Petersburg Nuclear Physics

Institute

1

Bonn-Gatchina partial wave analysis: search for high spin baryon states

A. Sarantsev

PNPI (Russia), HISKP (Bonn)

Excited QCD 2011

20 Feb - 25 Feb 2011; Les Houches, France

Bonn-Gatchina partial wave analysis group: A. Anisovich, E. Klempt, V. Nikonov, A. Srantsev, U. Thoma http://pwa.hiskp.uni-bonn.de/

Responsible: Dr. V. Nikonov, E-mail: <u>nikonov@hiskp.uni-bonn.de</u> Last changes: January 26th, 2010.

Search for baryon states

- 1. Analysis of single meson and double meson photoproduction reactions. $\gamma p \rightarrow \pi N, \eta N, K\Lambda, K\Sigma, \pi \pi N, \pi \eta N$, CB-ELSA, CLAS, GRAAL.
- 2. Analysis of single meson and double meson pion-induced reactions. $\pi N \to \pi N, \eta N, K\Lambda, K\Sigma, \pi \pi N.$

Search for meson states

- 1. Analysis of the $p\bar{p}$ annihilation at rest and $\pi\pi$ interaction data.
- 2. Analysis of the $p\bar{p}$ annihilation in flight into two and tree meson final state.
- 3. Analysis of the J/Ψ decays (BES III collaboration).

Analysis of NN interaction

- 1. Analysis of single and double meson production $NN \to \pi NN$ and $\pi \pi NN$
- 2. Analysis of hyperon production $NN \to K\Lambda p$

A combined analysis of data from different experiments

- 1. Fully relativistic approach.
- 2. Convenient for combined analysis of single and multi-meson photoproduction.
- 3. Energy dependent, which allow us to impose directly unitarity and analyticity conditions.
- 4. Convenient for calculation of triangle and box diagrams and for projection of the t and u-channel exchange amplitudes to the partial waves in s-channel.
- A. Anisovich, E. Klempt, A. Sarantsev and U. Thoma, Eur. Phys. J. A 24, 111 (2005)
- A. V. Anisovich and A. V. Sarantsev, Eur. Phys. J. A 30 (2006) 427
- A. V. Anisovich, V. V. Anisovich, E. Klempt, V. A. Nikonov and A. V. Sarantsev, Eur. Phys. J. A 34 (2007) 129.

Resonance amplitudes for meson photoproduction

General form of the angular dependent part of the amplitude:

$$\bar{u}(q_1)\tilde{N}_{\alpha_1\dots\alpha_n}(R_2 \to \mu N)F^{\alpha_1\dots\alpha_n}_{\beta_1\dots\beta_n}(q_1+q_2)\tilde{N}^{(j)\beta_1\dots\beta_n}_{\gamma_1\dots\gamma_m}(R_1 \to \mu R_2)$$
$$F^{\gamma_1\dots\gamma_m}_{\xi_1\dots\xi_m}(P)V^{(i)\mu}_{\xi_1\dots\xi_m}(R_1 \to \gamma N)u(k_1)\varepsilon_\mu$$

$$F^{\mu_1\dots\mu_L}_{\nu_1\dots\nu_L}(p) = (m+\hat{p})O^{\mu_1\dots\mu_L}_{\alpha_1\dots\alpha_L}\frac{L+1}{2L+1} \quad g^{\perp}_{\alpha_1\beta_1} - \frac{L}{L+1}\sigma_{\alpha_1\beta_1} \quad \prod_{i=2}^L g_{\alpha_i\beta_i}O^{\beta_1\dots\beta_L}_{\nu_1\dots\nu_L}$$
$$\sigma_{\alpha_i\alpha_j} = \frac{1}{2}(\gamma_{\alpha_i}\gamma_{\alpha_j} - \gamma_{\alpha_j}\gamma_{\alpha_i})$$

Les Houches, 2011

Pion induced reactions (χ^2 analysis).

