Static-static-light-light tetraquarks in lattice QCD

Excited QCD 2011 - Les Houches, France

Marc Wagner Humboldt-Universität zu Berlin, Institut für Physik Theorie der Elementarteilchen – Phänomenologie/Gittereichtheorie mcwagner@physik.hu-berlin.de http://people.physik.hu-berlin.de/~mcwagner/ February 24, 2011

[M. Wagner, PoS LATTICE2010, 162 (2010)]

Introduction (1)

- Goal: compute the potential of (or equivalently the force between) two *B* mesons from first principles by means of lattice QCD:
 - Treat the b quark in the static approximation.
 - Consider only pseudoscalar/pseudovector mesons $(j^{\mathcal{P}} = (1/2)^{-})$, denoted by S, PDG: B, B^{*}) and scalar/vector mesons $(j^{\mathcal{P}} = (1/2)^{+})$, denoted by P_{-} , PDG: B_{0}^{*} , B_{1}^{*}), which are among the lightest static-light mesons.
 - Study the dependence of the mesonic potential $V({\cal R})$ on
 - * the light quark flavor u and/or d (isospin),
 - * the light quark spin (the static quark spin is irrelevant),
 - \ast the type of the meson S and/or $P_{-}.$

Introduction (2)

- Motivation:
 - First principles computation of a hadronic force.
 - Possible application: determine, whether two B mesons may form bound states (tetraquarks).
 - Until now
 - * it has only been studied in the quenched approximation,
 - * only pseudoscalar (S), but no scalar (P_{-}) B mesons have been considered.
 - [C. Michael and P. Pennanen [UKQCD Collaboration], Phys. Rev. D 60, 054012 (1999)]
 - [W. Detmold, K. Orginos and M. J. Savage, Phys. Rev. D 76, 114503 (2007)]
 - [G. Bali and M. Hetzenegger, PoS LATTICE2010, 142 (2010)]

Outline

- Symmetries and quantum numbers of B mesons and BB systems.
- Lattice setup.
- Results and their interpretation.

(Pseudo)scalar *B* mesons

- Symmetries and quantum numbers of static-light mesons:
 - Isospin: I = 1/2, $I_z = \pm 1/2$, i.e. $B \equiv \overline{Q}u$ or $B \equiv \overline{Q}d$.
 - Parity: $\mathcal{P} = \pm$.
 - Rotations:
 - * Light cloud angular momentum j=1/2 (for S and P_{-}), $j_{z}=\pm 1/2$.
 - * Static quark spin: irrelevant (static quarks can also be treated as spinless color charges).
- Examples of static-light meson creation operators:
 - $\bar{Q}\gamma_5 q$ (pseudoscalar, i.e. S), $q \in \{u, d\}$,
 - $\ ar{Q}q$ (scalar, i.e. P_{-})
 - $(j_z \text{ is not well-defined, when using these operators}).$

BB systems (1)

- Symmetries and quantum numbers of a pair of static-light mesons (separated along the *z*-axis):
 - Isospin: $I = 0, 1, I_z = -1, 0, +1$.
 - Rotations around the *z*-axis:
 - * Angular momentum of the light degrees of freedom $j_z = -1, 0, +1$.
 - * Static quark spin: irrelevant (static quarks can also be treated as spinless color charges).
 - Parity: $\mathcal{P} = \pm$.
 - If $j_z = 0$, reflection along the *x*-axis: $\mathcal{P}_x = \pm$.
 - Instead of using $j_z = \pm 1$ one can also label states by $|j_z| = 1$, $\mathcal{P}_x = \pm$.
 - \rightarrow Label BB states by $(I, I_z, |j_z|, \mathcal{P}, \mathcal{P}_x)$.

