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OUTLINE

• Brief Intro [cf Larry’s Talk]

• Running coupling corrections to the BK equation.  

• Fits e+p data (in coll with N. Armesto, JG Milhano, P. Quiroga and C. Salgado) 

• RHIC: Single and double inclusive yields at forward rapidities (in coll with C. Marquet)

• rcBK Monte Carlo: Pb+Pb multiplicities at the LHC (in coll with A. Dumitru)

See also T. Ullrich’s talk tomorrow



Probability of n-soft gluon emission
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P ∼ (αs ln1/x)n

At high energies, or small Bjorken-x, hadron’s gluon densities are large
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≈ K ⊗ φ(x,kt)

Multiple small-x gluon emissions are resummed by the BFKL equation

proton ugd from HERA
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Non-linear QCD evolution: At small-x gluon both radiative and recombination processes

“BK-JIMWLK”

Non-linear recombination corrections 
are demanded by UNITARITY 
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        CGC: JIMWLK−BK

BFKL
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Saturation scale: transverse momentum scale which marks the onset of non-linear corrections

∂φ(x,kt)
∂ ln(x0/x)

≈ K ⊗ φ(x,kt)− φ(x,kt)2

K ⊗ φ(x, Qs) ≈ φ(x, Qs)2 Q2
sA ≈ A1/3Q2

spNuclear enhancement:



CGC evolution: The BK equation

∂N (r, x)
∂ ln(x0/x)

=
∫

d2r1 K(r, r1, r2) [N (r1, x) +N (r2, x)−N (r, x)−N (r1, x)N (r2, x)]

ln
1
x
∼ ln s ∼ Y

Balitsky 96, Kovchegov 99

( large-Nc limit of full JIMWLK evolution) 
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S(x, y;Y ) =
1

Nc
〈tr{Ux U†

y}〉Y = 1 −N (x, y;Y )

Increase the collision energy and resum small-x gluon radiation

perturbative kernel non-linear term

unintegrated WW gluon distribution:

ϕ(x, kt) =
∫

d2r

2π r2
eik·rN (r, x)

 ⇒ The kernel: probability of small-x gluon emission at leading-logarithmic accuracy 

       in                  :  

K(x, y, z) =
αs Nc

2π2

(x− y)2

(x− z)2(z − y)2
= + 

x

y

z

 + all possible permutations   

αs ln(1/x)



✓ NLO corrections to BK-JIMWLK equations have been calculated recently (Balitsky-Chirilli; 
Kovchegov-Weigert, Gardi et al).  Phenomenological tool: The BK equation including only running 
coupling corrections in Balitsky’s scheme grasps most of the NLO corrections  (JLA-Kovchegov)
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∂N (r, x)
∂ ln(x0/x)

=
∫

d2r1 K(r, r1, r2) [N (r1, x) +N (r2, x)−N (r, x)−N (r1, x)N (r2, x)]BK eqn:

Running coupling kernel:

       LO: αs ln(1/x)
small-x gluon emission

Quark loops resummed to all orders
“NLO”: αs Nf

Nf → −6πβ2Gluon contribution:



Running coupling corrections are large, rendering evolution compatible with experimental data. 
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λ(Y ) =
d lnQs(Y )

dY
values compatible 
with DIS and HIC dataλLO ≈ 4.8 αs

Free parameters in the (x,kt)-dependence of unintegrated gluon distributions corresponds to freedom in 
the choice of initial conditions: 

N (r, x = x0) = 1− exp

[
−

(
r2 Q2

s0

)γ

4
ln

(
1

r Λ
+ e

)]
MV + 

“anomalous dimension”



⇒ Experimental data: ZEUS & H1 (HERA) combined data on reduced cross sections + older NMC 

    (CERN-SPS) and E665 (Fermilab) coll. at x< x0=10-2 and Q2 < 50 GeV2

AAMQS Fits to e+p data: JLA, N. Armesto, J.G. Milhano, P Quiroga and  C. Salgado   

x

q

q

P
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y Strong interactions 
         are here

QED piece

⇒ dipole cross section: 

σγ∗h
T,L(x, Q2) =

∑

flavours

∫
d2r

∫ 1

0
dz

∣∣∣Ψf,γ∗→qq̄
T,L (z, r,Q2)

∣∣∣
2
σdip(r, x)

σdip(r, x) = 2
∫

d2bN (b, r, x) ≈ σ0N (b, r, x)

⇒ Charm contribution:  Including charm in the sum over flavors we are account for charm contribution 
    (~10% of total e+p cross section) and also describe available data on F2c (extra parameters).