Observable	$N_{ m data}$	$\frac{\chi^2}{N_{\rm data}}$		Observable	$N_{\rm data}$	$\frac{\chi^2}{N_{\rm data}}$	
$\frac{N_{1/2}^*}{N_{1/2}^*} S_{11}(\pi N \rightarrow \pi N)$) 104	1.81	SAID	$\Delta_{1/2^-}$ S ₃₁ (π N $\rightarrow\pi$ N	í) 112	2.27	SAID
$N_{1/2^+}^{*'} P_{11}(\pi N \rightarrow \pi N)$) 112	2.49	SAID	$\Delta_{1/2^+} \mathrm{P}_{31}(\pi \mathrm{N} \!\rightarrow\! \pi \mathrm{N})$	J) 104	2.01	SAID
$N_{3/2+}^{*'} P_{13}(\pi N \rightarrow \pi N)$) 112	1.90	SAID	$\Delta_{3/2^+}^* P_{33}(\pi N \rightarrow \pi N)$	V) 120	2.53	SAID
$\Delta_{3/2^{-}}^{*} \mathrm{D}_{33}(\pi \mathrm{N} \rightarrow \pi \mathrm{N})$	V) 108	2.56	SAID	$ N_{3/2^{-}}^{*'} D_{13}(\pi N \to \pi N)$	V) 96	2.16	SAID
$N_{5/2^-}^* D_{15}(\pi N \rightarrow \pi N)$	V) 96	3.37	SAID	$\Delta_{5/2^+}$ F ₃₅ (π N $\rightarrow\pi$ N	I) 62	1.32	SAID
$\Delta_{7/2^+}$ F ₃₇ (π N $\rightarrow\pi$ N	() 72	2.86	SAID	$ N_{7/2^-}^* G_{17}(\pi N \rightarrow \pi N)$	J) 102	2.69	SAID
$d\sigma/d\Omega(\pi^-p\!\rightarrow\!n\eta)$	70	1 .96	Richards et al.	$d\sigma/d\Omega(\pi^-p \rightarrow n\eta)$	84	2.67	CBALL
$d\sigma/d\Omega(\pi^-p\!\rightarrow\!K\Lambda)$	598	1.68	RAL	$P(\pi^- p \rightarrow K\Lambda)$	355	1.96	RAL+ANL
				$\beta(\pi^- p \rightarrow K\Lambda)$	72	2.45	RAL
$\frac{d\sigma/d\Omega(\pi^+p\to K^+\Sigma)}{d\sigma/d\Omega(\pi^+p\to K^+\Sigma)}$	609	1.24	RAL	$P(\pi^+ p \to K^+ \Sigma)$	307	1.49	RAL
				$\beta(\pi^+p \rightarrow K^+\Sigma)$	7	1.97	RAL
$d\sigma/d\Omega(\pi^-p\!\rightarrow\!K^0\Sigma^0$) 259	0.85	RAL	$P(\pi^- p \!\rightarrow\! K^0 \Sigma^0)$	95	1.25	RAL

π and η photoproduction reactions (χ^2 analysis).

