First results of the ALICE experiment in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV

Raphaelle Bailhache on behalf of the ALICE collaboration

R.Bailhache IKF, Goethe Universität Frankfurt, 21.02.2011

- 1 -

Outline

- The ALICE experiment
- First results in Pb-Pb collisions at $\sqrt{s_{NN}}$ =2.76 TeV
 - · Charged-particle multiplicity density at mid-rapidity
 - dN/dη in most-central: PRL 105, 252301 (2010)
 - dN/dη vs. centrality: arXiv:1012.1657v1 [nucl-ex]
 - Bose-Einstein correlations
 - Two pion HBT: PL.B 696:328-337,2011
 - Elliptic flow:
 - v_2 vs. centrality and p_T : PRL105,252302 (2010)
 - High p_{T} charged-particle suppression:
 - R_{AA} nuclear modification factor: PL B 696 (2011) 30-39
- Summary and Outlook

- 2 -

ALICE Experiment

Trigger detectors: •VZERO scintillator counters (z = 3.3 m and z = - 0.9 m) •2 pixel layers (ITS) (r = 3.9 cm and r = 7.6 cm)

Time Projection Chamber (TPC)

Inner Tracking System (ITS)

Central Barrel $|\eta| < 0.9$

R.Bailhache IKF, Goethe Universität Frankfurt, 21.02.2011

- 3-

ALICE Experiment Centrality selection

From Glauber model fit extract from VZERO:

- N_{part} number of participating nucleons
- N_{col} number of binary NN collisions

Centrality O peripheral central

- •Summed amplitudes in VZERO scintillator tiles
- •Uncorrected charged multiplicity in $|\eta| < 0.8$ (TPC)
- •Zero Degree Calorimeters (Energy of spectator nucleons)

- 4 -

Charged-particle multiplicity density at mid-rapidity

R.Bailhache IKF, Goethe Universität Frankfurt, 21.02.2011

- 5 -

Charged-particle multiplicity vs collision energy

 $2/N_{part} (dN_{ch}/d\eta)$ = 8.3 ±0.4 (sys.)

• x 2.2 increase from Au-Au at $\sqrt{s_{_{NN}}}$ =0.2 TeV

• x 1.9 increase from pp at similar energies

- Constrain the dominant particle production mechanisms
- Estimate the initial energy density
- Reflect interplay between parton-parton scattering and soft processes
 6 -

LHC multiplicity density vs models tuned for RHIC/SPS

R.Bailhache IKF, Goethe Universität Frankfurt, 21.02.2011

- 7 -

Charged-particle multiplicity vs centrality comparison with lower energy data

 $2/N_{_{part}}(dN_{_{ch}}/d\eta)$

•Increase from 4.4±0.4 to 8.4±0.3 from peripheral to central

 Au-Au RHIC data scaled down by a factor 2.2
 -> centrality dependence very similar to RHIC

Error bars: point-to-point uncorrelated uncertainties
Grey band: correlated uncertainties

- 8 -

Charged-particle multiplicity vs centrality comparison with models

- 9 -

Bose-Einstein correlations Two pion Hanbury Brown-Twiss (HBT) analysis

HBT correlations

Momentum-space two particle correlations of identical bosons

$$C(q) = \frac{A(q)}{B(q)}$$
 distribution of the difference
 $q = p_2 - p_1$ of the three-momenta
same function but for particles

from two different events Correlation width in momentum space inversely proportional to the homogeneity volume

3D fit of the like-sign two-pion correlation

Fit parametrization: $C(\vec{q}) \sim 1 + \lambda K(q_{inv})[1 + G(\vec{q})]$

 $G(\vec{q}) = \exp\left(-(R_{out}^2 q_{out}^2 + R_{side}^2 q_{side}^2 + R_{long}^2 q_{long}^2)\right)$ Bose-Einstein enhancement

 $K(q_{inv})$ Coulomb correction

- 12 -

Radii vs. transverse momentum

- Radii 10-35% larger than at RHIC (roughly reproduced by calculations)
- Decrease as function of k_{T} -> expanding particle sources
- -> homogeneity length rather than overall size of particle-emitting system
- Experimental ratio R_{out}/R_{side} well described by two calculations only 13 -

Homogeneity volume and decoupling time vs. collision energy

Homogeneity volume

Decoupling time

- Linear dependence on the chargedparticle pseudorapidity density
- •Twice as large at the LHC than at RHIC

T, kinetic freeze-out temperature (0.12GeV)

30% longer emission time

R.Bailhache IKF, Goethe Universität Frankfurt, 21.02.2011

- 14 -

Elliptic flow v_2 vs centrality and p_T

R.Bailhache IKF, Goethe Universität Frankfurt, 21.02.2011

- 15 -

Experimental determination of the transverse flow

Elliptic flow: $v_2 = \langle \cos(2[\phi - \Psi_{RP}]) \rangle$

- Almond shape of the overlap region
 -> pressure gradient
- Evolves into momentum space via multiple collisions
- ->measured experimentally
- Probes/scans the medium
- Reveals particle collectivity

Fourier decomposition of particle azimuthal distribution wrt. the reaction plane

$$\frac{dN}{d\phi} \sim 1 + 2 \sum_{n=1}^{\infty} v_n(p_T, \eta) \cos(n[\phi - \Psi_{RP}])$$
reaction plane (RP) angle
$$v_1 \text{ direct flow}$$
particle azimuthal angle
$$- 16 -$$

Integrated elliptic flow vs. collision energy

Elliptic flow vs. momentum and centrality

In agreement with hydrodynamic model predictions including viscous corrections (predict also a decrease of v_2 at low p_T mostly for heavy-particles)

Outlook: v₂ from identified particles

- 18 -

High p_T charged-particle suppression R_{AA} nuclear modification factor

R_{AA} nuclear modification factor

Quantify medium effects in heavy ion collisions by deviation from particle production in pp interactions

$$R_{AA}(p_{T}) = \frac{1}{N_{coll}} \frac{Y_{AA}(p_{T})}{Y_{pp}(p_{T})}$$

Iormalized to N_{col} number
f binary NN collisions
$$Y(p_{T}) = \frac{1}{N_{evt}} \frac{d^{2}N_{ch}}{d \eta dp_{T}}$$
$$p_{T}$$
 charged-particle distribution

at mid-rapidity

R_{AA}=1 no medium effect

- 20-

R_{AA} ingredients: p_T spectrum in Pb-Pb and pp reference

- Measured p_T spectrum in Pb-Pb: Very good statistics: go up to $p_T=20 \text{ GeV/c}$
- No pp reference measured at √s=2.76 TeV
 - Interpolate between 0.9 TeV and 7 TeV
 - Additional uncertainties in R_{AA}
- peripheral: pp and Pb-Pb similar
- 0-5% central: strong modification

R.Bailhache IKF, Goethe Universität Frankfurt, 21.02.2011

High p_T charged particle suppression at RHIC and LHC

•Similar shape as at RHIC •Maximum at 2 GeV/c: may reflect a variation of particle composition in heavyion collisions with respect to pp •Increase at large p_{T}

Much flatter p_T spectrum at LHC compared to RHIC R_{AA} nevertheless smaller -> enhanced parton energy loss -> denser medium

R_{AA} from identified particles...

- 22-

Summary

0.25

0.2

0.15

First results in Pb-Pb collisions at $\sqrt{s_{NN}}$ =2.76 TeV

- · Charged-particle multiplicity density at mid-rapidity
- Bose-Einstein correlations
- Elliptic flow v₂
- High p_{T} charged-particle suppression

Looking forward to further studies and upcoming results from LHC! Thank you

- 23 -