⇒ Regularization of the coupling: 

αs(r2) =
12 π

(11 Nc − 2 Nf ) ln
(

4 C2

r2 ΛQCD

) for r < rfr, with αs(r2
fr) ≡ αfr = 0.7

Variable flavour number scheme for the running of the coupling
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Reduced cross section Charm structure function

fit χ2

d.o.f Q2
s0 σ0 γ Q2

s0c σ0c γc C m2
l

GBW

a αfr=0.7 1.269 0.2294 36.953 1.259 0.2289 18.962 0.881 4.363 fixed

a’ αfr=0.7 (Λmτ ) 1.302 0.2341 36.362 1.241 0.2249 20.380 0.919 7.858 fixed

b αfr=0.7 1.231 0.2386 35.465 1.263 0.2329 18.430 0.883 3.902 1.458E-2

c αfr=1 1.356 0.2373 35.861 1.270 0.2360 13.717 0.789 2.442 fixed

d αfr=1 1.221 0.2295 35.037 1.195 0.2274 20.262 0.924 3.725 1.351E-2

MV

e αfr=0.7 1.395 0.1673 36.032 1.355 0.1650 18.740 1.099 3.813 fixed

f αfr=0.7 1.244 0.1687 35.449 1.369 0.1417 19.066 1.035 4.079 1.445E-2

g αfr=1 1.325 0.1481 40.216 1.362 0.1378 13.577 0.914 4.850 fixed

h αfr=1 1.298 0.156 37.003 1.319 0.147 19.774 1.074 4.355 1.692E-2

Table 2: Parameters from fits including charm and beauty contributions to data with x ≤ 10−2

and and Q2 ≤ 50 GeV2 for different initial conditions and fixed values of the coupling in the infrared
αfr = 0.7 and 0.1. Light quark masses are fixed to ml = 0.14 GeV in some fits and left as a free
parameter in others. The fit a’ corresponds to taking the τ mass as reference scale for the running
of the coupling. The units: Q2

s0(c) and m2
l are GeV2, while those of σ0(c) are mb.

parameters associated to the beauty quark prevents us of carrying out a more detailed

characterization of its contribution to the data included in the fit. Thus, we assume that

the free parameters associated to heavy quarks, including the overall normalization, is the

same for charm and beauty. We have checked that such assumption has a very little effect

on the fit output by completely removing the beauty contribution to F2 and σr. However,

we finally decided to include it in the fits in order to be consistent with the variable flavor

scheme used for the running of the coupling, which allows the contribution of dynamical b

quarks to the QCD beta function.

Our fit results are shown in Table 2, and a comparison with data for σr is shown in

the right plot Fig 1. We obtain an equally good description of data as with fits with only

light quarks, as can be seen comparing the left and right plots in Fig 1. However, the

χ2/d.o.f. ! 1.4 are slightly larger than for the fits with only light quarks. This is maybe

due to what seems to be a systematic deviation between different data sets on F2c and the

charm contribution to the reduced cross section σrc, as can be observed in Fig 2, where

we compare our results with experimental data. The arguments presented before on the

stability of the fits with respect to variations in the infrared regulation of the coupling

or the reference scale to determine ΛQCD also hold in the case of fits with heavy quarks.