BB systems (2)

 To extract the potential(s) of a given sector (characterized by (I, Iz, |jz|, P, Px)), compute the temporal correlation function of the trial state

$$(\mathcal{C}\Gamma)_{AB} \Big(\bar{Q}_C(-R/2) q_A^{(1)}(-R/2) \Big) \Big(\bar{Q}_C(+R/2) q_B^{(2)}(+R/2) \Big) |\Omega\rangle,$$

where

- $C = \gamma_0 \gamma_2$ (charge conjugation matrix), $- q^{(1)}q^{(2)} \in \{ud - du , uu, dd, ud + du\}$ (isospin I, I_z),
- $-\Gamma$ is an arbitrary combination of γ matrices (spin $|j_z|$, parity \mathcal{P} , \mathcal{P}_x).

BB systems (3)

• BB creation operators for $I_z = +1$: 16 operators of type

$$(\mathcal{C}\Gamma)_{AB}\Big(\bar{Q}_C(-R/2)q_A^{(u)}(-R/2)\Big)\Big(\bar{Q}_C(+R/2)q_B^{(u)}(+R/2)\Big).$$

Г	$ j_z $, \mathcal{P} , \mathcal{P}_x
$\begin{array}{c}1\\\gamma_0\gamma_5\\\gamma_5\\\gamma_0\end{array}$	$\begin{array}{c} 0, \ -, \ -\\ 0, \ +, \ +\\ 0, \ +, \ +\\ 0, \ +, \ -\end{array}$
$egin{array}{c} \gamma_3 \ \gamma_0 \gamma_3 \gamma_5 \ \gamma_3 \gamma_5 \ \gamma_0 \gamma_3 \end{array}$	$\begin{array}{c} 0, \ -, \ -\\ 0, \ +, \ +\\ 0, \ -, \ +\\ 0, \ -, \ -\end{array}$
$\begin{array}{c} \gamma_1 \\ \gamma_0 \gamma_1 \gamma_5 \\ \gamma_1 \gamma_5 \\ \gamma_0 \gamma_1 \end{array}$	$\begin{array}{c} 1, \ -, \ + \\ 1, \ +, \ - \\ 1, \ -, \ - \\ 1, \ -, \ + \end{array}$

BB systems (4)

• BB creation operators for $I_z = 0$: 32 operators of type

$$(\mathcal{C}\Gamma)_{AB} \Big(\bar{Q}_C(-R/2) q_A^{(u)}(-R/2) \Big) \Big(\bar{Q}_C(+R/2) q_B^{(d)}(+R/2) \Big) \pm (u \leftrightarrow d).$$

Γ, ±	$ j_z $, I, P, P	
$egin{array}{cccc} \gamma_5 \ , \ - \ \gamma_0 \ , \ - \ 1 \ , \ - \ \gamma_0\gamma_5, \ - \ \gamma_0\gamma_5, \ - \ \gamma_3\gamma_5 \ , \ - \ \gamma_0\gamma_2 \ - \ \gamma_0\gamma_2 \ - \ - \ - \ \gamma_0\gamma_2 \ - \ - \ - \ \gamma_0\gamma_2 \ - \ - \ \gamma_0\gamma_2 \ - \ - \ \gamma_0\gamma_2 \ - \ - \ - \ \gamma_0\gamma_2 \ - \ - \ \gamma_0\gamma_2 \ - \ - \ - \ - \ - \ \gamma_0\gamma_2 \ - \ - \ - \ - \ - \ - \ - \ - \ - \ $	$\begin{array}{c} 0, \ 0, \ -, \ +\\ 0, \ 0, \ -, \ -\\ 0, \ 0, \ +, \ -\\ 0, \ 0, \ -, \ +\\ 0, \ 0, \ +, \ +\\ 0, \ 0, \ +, \ +\\ \end{array}$	
$\gamma_0 \gamma_3 , -$ $\gamma_3 , -$ $\gamma_0 \gamma_3 \gamma_5 , -$	$\begin{array}{c} 0, \ 0, \ +, \ -\\ 0, \ 0, \ +, \ -\\ 0, \ 0, \ -, \ + \end{array}$	
$\begin{array}{c} \gamma_{5} ,+ \\ \gamma_{0} ,+ \\ 1 ,+ \\ \gamma_{0}\gamma_{5},+ \end{array}$	$\begin{array}{c} 0, \ 1, \ +, \ +\\ 0, \ 1, \ +, \ -\\ 0, \ 1, \ -, \ -\\ 0, \ 1, \ +, \ + \end{array}$	

