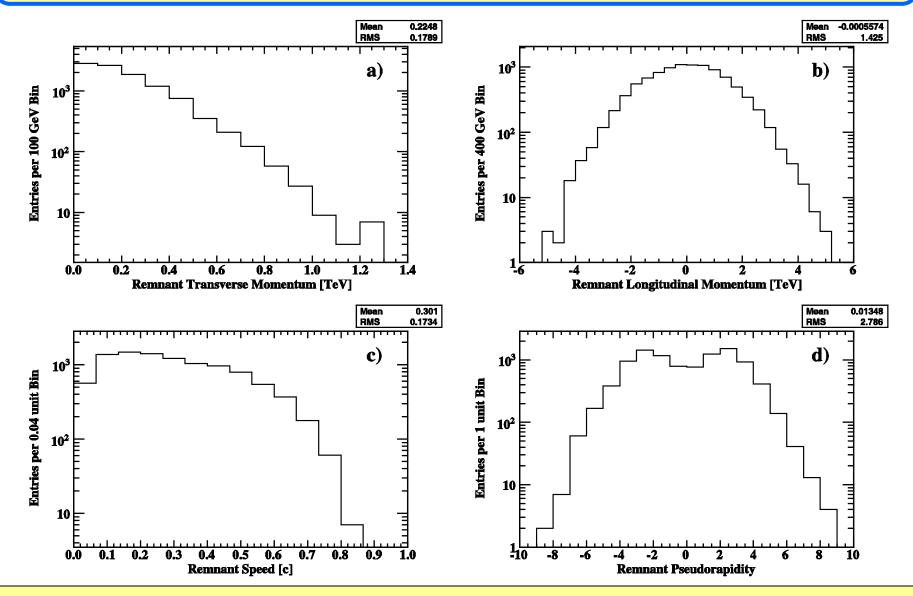
- Use CHARYBDIS:
 - Modify cross section (solve for radius numerically each time).
 - Modify temperature (solve for radius numerically each time).
 - Set minimum mass to $max(M_D, m_{min})$ for production and decay.
 - Use remnant final state option:
 - Baryon number 0
 - Charge -1, 0, +1.
 - Modify to have fixed decay mass.
 - Add cutoff of decay within 100 MeV of remnant mass.
- Consider interesting case: n = 4, $M_D = 0.94$ TeV, $v\theta = 0.64$ TeV⁻¹.
 - Remnant mass 3.6 TeV