On the other hand, when left as a free parameter the mass of the light quark tends to

acquire a smaller value than it did in the fits with only light quarks. Concerning the

initial conditions for the evolution, they are very similar for light and heavy quarks. In

particular, the corresponding initial saturation scales, Qs0 and Qs0c take on very similar

values in all fits. However, the steepness of the initial condition encoded in the parameter

γ(c) is systematically larger for light than for heavy quarks for both GBW and MV initial

– 12 –
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l are GeV2, while those of σ0(c) are mb.

parameters associated to the beauty quark prevents us of carrying out a more detailed

characterization of its contribution to the data included in the fit. Thus, we assume that

the free parameters associated to heavy quarks, including the overall normalization, is the

same for charm and beauty. We have checked that such assumption has a very little effect

on the fit output by completely removing the beauty contribution to F2 and σr. However,

we finally decided to include it in the fits in order to be consistent with the variable flavor

scheme used for the running of the coupling, which allows the contribution of dynamical b

quarks to the QCD beta function.

Our fit results are shown in Table 2, and a comparison with data for σr is shown in

the right plot Fig 1. We obtain an equally good description of data as with fits with only

light quarks, as can be seen comparing the left and right plots in Fig 1. However, the

χ2/d.o.f. ! 1.4 are slightly larger than for the fits with only light quarks. This is maybe

due to what seems to be a systematic deviation between different data sets on F2c and the

charm contribution to the reduced cross section σrc, as can be observed in Fig 2, where

we compare our results with experimental data. The arguments presented before on the

stability of the fits with respect to variations in the infrared regulation of the coupling

or the reference scale to determine ΛQCD also hold in the case of fits with heavy quarks.

On the other hand, when left as a free parameter the mass of the light quark tends to

acquire a smaller value than it did in the fits with only light quarks. Concerning the

initial conditions for the evolution, they are very similar for light and heavy quarks. In

particular, the corresponding initial saturation scales, Qs0 and Qs0c take on very similar

values in all fits. However, the steepness of the initial condition encoded in the parameter

γ(c) is systematically larger for light than for heavy quarks for both GBW and MV initial

– 12 –



RHIC  Kinematics:

At RHIC energies, forward measurements needed to isolate small-x 
(<0.01) effects

x1(2) ∼
mt√

s
exp(± yh)

• single particle production: Small-x ~ forward production

• double inclusive production: Small-x ~ two particles in the forward region!

xp =
|k1|ey1 + |k2|ey2

√
s

(k1, y1), (k2, y2)

(k, y)

xA =
|k1| e−y1 + |k2| e−y2

√
s

d+Au and p+p collisions at RHIC



⇒ Forward hadron production in the CGC

ÑF (A)(x, k) =
∫

d2r e−ik·r [
1−NF (A)(r, Y =ln(x0/x))

]

large-x parton from proj. (pdf) small-x glue from target (CGC)

(Dumitru, Jalilian-Marian)

dNh

dyh d2pt
=

K

(2π)2
∑

q

∫ 1

xF

dz

z2

[
x1fq / p(x1, p

2
t ) ÑF

(
x2,

pt

z

)
Dh / q(z, p2

t )

+ x1fg / p(x1, p
2
t ) ÑA

(
x2,

pt

z

)
Dh / g(z, p2

t )
]

fragmentation

11

N (r, x = x0) = 1− exp
[
−r2 Q2

0

4
ln

(
1

r Λ
+ e

)]
MV Initial conditions:

Unintegrated gluon from running 
coupling BK

Alternative approaches: Modelization of quantum corrections
(Dumitru-JalilianMarian-Hayashigaki; De Boer-Utermann-Wessels;  Goncalves et al;  

Kharzeev-Kovchegov-Tuchin)

Two free parameters: (x0, Q0)

We use CTEQ6 pdf’s and de Florian-Sassot ff ’s

JLA & C. Marquet 10
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- Very good description of forward yields in proton+proton and d+Au collisions
- K=1 for h-. K=0.4 (0.3) for neutral pions in p+p (d+Au) ??
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Comparison to RHIC forward data [ JLA, C. Marquet ’10]

- Energy loss related to high-xF effects not taken into account
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- ...by simply taking the ratio of d+Au and p+p spectra we get a good description of the nuclear 
modification factor (not a trivial statement!!)