Lattice setup (1)

• List of criteria a perfect lattice simulation should fulfill (cf. Zoltan Fodor's talk on Tuesday):

(1) Technically correct:

I strongly think so ... otherwise I would not give this presentation.

(2) Physical u/d quark masses:

No ... u/d sea and valence quark masses correspond $m_{\pi} \approx 340 \text{ MeV}$ ($m_{\pi} \approx 140 \text{ MeV}$ in nature).

However,

* the best existing lattice computation has been done with infinitely heavy u/d sea quark masses and u/d valence quark masses corresponding to $m_{\pi} \approx 400 \text{ MeV}$.

Lattice setup (2)

• List of criteria a perfect lattice simulation should fulfill (cf. Zoltan Fodor's talk on Tuesday):

(3) Continuum extrapolation:

No \ldots only a single lattice spacing $a\approx 0.079\,{\rm fm}.$ However,

- * in Wilson twisted mass lattice QCD (the lattice discretization I have been using) discretization errors appear only quadratically in the small lattice spacing a,
- * the best existing lattice computation has been done with $a\approx 0.100\,{\rm fm}$ with linear discretization errors,
- * a recent study of the continuum limit of static-light mesons suggests that discretization errors are significantly smaller than statistical errors (\rightarrow continuum physics within error bars).

[C. Michael, A. Shindler and M. Wagner [ETM Collaboration], JHEP 1008, 009 (2010)]

Discussion of results (1)

- Four "types of potentials":
 - Two attractive, two repulsive.
 - Two have asymptotic values, which are larger by $\approx 400 \ {\rm MeV}.$
- There are cases, where two potentials with identical quantum numbers are completely different (i.e. of different type)
 - \rightarrow at least one of the corresponding trial states must have very small ground state overlap
 - \rightarrow physical understanding, i.e. interpretation of trial states needed.

Discussion of results (2)

- Expectation at large meson separation $R: V(R) \approx 2 \times \text{meson mass.}$
 - Potentials with smaller asymptotic value at $\approx 2 \times m(S)$.
 - $-~m(P_{-})-m(S)\approx 400\,{\rm MeV}:$ approximately the observed difference between different types of potentials.
 - \rightarrow Two types correspond to $S \leftrightarrow S$ potentials.
 - \rightarrow Two types correspond to $S \leftrightarrow P_-$ potentials.
- Can this be understood in detail on the level of the used *BB* creation operators?

Discussion of results (3)

- Express the *BB* creation operators in terms of static-light meson creation operators (use suitable spin and parity projectors for the light quarks).
 - Examples:

*
$$uu, \Gamma = 1 \rightarrow \mathcal{P} = -, \mathcal{P}_x = -:$$

 $(\mathcal{C}1)_{AB} \Big(\bar{Q}_C (-R/2) q_A^{(u)} (-R/2) \Big) \Big(\bar{Q}_C (+R/2) q_B^{(u)} (+R/2) \Big) \propto$
 $\propto S_{\uparrow} P_{\downarrow} - S_{\downarrow} P_{\uparrow} + P_{\uparrow} S_{\downarrow} - P_{\downarrow} S_{\uparrow}.$
* $uu, \Gamma = \gamma_3 \rightarrow \mathcal{P} = -, \mathcal{P}_x = -:$
 $(\mathcal{C}\gamma_3)_{AB} \Big(\bar{Q}_C (-R/2) q_A^{(u)} (-R/2) \Big) \Big(\bar{Q}_C (+R/2) q_B^{(u)} (+R/2) \Big) \propto$
 $\propto S_{\uparrow} S_{\downarrow} + S_{\downarrow} S_{\uparrow} - P_{\uparrow} P_{\downarrow} - P_{\downarrow} P_{\uparrow}.$

- SS/SP_{-} content and asymptotic values in agreement for all 64 correlation functions/ potentials
 - \rightarrow asymptotic differences understood.