Initial Black Hole Characteristics

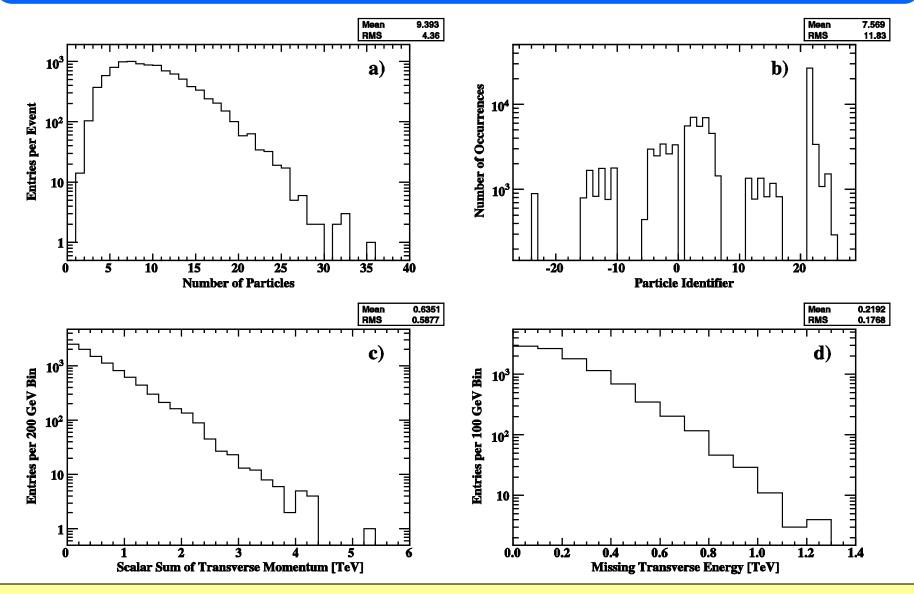


21 February 2011

Remnant Characteristics

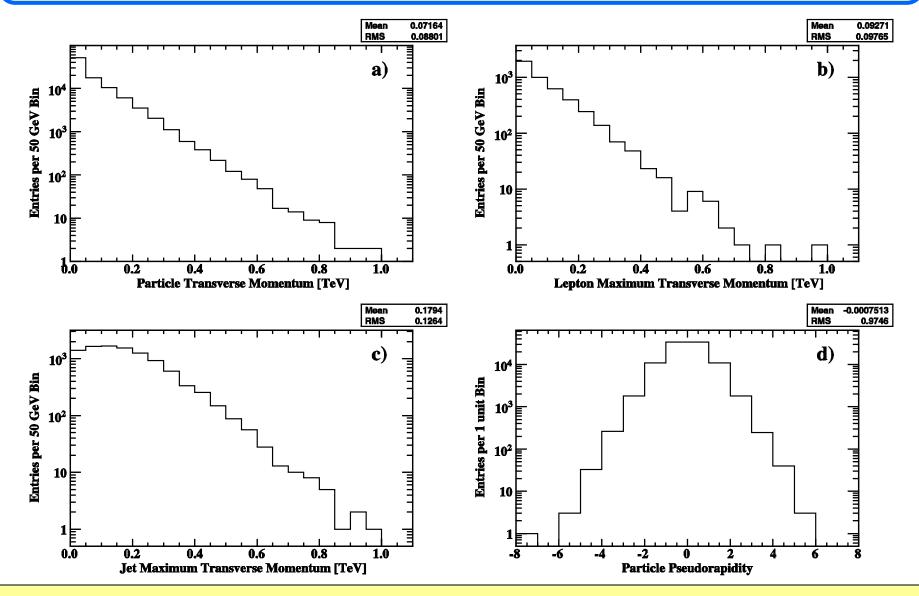


Event Characteristics



21 February 2011

Particle Characteristics



Conclusions and Comments

- Summary of signatures:
 - Remnant non-relativistic and about half have $|\eta| > 2.5$.
 - Multiplicity still high and most particles in detector.
 - Lots of low-p_T particles.
 - Sum of scalar transverse momentum not useful cut variable.
 - Missing- E_T not particularly high.
- Search strategies:
 - Final state dominate by remnant.
 - Signature very different from high- p_T semiclassical black holes, or gravitational scattering and 2-body decays of quantum black holes.
 - Perhaps need to re-think search strategies.
 - Triggering would need to be reexamined.
 - Study of direct detection of charged remnant needs full detector simulation.

Pontification: Mass Thresholds

- Mathematically ADD commutative geometry classical black holes can have zero radius and zero mass (infinite temperature).
- To ensure validity of predictions of semiclassical gravity a lower-mass threshold is usually imposed.
- Non-physical threshold often has more of an impact on anticipated signatures than the physical parameters n and M_D , or the decay assumptions.
- However, in real data there should also be nonperturbative gravitational objects produced below this threshold (domain of quantum gravity).
- A perfectly efficient search with no acceptance restrictions would allow all quantum black holes to be observed.
- Clearly, the MC simulations would not accurately simulate the data.
- Noncommutative inspired black holes could offer a way out of this difficulty:
 - A physical lower-mass threshold above the Planck scale eliminates the need for a nonphysical model-dependent mass threshold.

Pontification: Extension of Validity

- Usually transition from semiclassical gravity to quantum gravity regimes.
- This model allows transition from commutative semiclassical gravity to noncommutative gravity regimes, before full UV complete quantum gravity effects take over.
- However, noncommutative gravity only an effective theory.
- For details, approximations, justifications, and citations see JHEP 1105:022,2010