- We predict a similar suppression in p+Pb collisions at the LHC already at central rapidities

RHIC d+Au LHC p+Pb



⇒ Double Inclusive forward hadron production in the CGC

(k1, y1), (k2, y2)
xp =

|k1|ey1 + |k2|ey2

√
s

Cyrille Marquet 07:

hard quark initiating scattering Fourier transfrom coordinate space to momentum

q-> qg splitting (pQCD)

Scattering of the 2-parton system with the CGC target

{
Involves more than 3 and 4 point functions. Calculated in the large Nc limit 
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xA =
|k1| e−y1 + |k2| e−y2

√
s



⇒ “Monojets” in d+Au collisions at RHIC at forward rapidity
➡ “Coincidence probability” measured by STAR Coll. at forward rapidities:

CP (∆φ) =
1

Ntrig

dNpair

d∆φ∆φ

trigger

 

trigger
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[JLA C. Marquet 10] 

➡ Effect of enhanced pedestal due to double parton interactions not taken into account



- Most of particles produced in the collision originate from small-x gluons in the saturation domain
- Other sources (genuinely soft processes, contribution from valence quarks etc) neglected
- Initial gluon production is calculated via kt-factorization and then mapped to final hadron spectra assuming 
  local parton-hadron duality

3 kt-factorization

According to the kt-factorization formalism [14], the number of gluons produced per unit rapidity
at a transverse position R in A+B collisions is given by

dNA+B→g

dy d2pt d2R
=

1

σs

dσA+B→g

dy d2pt d2R
, (8)

where σs represents the effective interaction area and σA+B→g is the cross section for inclusive
gluon production:

dσA+B→g

dy d2pt d2R
= κ

2

CF

1

p2t

∫ pt d2kt
4

∫

d2bαs(Q)ϕ(
|pt + kt|

2
, x1; b)ϕ(

|pt − kt|
2

, x2;R− b) , (9)

with x1(2) = (pt/
√
sNN) exp(±y) and CF = (N2

c −1)/2Nc; the normalization factor κ is given below.
As noted before, we assume that the local density in each nucleus is homogenous over transverse
distances of the order of the nucleon radius RN . Thus, the b-integral in Eq. (9) yields a geometric
factor proportional to the transverse “area” of a nucleon which cancels with a similar factor implicit
in σs from Eq. (8), modulo subtleties in the definition of σs. In any case, uncertainties associated
with the overall normalization of Eq. (8) cancel in the calculation of the initial eccentricity in
Eq. (16).

The unintegrated gluon distributions (ugd’s) ϕ entering Eq. (9) are related to the dipole scat-
tering amplitude in the adjoint representation, NG, through a Fourier transform (for consistency
with the notation used in Eq. (9) we make the impact parameter dependence of the ugd’s explicit):

ϕ(k, x, b) =
CF

αs(k) (2π)3

∫

d2r e−ik·r∇2
r NG(r, Y =ln(x0/x), b) . (10)

In turn, NG is related to the quark dipole scattering amplitude that solves the rcBK equation, N ,
as follows:

NG(r, x) = 2N (r, x)−N 2(r, x) . (11)

Note that this relation entails that the saturation momentum relevant for gluon scattering is larger
than that for quark scattering by about a factor of 2.

Eqs. (10) and (9) were written originally for fixed coupling. In order to be consistent with
our treatment of the small-x evolution, we have extended them by allowing the coupling to run
with the momentum scale. The argument of the running coupling in Eq. (9) is chosen to be
Q = max{|pt + kt|/2, |pt − kt|/2}, while for the definition of the ugd Eq. (10) we take it to be
the transverse momentum itself, k. This turns out to be important in order to reproduce the
centrality dependence of charged particle multiplicities at RHIC, which are otherwise too flat for
small Npart. However, the results are not very sensitive to the particular choice of scale because
ϕ → 0 as k2 → 0 due to the saturation of N (r) at large dipole sizes r. In principle, one could
improve on this educated ansatz by using the results of [15] where running coupling corrections to
inclusive gluon production have been studied. Most importantly, the x-dependence of the dipole
scattering amplitude obtained by solving the rcBK equation encodes all the collision energy and
rapidity dependence of the gluon production formula Eq. (9).