Observable	$N_{\rm data}$	$\frac{\chi^2}{N_{ m data}}$		Observable	$N_{\rm data}$	$\frac{\chi^2}{N_{ m data}}$	
$d\sigma/d\Omega(\gamma p \rightarrow p\pi^0)$	1106	1.34	CB-ELSA	$d\sigma/d\Omega(\gamma p \rightarrow p\pi^0)$	861	1.46	GRAAL
$\mathrm{d}\sigma/\mathrm{d}\Omega(\gamma\mathrm{p}\rightarrow\mathrm{p}\pi^0)$	592	2.11	CLAS	$d\sigma/d\Omega(\gamma p \rightarrow p\pi^0)$	1692	1.25	TAPS@MAMI
$E(\gamma \mathrm{p} \! \rightarrow \! \mathrm{p} \pi^0)$	140	1.23	A2-GDH	$\Sigma(\gamma \mathrm{p} \rightarrow \mathrm{p} \pi^0)$	1492	3.26	SAID db
$\mathrm{P}(\gamma\mathrm{p}\! ightarrow\!\mathrm{p}\pi^0)$	607	3.23	SAID db	$T(\gamma p \rightarrow p \pi^0)$	389	3.71	SAID db
${ m H}(\gamma { m p}{ m m o}{ m p}\pi^0)$	71	1.26	SAID db	$G(\gamma p \rightarrow p \pi^0)$	75	1.50	SAID db
$O_x(\gamma p \rightarrow p \pi^0)$	7	1.77	SAID db	$O_z(\gamma p \rightarrow p \pi^0)$	7	0.46	SAID db
$d\sigma/d\Omega(\gamma p \rightarrow n\pi^+)$)1583	1.64	SAID db	$d\sigma/d\Omega(\gamma p \rightarrow n\pi^+)$	408	0.62	A2-GDH
$\Sigma(\gamma \mathrm{p} \rightarrow \mathrm{n}\pi^+)$	899	3.48	SAID db	$E(\gamma \mathbf{p} \rightarrow \mathbf{n}\pi^+)$	231	1.55	A2-GDH
$P(\gamma p \rightarrow n\pi^+)$	252	2.90	SAID db	$T(\gamma p \rightarrow n\pi^+)$	661	3.21	SAID db
$H(\gamma p \rightarrow p \pi^+)$	71	3.90	SAID db	$G(\gamma p \rightarrow p \pi^+)$	86	5.64	SAID db
$d\sigma/d\Omega(\gamma p \rightarrow p\eta)$	680	1.47	CB-ELSA	$\mathrm{d}\sigma/\mathrm{d}\Omega(\gamma\mathrm{p}\rightarrow\mathrm{p}\eta)$	100	2.16	TAPS
$\Sigma(\gamma \mathrm{p} \! ightarrow \! \mathrm{p} \eta)$	51	2.26	GRAAL 98	$\Sigma(\gamma \mathrm{p} \rightarrow \mathrm{p}\eta)$	100	2.02	GRAAL 07
$T(\gamma \mathbf{p} \rightarrow \mathbf{p}\eta)$	50	1.48	Phoenics				

Kaon photoproduction (χ^2 analysis).

Observable	$N_{\rm data}$	$\frac{\chi^2}{N_{\rm data}}$		Observable	$N_{\rm data}$	$\frac{\chi^2}{N_{\rm data}}$	
$C_x(\gamma \mathrm{p} \rightarrow \Lambda \mathrm{K}^+)$	160	1.23	CLAS	$C_x(\gamma \mathbf{p} \rightarrow \Sigma^0 \mathbf{K}^+)$	94	2.20	CLAS
$C_z(\gamma \mathrm{p} \rightarrow \Lambda \mathrm{K}^+)$	160	1.41	CLAS	$C_z(\gamma \mathbf{p} \rightarrow \Sigma^0 \mathbf{K}^+)$	94	2.00	CLAS
$\mathrm{d}\sigma/\mathrm{d}\Omega(\gamma\mathrm{p}\!\rightarrow\!\Lambda\mathrm{K}^+)$	1320	0.81	CLAS09	$d\sigma/d\Omega(\gamma p \rightarrow \Sigma^0 K^+)$) 1280	2.06	CLAS
$P(\gamma p \rightarrow \Lambda K^+)$	1270	2.21	CLAS09	$P(\gamma p \rightarrow \Sigma^0 K^+)$	95	1.45	CLAS
$\Sigma(\gamma \mathrm{p} \rightarrow \Lambda \mathrm{K}^+)$	66	1.53	GRAAL	$\Sigma(\gamma p \rightarrow \Sigma^0 K^+)$	42	0.90	GRAAL
$\Sigma(\gamma \mathrm{p} \rightarrow \Lambda \mathrm{K}^+)$	45	1.65	LEP	$\Sigma(\gamma p \rightarrow \Sigma^0 K^+)$	45	1.11	LEP
$T(\gamma p \rightarrow \Lambda K^+)$	66	1.26	GRAAL 09	$d\sigma/d\Omega(\gamma p \rightarrow \Sigma^+ K^0)$	⁾) 48	3.76	CLAS
$O_x(\gamma \mathrm{p} \rightarrow \Lambda \mathrm{K}^+)$	66	1.30	GRAAL 09	$O_z(\gamma \mathrm{p} \rightarrow \Lambda \mathrm{K}^+)$	66	1.54	GRAAL 09
$\mathrm{d}\sigma/\mathrm{d}\Omega(\gamma\mathrm{p}\!\rightarrow\!\Sigma^+\mathrm{K}^0$) 72	0.74	CB-ELSA 10	$P(\gamma p \rightarrow \Sigma^+ K^0)$	24	1.06	CB-ELSA 10
$\Sigma(\gamma p \rightarrow \Sigma^+ K^0)$	15	1.13	CB-ELSA 10				