Discussion of results (4)

- Is there a general rule, about when a potential is repulsive and when attractive?
 - $S \leftrightarrow S$ potentials:
 - * (I = 0, s = 0) or (I = 1, s = 1), i.e. $I = s \rightarrow$ attractive (I = 0, s = 1) or (I = 1, s = 0), i.e. $I \neq s \rightarrow$ repulsive (s: combined angular momentum of the two mesons).
 - * Example: $uu, \Gamma = \gamma_3 \rightarrow \mathcal{P} = -, \mathcal{P}_x = -:$ $(\mathcal{C}\gamma_3)_{AB} \Big(\bar{Q}_C(-R/2) q_A^{(u)}(-R/2) \Big) \Big(\bar{Q}_C(+R/2) q_B^{(u)}(+R/2) \Big) \propto$ $\propto S_{\uparrow} S_{\downarrow} + S_{\downarrow} S_{\uparrow} - P_{\uparrow} P_{\downarrow} - P_{\downarrow} P_{\uparrow}.$

i.e. I = 1, s = 1; the numerically obtained potential is attractive, i.e. in agreement with the above stated rule.

- * All 32 $S \leftrightarrow S$ correlation functions/potentials fulfill the rule.
- * Agreement with similar quenched lattice studies.

[C. Michael and P. Pennanen [UKQCD Collaboration], Phys. Rev. D 60, 054012 (1999)]

[W. Detmold, K. Orginos and M. J. Savage, Phys. Rev. D 76, 114503 (2007)]

Discussion of results (5)

- $S \leftrightarrow P_{-}$ potentials:
 - $\ast\,$ Do not obey the above stated rule.

- * It can, however, easily be generalized by including parity, i.e. symmetry or antisymmetry under exchange of S and P_- : trial state symmetric under meson exchange \rightarrow attractive trial state antisymmetric under meson exchange \rightarrow repulsive (meson exchange \equiv exchange of flavor, spin and parity).
- * Example: $uu, \Gamma = \gamma_0 \rightarrow \mathcal{P} = +, \mathcal{P}_x = -:$ $(\mathcal{C}\gamma_0)_{AB} \Big(\bar{Q}_C(-R/2) q_A^{(u)}(-R/2) \Big) \Big(\bar{Q}_C(+R/2) q_B^{(u)}(+R/2) \Big) \propto$ $\propto S_{\uparrow} P_{\downarrow} - S_{\downarrow} P_{\uparrow} - P_{\uparrow} S_{\downarrow} + P_{\downarrow} S_{\uparrow},$

i.e. I = 1 (symmetric), s = 0 (antisymmetric), antisymmetric with respect to $S \leftrightarrow P_{-}$; the numerically obtained potential is attractive, i.e. in agreement with the above stated general rule.

* All 32 $S \leftrightarrow P_-$ correlation functions/potentials (and all 32 $S \leftrightarrow S$ correlation functions/potentials) fulfill the generalized rule.

Discussion of results (6)

- Improvements after having understood the extraction and interpretation of BB potentials from single correlation functions:
 - Linearly combine BB operators to either eliminate $P_-\leftrightarrow P_-$ or $S\leftrightarrow S$ combinations.
 - Example:

 $\begin{array}{rcl} ud - du, \ \Gamma = \gamma_5 & \rightarrow & -S_{\uparrow}S_{\downarrow} + S_{\downarrow}S_{\uparrow} - P_{\uparrow}P_{\downarrow} + P_{\downarrow}P_{\uparrow} \\ ud - du, \ \Gamma = \gamma_0\gamma_5 & \rightarrow & -S_{\uparrow}S_{\downarrow} + S_{\downarrow}S_{\uparrow} + P_{\uparrow}P_{\downarrow} - P_{\downarrow}P_{\uparrow} \\ \rightarrow \ \text{use} \ \gamma_5 + \gamma_0\gamma_5 \ \text{to obtain a better signal for the} \ S \leftrightarrow S \ \text{potential} \end{array}$

 \rightarrow use $\gamma_5 - \gamma_0 \gamma_5$ to extract the $P_- \leftrightarrow P_-$ potential.