With the ugd as defined above, the normalization factor κ (introduced in the kt-factorization
formula (9) above) required to fit the charged particle multiplicity at RHIC energy turns out to
be κ % 7.1. It lumps together higher-order corrections, sea-quark contributions, parton → hadron
conversion factors, a nucleon geometry factor, and so on. The results shown below were obtained
under the assumption that this normalization factor is the same for both dEt/dy and dN/dy, and
that it is energy independent.
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rcBK Monte Carlo (JLA & Dumitru 2010)

1. Generate configurations for the positions of nucleons in the 
transverse plane (ri, i=1...A). Wood-Saxons thickness function TA(R)
2. Count the number of nucleons at every point in the transverse grid, R.

where Λ = 0.241 GeV. This introduces two free parameters: the value x0 where the evolution
starts and the initial saturation scale Qs0(R) at the transverse coordinate R; it measures the local
density of large-x sources at a fixed point in impact parameter space (i.e., in the transverse plane).

As explained in more detail below, the geometry of a given A+A collision is determined by the
fluctuations in the positions of the nucleons in the transverse plane. Each configuration defines a
different local density in the transverse plane of each nucleus. Obviously, the smallest non-zero
local density corresponds to the presence of a single nucleon. The corresponding value of Qs0 is
constrained by phenomenological analyses of e+p2 and p+p data in [11] and [13]. This results
in a central value Q2

s0 ≈ 0.2 GeV 2 for x0 ≈ 0.01. On the other hand, in A+A collisions rare
fluctuations can result in collisions of a large number of nucleons at the same transverse position
and, therefore, in a large Qs0. To account for all possible configurations we tabulate the solution
of the rcBK equation for different values of the initial local density, i.e., for each value of Qs0 in
Eq. (4) ranging from 0.2 GeV2 to 5 GeV2 in bins of 0.1 GeV2. The solutions are then used in
the kt-factorization formula to calculate local gluon production at each point in the collision zone.
Finally we perform the average over all the nucleon configurations generated by the Monte Carlo.

To complete our discussion of the initial conditions we explain how we construct Qs0(R).
We first generate a configuration of nucleons for each of the colliding nuclei. This consists of
a list of random coordinates ri, i = 1 . . . A, chosen from a Woods-Saxon distribution. Multi-
nucleon correlations are neglected except for imposing a short-distance hard core repulsion which
enforces a minimal distance ≈ 0.4 fm between any two nucleons. After this step, the longitudinal
coordinate of any nucleon is discarded, they are projected onto the transverse plane. Factorizing
the fluctuations of the nucleons in a nucleus from possible fluctuations of large-x “hot spots”
within a nucleon (not accounted for at present), and finally from semi-hard gluon production
appears to be justified by the scale hierarchy
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Qs

" RN " RA , (5)

where RA, RN are the radii of a nucleus and of a proton, respectively.
For a given configuration, the initial saturation momentumQs0(R) at the transverse coordinate

R is taken to be
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s0(R) = N(R)Q2
s0,nucl , (6)

where Q2
s0, nucl = 0.2 GeV2, as discussed above, and where N(R) is the number of nucleons from

the given nucleus which “overlap” the point R:

N(R) =
A
∑

i=1

Θ

(
√

σ0

π
− |R− ri|

)

. (7)

Some care must be exercised in choosing the transverse area σ0 of the large-x partons of a nucleon.
Qs0 corresponds to the density of large-x sources with x > x0 and should therefore be energy
independent (recoil of the sources is neglected in the small-x approximation). We therefore take
σ0 $ 42 mb to be given by the inelastic cross-section at

√
s = 200 GeV. However, σ0 should not

be confused with the energy dependent inelastic cross section σin(s) of a nucleon which grows due
to the emission of small-x gluons.