Multi-meson final states (maximum likelihood analysis).

$\frac{1}{d\sigma/d\Omega(\pi^-p\to n\pi^0\pi^0)}$	CBALL				
$d\sigma/d\Omega(\gamma p \rightarrow p\pi^0\pi^0)$	CB-ELSA (1.4 GeV)	$E(\gamma p \rightarrow p \pi^0 \pi^0)$	16	1.91	MAMI
${ m d}\sigma/{ m d}\Omega(\gamma{ m p}{ m ightarrow}{ m p}\pi^0\eta$)	CB-ELSA (3.2 GeV)	$\Sigma(\gamma\mathrm{p}\! ightarrow\!\mathrm{p}\pi^{0}\eta)$	180	2.37	GRAAL
$\mathrm{d}\sigma/\mathrm{d}\Omega(\gamma\mathrm{p}\! ightarrow\!\mathrm{p}\pi^{0}\pi^{0})$	CB-ELSA (3.2 GeV)	$\Sigma(\gamma p \rightarrow p \pi^0 \pi^0)$	128	0.96	GRAAL
$d\sigma/d\Omega(\gamma p \rightarrow p\pi^0 \eta)$	CB-ELSA (3.2 GeV)	$\Sigma(\gamma \mathrm{p} \! ightarrow \! \mathrm{p} \pi^0 \eta)$	180	2.37	GRAAL
$\mathrm{I_c}(\gamma\mathrm{p}\! ightarrow\!\mathrm{p}\pi^0\eta)$	CB-ELSA (3.2 GeV)	${ m I_s}(\gamma { m p}\! ightarrow\!{ m p}\pi^0\eta)$	CB-	ELSA (3	3.2 GeV)

In $\pi N \rightarrow meson - baryon$ experiment three observables are needed for a complete experiment: differential cross section, analyzing power and rotation parameter. For a complete photoproduction experiment 8 observables are needed. But... polarization observables are more sensitive to small contributions.

 $d\sigma/d\Omega$

The SAID energy independent solution for P_{11} and P_{13} partial waves

The fit of the the $\pi^- p \to K \Lambda$ reaction

Full experiment for
$$\pi N \rightarrow K\Lambda$$
:
differential cross section, analyzing
power, rotation parameter.
A clear evidence for resonances which
are hardly seen (or not seen) in
the elastic reactions: $N(1710)P_{11}$,
 $N(1900)P_{13}$,

The total cross section for the reaction $\pi^- p \rightarrow K^0 \Lambda$ and contributions from leading partial waves.

Amplitude for the πN transition into channels πN , ηN , $K\Lambda$ and $K\Sigma$:

$$A_{\pi N} = \omega^* \left[G(s,t) + H(s,t)i(\vec{\sigma}\vec{n}) \right] \omega' \qquad \vec{n}_j = \varepsilon_{\mu\nu j} \frac{q_\mu k_\nu}{|\vec{k}||\vec{q}|} \,.$$
$$G(s,t) = \sum_L \left[(L+1)F_L^+(s) + LF_L^-(s) \right] P_L(z) \,,$$
$$H(s,t) = \sum_L \left[F_L^+(s) - F_L^-(s) \right] P_L'(z) \,.$$

 $z = \cos \Theta$, the angle of the final meson in c.m.s.