Discussion of results (7)

- Improvements after having understood the extraction and interpretation of BB potentials from single correlation functions:
 - Use correlation matrices instead of single correlation functions to avoid mixing with BB states of lower energy, which is present, because
 - \ast although the product of two specific B meson creation operators closely resembles the corresponding BB state, it will still have a non-vanishing overlap to BB states corresponding to B mesons with different isospin, spin and/or parity,
 - * twisted mass lattice QCD explicitly breaks isospin and parity (the breaking is proportional to the lattice spacing *a*; isospin and parity will be restored in the continuum limit).

Summary of *BB* states and degeneracies

- Two B mesons, each can have $I_z = \pm 1/2$, $j_z = \pm 1/2$, $\mathcal{P} = \pm \rightarrow 8 \times 8 = 64$ states.
- $S \leftrightarrow S$ potentials:

- Attractive:
$$\underbrace{1}_{I=0,|j_z|=0} \oplus \underbrace{3}_{I=1,|j_z|=0} \oplus \underbrace{6}_{I=1,|j_z|=1}$$
(10 states).
- Repulsive:
$$\underbrace{1}_{I=0,|j_z|=0} \oplus \underbrace{3}_{I=1,|j_z|=0} \oplus \underbrace{2}_{I=0,|j_z|=1}$$
(6 states).

• $S \leftrightarrow P_{-}$ potentials:

- Attractive:
$$\underbrace{1 \oplus 1 \oplus 3 \oplus 3}_{|j_z|=0} \oplus \underbrace{2 \oplus 6}_{|j_z|=1}$$
 (16 states).
- Repulsive: $\underbrace{1 \oplus 1 \oplus 3 \oplus 3}_{|j_z|=0} \oplus \underbrace{2 \oplus 6}_{|j_z|=1}$ (16 states).

- $P_- \leftrightarrow P_-$ potentials: identical to $S \leftrightarrow S$ potentials.
- In total 24 different potentials.

Attractive $S \leftrightarrow S$ potentials

• Attractive $S \leftrightarrow S$ potentials are relevant, when trying to determine, whether BB may form a bound state.

Summary, conclusions, future plans (1)

- Computation of BB potentials (arbitrary flavor, spin and parity) with light dynamical quarks ($m_{\rm PS} \approx 340 \, {\rm MeV}$).
 - Qualitative agreement with existing quenched results for $S \leftrightarrow S$ potentials.
 - First lattice computation of $S \leftrightarrow P_{-}$ and $P_{-} \leftrightarrow P_{-}$ potentials.
 - Clear statements about whether a potential of a given channel is attractive or repulsive.
- Statistical accuracy problematic (exponentially decaying correlation functions are quickly lost in statistical noise):
 - Reasonable accuracy for attractive $S \leftrightarrow S$ potentials (interesting, when trying to determine, whether BB may form a bound state).
 - Other (higher) potentials:
 - $\rightarrow BB$ potentials are extracted at rather small temporal separations
 - \rightarrow slight contamination from excited states cannot be excluded.

Summary, conclusions, future plans (2)

- Further plans and possibilities:
 - Other values of the lattice spacing, the spacetime volume and/or the u/d quark mass.
 - Partially quenched computations, to obtain B_sB_s and/or B_sB potentials.
 - Improve lattice meson potentials at small separations (where the suppression of UV fluctuations due to the lattice cutoff yields wrong results) with corresponding perturbative potentials.