2Note that the initial conditions in that work were slightly different since they included an anomalous dimension
γ > 1 (while γ = 1 for the MV i.c.).
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rcBK Monte Carlo

1. Generate configurations for the positions of nucleons in the 
transverse plane (ri, i=1...A). Wood-Saxons thickness function TA(R)
2. Count the number of nucleons at every point in the transverse grid, R.
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σ0 $ 42 mb to be given by the inelastic cross-section at

√
s = 200 GeV. However, σ0 should not

be confused with the energy dependent inelastic cross section σin(s) of a nucleon which grows due
to the emission of small-x gluons.

2Note that the initial conditions in that work were slightly different since they included an anomalous dimension
γ > 1 (while γ = 1 for the MV i.c.).
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3. Assign a local initial (x=x0=0.01) saturation scale at every point in the 
transverse grid, R:

rcBK equation
ϕ(x0 = 0.01, kt, R) ϕ(x, kt, R)

b

R

ri

4. Gluon production is calculated at each transverse point according to kt-factorization

3 kt-factorization

According to the kt-factorization formalism [14], the number of gluons produced per unit rapidity
at a transverse position R in A+B collisions is given by

dNA+B→g

dy d2pt d2R
=

1

σs

dσA+B→g

dy d2pt d2R
, (8)

where σs represents the effective interaction area and σA+B→g is the cross section for inclusive
gluon production:

dσA+B→g

dy d2pt d2R
= κ

2

CF

1

p2t

∫ pt d2kt
4

∫

d2bαs(Q)ϕ(
|pt + kt|

2
, x1; b)ϕ(

|pt − kt|
2

, x2;R− b) , (9)

with x1(2) = (pt/
√
sNN) exp(±y) and CF = (N2

c −1)/2Nc; the normalization factor κ is given below.
As noted before, we assume that the local density in each nucleus is homogenous over transverse
distances of the order of the nucleon radius RN . Thus, the b-integral in Eq. (9) yields a geometric
factor proportional to the transverse “area” of a nucleon which cancels with a similar factor implicit
in σs from Eq. (8), modulo subtleties in the definition of σs. In any case, uncertainties associated
with the overall normalization of Eq. (8) cancel in the calculation of the initial eccentricity in
Eq. (16).

The unintegrated gluon distributions (ugd’s) ϕ entering Eq. (9) are related to the dipole scat-
tering amplitude in the adjoint representation, NG, through a Fourier transform (for consistency
with the notation used in Eq. (9) we make the impact parameter dependence of the ugd’s explicit):

ϕ(k, x, b) =
CF

αs(k) (2π)3

∫

d2r e−ik·r∇2
r NG(r, Y =ln(x0/x), b) . (10)

In turn, NG is related to the quark dipole scattering amplitude that solves the rcBK equation, N ,
as follows:

NG(r, x) = 2N (r, x)−N 2(r, x) . (11)

Note that this relation entails that the saturation momentum relevant for gluon scattering is larger
than that for quark scattering by about a factor of 2.

Eqs. (10) and (9) were written originally for fixed coupling. In order to be consistent with
our treatment of the small-x evolution, we have extended them by allowing the coupling to run
with the momentum scale. The argument of the running coupling in Eq. (9) is chosen to be
Q = max{|pt + kt|/2, |pt − kt|/2}, while for the definition of the ugd Eq. (10) we take it to be
the transverse momentum itself, k. This turns out to be important in order to reproduce the
centrality dependence of charged particle multiplicities at RHIC, which are otherwise too flat for
small Npart. However, the results are not very sensitive to the particular choice of scale because
ϕ → 0 as k2 → 0 due to the saturation of N (r) at large dipole sizes r. In principle, one could
improve on this educated ansatz by using the results of [15] where running coupling corrections to
inclusive gluon production have been studied. Most importantly, the x-dependence of the dipole
scattering amplitude obtained by solving the rcBK equation encodes all the collision energy and
rapidity dependence of the gluon production formula Eq. (9).