$$|A|^{2} = \frac{1}{2} \operatorname{Tr} \left[A_{\pi N}^{*} A_{\pi N} \right] = |G(s,t)|^{2} + |H(s,t)|^{2} (1-z^{2})$$

and the recoil asymmetry can be calculated as:

$$P = \frac{\text{Tr} \left[A_{\pi N}^* \sigma_2 A_{\pi N}\right]}{2|A|^2 \cos \phi} = \sin \Theta \frac{2Im \left(H^*(s, t)G(s, t)\right)}{|A|^2}$$

Near threshold, only contributions from S and P-waves are expected. For the $S_{2I,2J}$ and $P_{2I,2J}$ amplitudes we have

$$\underline{S_{2I,1}}; \quad G = F_0^+; \quad H = 0; \qquad |A|^2 = |F_0^+|^2 \tag{1}$$

$$\underline{P_{2I,1}}; \quad G = F_1^- z; \quad H = -F_1^-; \quad |A|^2 = |F_1^-|^2$$

$$\underline{P_{2I,3}}; \quad G = 2F_1^+ z; \quad H = F_1^+; \quad |A|^2 = |F_1^+|^2 (3z^2 + 1)$$
(2)

where the indices (2I, 2J) remind of the isospin I and the spin J of the partial waves. The recoil asymmetry vanishes unless different amplitudes interfere.

$$\begin{split} \underline{S_{2I,1} + P_{2I,1}} : & P \frac{|A|^2}{\sin \Theta} = -2Im(F_0^+ F_1^{-*}) & |A|^2 = |F_0^+|^2 + |F_1^-|^2 + 2zRe(F_0^{+*}F_1^-) \\ \underline{S_{2I,1} + P_{2I,3}} : & P \frac{|A|^2}{\sin \Theta} = 2Im(F_0^+ F_1^{+*}) & |A|^2 = |F_0^+|^2 + |F_1^+|^2(3z^2 + 1) + 4zRe(F_0^{+*}F_1^+) \\ \underline{P_{2I,1} + P_{2I,3}} : & P \frac{|A|^2}{\sin \Theta} = 6zIm(F_1^{+*}F_1^-) & |A|^2 = |F_1^+ - F_1^-|^2 + z^2 & 3|F_1^+|^2 - 2Re(F_1^{+*}F_1^-) \\ \end{split}$$
where $|A|^2$ represents the angular distribution and $P |A|^2 / \sin \Theta$ an observable

proportional to the recoil polarization parameter P.

The fit of the the $\pi^- p \to K \Lambda$ reaction (differential cross section)

The fit of the the $\pi^- p \to K \Lambda$ reaction

The $\gamma p \rightarrow K \Lambda$ reaction (CLAS 2009)

In the first solution the new S_{11} state with mass 1890 ± 10 MeV and width 90 ± 10 MeV is introduced in the fit.

The fit of the $\gamma p \to K\Lambda$ differential cross section

The fit of the $\gamma p \rightarrow K \Lambda$ recoil asymmetry (CLAS 2009)

Pole position of baryon states (Re and -2Im) in the mass region 1900-2300 MeV

State		Solution 1	Solution 2	Arndt	Hoehler	Cutcosky
$N(1875)\frac{1}{2}^+$	Re	1860 ± 20	1840 ± 30		$1885{\pm}30$ (Ma	anley)
*	-2lm	160 ± 20	320 ± 50		$113{\pm}44$ (Ma	anley)
$N(1890)\frac{1}{2}^{-}$	Re	1890 ± 15	1890 ± 15	—	1880 ± 20	_
*	-2lm	$90{\pm}15$	$90{\pm}15$	—	95 ± 30	—
$N(1880)\frac{3}{2}^{-}$	Re	1885 ± 10	1870 ± 15	_	—	1880 ± 100
**	-2lm	190 ± 20	$180{\pm}20$	—	—	180 ± 60
$N(2130)\frac{3}{2}^{-}$	Re	$2135{\pm}25$	2130 ± 25	_	$2081\!\pm\!20$	$2050\!\pm\!70$
**	-2lm	310 ± 30	300 ± 30	—	$265\!\pm\!40$	200 ± 60
$N(1900)\frac{3}{2}^+$	Re	1915 ± 20	1900 ± 25	_	—	—
**	-2lm	240 ± 30	260 ± 40	—	—	—
$N(2000)\frac{5}{2}^+$	Re	1800 - 1950	1800 - 1950	1807	1882 ± 10	—
**	-2lm	100 - 300	100 - 300	109	95 ± 20	—
$N(2100)\frac{5}{2}^+$	Re	2090^{+20}_{-40}	2110^{+20}_{-80}	_	—	—
	-2lm	560 ± 100	540 ± 100	—	—	—
$N(2070)\frac{5}{2}^{-}$	Re	$2050{\pm}30$	$2065{\pm}20$	_	—	_
	-2lm	370 ± 30	360 ± 30	—		—
$N(1990)\frac{7}{2}^+$	Re	$1980{\pm}25$	2100 ± 30	_	~ 1935	1900 ± 30
**	-2lm	$180{\pm}30$	300 ± 60	—	~ 260	260 ± 60
$N(2190)\frac{7}{2}^{-}$	Re	2160 ± 15	2150 ± 20	2070	2042	2100 ± 50
* * **	-2lm	320 ± 30	290 ± 30	520	480	400 ± 160