With the ugd as defined above, the normalization factor κ (introduced in the kt-factorization
formula (9) above) required to fit the charged particle multiplicity at RHIC energy turns out to
be κ % 7.1. It lumps together higher-order corrections, sea-quark contributions, parton → hadron
conversion factors, a nucleon geometry factor, and so on. The results shown below were obtained
under the assumption that this normalization factor is the same for both dEt/dy and dN/dy, and
that it is energy independent.
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Figure 1: Unintegrated gluon distributions for different values of the initial saturation scale evolved
to x = 3 · 10−4.

In fig. 1 we plot the ugd for three different initial MV saturation scales at x = 3 · 10−4 versus
transverse momentum. The ugd corresponding to a single nucleon peaks at about kt ! 1 GeV. The
ugds for larger Q2

s0 illustrate the shift predicted for a 6-nucleon and 12-nucleon target, respectively.

3.1 Observables

Eq. (9) is the starting point for all observables shown below. In particular, the charged particle
multiplicity and the transverse energy can be obtained by integrating over the transverse plane
and pt,

dNch

dy
=

2

3

∫
d2R

∫
d2pt

dNA+B→g

dy d2pt d2R
(12)

dEt

dy
=

∫
d2R

∫
d2pt pt

dNA+B→g

dy d2pt d2R
. (13)

Note that a low-pt cutoff is not required since the integration over kt in (9) extends only up to
pt. The saturation of the gluon distribution functions guarantees that the dominant scale in the
transverse momentum integrations is the saturation momentum.

In order to compare our results for initial gluon production to the final state distributions of
detected particles one has to translate the rapidity distributions into pseudo-rapidity distributions
through the y → η Jacobian,

dNch

dη
=

cosh η√
cosh2 η + m2/P 2

dNch

dy
(14)

dEt

dη
=

cosh η√
cosh2 η + m2/P 2

dEt

dy
, (15)
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with y = 1
2 ln (

√
cosh2 η + m2/P 2 +sinh2 η)/(

√
cosh2 η + m2/P 2− sinh2 η). For simplicity we also

assume that in this Jacobian m = 350 MeV and P = 400 MeV are constant scales. Note that such
transformation is not needed (it is trivial) if one is interested in initial (massless) gluon production
to initialize a hydrodynamic simulation.

Aside from Et and Nch, a quantity of great interest for hydrodynamical simulations of heavy-ion
collisions is the eccentricity ε in the transverse plane of the distribution of produced gluons. The
“elliptic flow” v2 (momentum-space anisotropy) in the final state is approximately proportional
to ε, which is obtained (for each A+A collision) as

ε =

√
(σ2

y − σ2
x)

2 + 4σ2
xy

σ2
x + σ2

y

, (16)

and is then averaged over events. Here, σ2
x = 〈x2〉−〈x〉2, σ2

y = 〈y2〉−〈y〉2 denote the variances of the
density distribution dN/dη d2R of produced gluons in the transverse plane and σ2

xy = 〈xy〉−〈x〉〈y〉.
The quantity ε is determined by the dynamics of small-x gluon production and was found to exceed
considerably estimates based on simple geometric models of participating nucleons for Au+Au
collisions at RHIC [16].

4 Results

In this section we present sample results obtained from the approach described in the previous
sections.
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Figure 2: Centrality dependence of the charged particle multiplicity at midrapidity for Cu+Cu
and Au+Au collisions at

√
s = 200 GeV. PHOBOS data: [17] (Au+Au), [18] (Cu+Cu). For

comparison we also show the results from MC-KLN.

In Fig. 2 we show the centrality dependence of dN/dη at full RHIC energy. We view this
mainly as a confirmation that the initial condition (4) together with our construction of the initial
saturation scale appear to work reasonably well.