G_{17} : pole position and Breit-Wigner parameters

State		Solution 1	Solution 2	Arndt	Hoehler	Cutcosky
$N(2190)\frac{7}{2}^{-}$	Re	$2160\!\pm\!15$	$2150\!\pm\!20$	2070	2042	2100 ± 50
* * **	-2lm	320 ± 30	290 ± 30	520	480	400 ± 160
BW	Μ	2180	2165	2152.4 ± 1.4	$2140\!\pm\!12$	$2200\!\pm\!70$
parameters	Γ	330	300	484 ± 13	390 ± 30	500 ± 150

Pole position of F_{17} and helicity couplings (absolute value (10⁻³ GeV^{$\frac{1}{2}$})/phase (degrees)

State		Solution 1	$A(\frac{1}{2})/A(\frac{3}{2})$	Solution 2	$A(\frac{1}{2})/A(\frac{3}{2})$
$N(1990)\frac{7}{2}^+$	Re	$1980{\pm}25$	$15/14^{o}$	2100 ± 30	$76/50^{o}$
**	-2lm	180 ± 30	$28/3^{o}$	300 ± 60	$78^{/}45^{o}$

	-	ŦO		-		
State		Solution 1	Solution 2	Arndt	Hoehler	Cutcosky
$N(2000)\frac{5}{2}^+$	Re	1800 - 1950	1800 - 1950	1807	1882 ± 10	_
**	-2lm	100 - 300	100 - 300	109	95 ± 20	—
$N(2100)\frac{5}{2}^+$	Re	2090^{+20}_{-40}	2110^{+20}_{-80}	_	_	_
	-2lm	560 ± 100	540 ± 100	—	—	—

Holographic QCD (AdS/QCD)

L, S, N	κ_{gd}			Resonance			Pred.
0 , $\frac{1}{2}$, 0	$\frac{1}{2}$	N(940)				input:	0.94
$0,rac{3}{2}$, 0	0	$\Delta(1232)$					1.27
0, $rac{1}{2}$,1	$\frac{1}{2}$	N(1440)					1.40
1, $rac{1}{2}$,0	$\frac{1}{4}$	N(1535)	N(1520)				1.53
1, $rac{3}{2}$,0	0	N(1650)	N(1700)	N(1675)			1.64
1, $rac{1}{2}$,0	0	$\Delta(1620)$	$\Delta(1700)$		L,S,N =0, $rac{3}{2}$,1:	$\Delta(1600)$	1.64
2, $rac{1}{2}$,0	$\frac{1}{2}$	N(1720)	N(1680)		L,S,N =0, $rac{1}{2}$,2:	N(1710)	1.72
1, $\frac{1}{2}$,1	$\frac{1}{4}$	N(1890)	N(1875)				1.82
1, $\frac{3}{2}$,1	0	$\Delta(1900)$	$\Delta(1940)$	$\Delta(1930)$			1.92
2, $rac{3}{2}$,0	0	$\Delta(1910)$	$\Delta(1920)$	$\Delta(1905)$	$\Delta(1950)$		1.92
2, $\overline{rac{3}{2}}$,0	0	N(1880)	N(1900)	N(1880)	N(1980)		1.92
0, $\overline{rac{1}{2}}$,3	$\frac{1}{2}$	N(????)					2.03
3, $\overline{rac{1}{2}}$,0	$\frac{\overline{1}}{4}$	N(2070)	N(2170)	L,S,N =1, $rac{1}{2}$,2:	N(????)	N(????)	2.12
3, $rac{\overline{3}}{2}$,0	0	N(2200)	N(2250)	L,S,N =1, $ar{1\over 2}$,2:	$\Delta(2223)$	$\Delta(2200)$	2.20
4, $\overline{rac{1}{2}}$,0	$\frac{1}{2}$	N(2220)					2.27
4, $rac{ar{3}}{2}$,0	0	$\Delta(2390)$	$\Delta(2300)$	$\Delta(2420)$	L,N=3,1:	$\Delta(2400)$	2.43
5, $\overline{rac{1}{2}}$,0	$\frac{1}{4}$	N(2600)				$\Delta(2350)$	2.57

Parity doublets of N and Δ resonances at high mass region

Parity doublets must not interact by pion emission

and could have a small coupling to πN .

J = $\frac{1}{2}$	$N_{1/2^+}(1880)$ *	$N_{1/2^-}(1890)$ *	$\Delta_{1/2^+}(1910)$ ****	$\Delta_{1/2^-}(1900)^a$ **
J = $\frac{3}{2}$	$N_{3/2^+}(1900)$ **	${ m N}_{3/2^-}(1875)$ **	$\Delta_{3/2^+}(1940)^{a}$ ***	$\Delta_{3/2^-}(1990)^a$ *
J = $\frac{5}{2}$	$N_{5/2^+}(1880)$ **	$N_{5/2^-}(2070)$	$\Delta_{5/2^+}(1940)$ ****	$\Delta_{5/2^-}(1930)^a$ ***
$J = \frac{7}{2}$	$N_{7/2^+}(1980)$ **	${f N}_{7/2^-}(2170)$ ****	$\Delta_{7/2^+}(1920)$ ****	$\Delta_{7/2^{-}}(2200)$ *
$J=\frac{9}{2}$	$N_{9/2^+}(2220)$ ****	$N_{9/2^-}(2250)$ ****	$\Delta_{9/2^+}(2300)$ **	$\Delta_{9/2^-}(2400)^a$ **

$J = \frac{5}{2}$	$N_{5/2^+}(2100)$ **	$N_{5/2}$ (2070)	$\Delta_{5/2^+}(1940)$ ****	$\Delta_{5/2^-}(1930)^a$ ***
J = $\frac{7}{2}$	$N_{7/2^+}(2100)$ **	${f N}_{7/2^-}(2170)$ ****	$\Delta_{7/2^+}(1920)$ ****	$\Delta_{7/2^{-}}(2200)$ *
$J=\frac{9}{2}$	${f N}_{9/2^+}(2220)$ ****	${ m N}_{9/2^-}(2250)$ ****	$\Delta_{9/2^+}(2300)$ **	$\Delta_{9/2^-}(2400)^a$ **

Summary

- The analysis of (almost) all available data for production of baryons in the pion and photo induced reaction is completed.
- We have observed a set of new states in the region 1800-2150 MeV, however, this number is much less than that predicted by the classical quark model.
- The low spin states fit very well the AdS/QCD prediction as well as the idea about chiral restoration at high energies.
- There are two solutions for the $N_{\frac{7}{2}+}$ lowest state which should be distinguished from analysis of beam asymmetry data on photoproduction of hyperon-kaon final states which have to be released in 3-4 months.
- The situation for $N(\frac{5}{2}^+)$ can be resolved with reanalysis of πN elastic data and an analysis of new data on double pion photoproduction.
- The search for the chiral partner of $\Delta_{7/2^+}(1920)$ state is the main subject in our current analysis of double pion and $\pi^0\eta$ photoproduction data