Fig. 3 shows the centrality dependence of dN/dη and dE⊥/dη at η = 0 for Pb+Pb collisions
at

√
s = 2.75 TeV. We have also indicated the recent experimental result for the 5% most central
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considerably estimates based on simple geometric models of participating nucleons for Au+Au
collisions at RHIC [16].
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comparison we also show the results from MC-KLN.

In Fig. 2 we show the centrality dependence of dN/dη at full RHIC energy. We view this
mainly as a confirmation that the initial condition (4) together with our construction of the initial
saturation scale appear to work reasonably well.

Fig. 3 shows the centrality dependence of dN/dη and dE⊥/dη at η = 0 for Pb+Pb collisions
at

√
s = 2.75 TeV. We have also indicated the recent experimental result for the 5% most central
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MV initial conditions: Good description of Npart dependence of  RHIC Au+Au and Cu+Cu and 
LHC Pb+Pb multiplicities:

6

multiplicity is found to be very similar for
√

sNN = 2.76 TeV and
√

sNN = 0.2 TeV.

Fig. 3: Comparison of (dNch/dη)/
(
〈Npart〉/2

)
with model calculations for Pb–Pb at

√
sNN = 2.76 TeV. Uncer-

tainties in the data are shown as in Fig. 2.

Theoretical descriptions of particle production in nuclear collisions fall into two broad categories: two-
component models combining perturbative QCD processes (e.g. jets and mini-jets) with soft interactions,
and saturation models with various parametrizations for the energy and centrality dependence of the
saturation scale. In Fig. 3 we compare the measured (dNch/dη)/

(
〈Npart〉/2

)
with model predictions. A

calculation based on the two-component Dual Parton Model (DPMJET [10], with string fusion) exhibits
a stronger rise with centrality than observed. The two-component Hijing 2.0 model [25], which has been
tuned [11]1 to high-energy pp [19, 23] and central Pb–Pb data [2], reasonably describes the data. This
model includes a strong impact parameter dependent gluon shadowing which limits the rise of particle
production with centrality. The remaining models show a weak dependence of multiplicity on centrality.
They are all different implementations of the saturation picture, where the number of soft gluons available
for scattering and particle production is reduced by nonlinear interactions and parton recombination. A
geometrical scaling model with a strong dependence of the saturation scale on nuclear mass and collision
energy [12] predicts a rather weak variation with centrality. The centrality dependence is well reproduced
by saturation models [13] and [14]1, although the former overpredicts the magnitude.

In summary, the measurement of the centrality dependence of the charged-particle multiplicity density at
mid-rapidity in Pb–Pb collisions at

√
sNN = 2.76 TeV has been presented. The charged-particle density

normalized per participating nucleon pair increases by about a factor 2 from peripheral (70–80%) to
central (0–5%) collisions. The dependence of the multiplicity on centrality is strikingly similar for the
data at

√
sNN = 2.76 TeV and

√
sNN = 0.2 TeV. Theoretical descriptions that include a taming of the

multiplicity evolution with centrality are favoured by the data.
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 - Systematics: Changing the model parameters (average hadron mass, pt-cutoff ...) yield an equally good 
description of RHIC and LHC data by just adjusting the normalization (i.e the gluon to hadron ratio)

κ ≈ 4.5÷ 7

RHIC



Constraining the initial conditions: p+p yields at the LHC
Steeper initial conditions than the MV model are needed to get a good description of p+p yields
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Steeper initial conditions also provide a good 
description of RHIC and LHC multiplicity data:

LHC Pb+Pb 2.76 TeV

RHIC Au+Au 200 GeV



Conclusions 

• Running coupling corrections bring the CGC to a new period of  quantitative and 
   predictive phenomenology

• The CGC at its present degree of accuracy consistently describes data in the small-x 
region for a variety of colliding systems (e+p, p+p d+Au)

• However:
       - Alternative physics scenarios have been proposed for those different observables

   - HERA and RHIC data probe a relatively small range of energy evolution.
   - LHC data should offer much more constraints to model 
   - A first successful test: description of multiplicities

• Still, many things remain to be done to refine the CGC as a precise phenomenological 
  tool...

Thanks!!!
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