BB systems (A)

• Wilson twisted mass action:

$$S_{\rm F}[\chi,\bar{\chi},U] = a^4 \sum_x \bar{\chi}(x) \Big(D_{\rm W} + i\mu_{\rm q}\gamma_5\tau_3 \Big) \chi(x) \quad , \quad \psi(x) = e^{i\gamma_5\tau_3\omega/2}\chi(x) \, .$$

- Symmetries of Wilson twisted mass lattice QCD compared to QCD:
 - SU(2) isospin breaks down to U(1): I_z is still a good quantum number, I is not.
 - Parity \mathcal{P} is replaced by $\mathcal{P}^{(tm)}$, which is parity combined with light flavor exchange.
 - Twisted mass BB sectors:

*
$$I_z = \pm 1$$
: $(I_z, |j_z|, \underbrace{\mathcal{P}^{(\text{tm})}\mathcal{P}^{(\text{tm})}_x}_{=\mathcal{P}\mathcal{P}_x}$,
* $I_z = 0$: $(I_z, |j_z|, \underbrace{\mathcal{P}^{(\text{tm})}_x}_{=\mathcal{P}\times(2I-1)}, \underbrace{\mathcal{P}^{(\text{tm})}_x}_{=\mathcal{P}_x\times(2I-1)}$).
 $\rightarrow \text{QCD sectors } (I, I_z, |j_z|, \mathcal{P}, \mathcal{P}_x) \text{ are pairwise combined}$.

BB systems (B)

• BB creation operators for $I_z = +1$: 16 operators of type

$$(\mathcal{C}\Gamma)_{AB}\Big(\bar{Q}_C(-R/2)\chi_A^{(u)}(-R/2)\Big)\Big(\bar{Q}_C(+R/2)\chi_B^{(u)}(+R/2)\Big).$$

Γ twisted	$ j_z $, $\mathcal{P}^{(ext{tm,light})}\mathcal{P}^{(ext{tm,light})}_x$	Γ pseudo physical	$ j_z $, $\mathcal{P}^{(ext{light})}$, $\mathcal{P}^{(ext{light})}_x$
$egin{array}{c} \gamma_5 \ \gamma_0\gamma_5 \ 1 \ \gamma_0 \end{array}$	$\begin{array}{c} 0, \ + \\ 0, \ + \\ 0, \ + \\ 0, \ - \end{array}$	$egin{array}{c} \mp i \ + \gamma_0 \gamma_5 \ \mp i \gamma_5 \ + \gamma_0 \end{array}$	$\begin{array}{c} 0, -, -\\ 0, +, +\\ 0, +, +\\ 0, +, -\end{array}$
$\gamma_3 \\ \gamma_0 \gamma_3 \\ \gamma_3 \gamma_5 \\ \gamma_0 \gamma_3 \gamma_5$	0, + 0, + 0, - 0, +	$+\gamma_3 \ \mp i\gamma_0\gamma_3\gamma_5 \ +\gamma_3\gamma_5 \ \mp i\gamma_0\gamma_3$	$\begin{array}{cccc} 0, \ -, \ -\\ 0, \ +, \ +\\ 0, \ -, \ +\\ 0, \ -, \ -\end{array}$
$\begin{array}{c} \gamma_1 \\ \gamma_0 \gamma_1 \\ \gamma_1 \gamma_5 \\ \gamma_0 \gamma_1 \gamma_5 \end{array}$	1, - 1, - 1, + 1, -	$egin{array}{c} +\gamma_1 \ \mp i\gamma_0\gamma_1\gamma_5 \ +\gamma_1\gamma_5 \ \mp i\gamma_0\gamma_1 \end{array}$	$1, -, + \\ 1, +, - \\ 1, -, - \\ 1, -, +$

BB systems (C)

• BB creation operators for $I_z = 0$: 32 operators of type

$$(\mathcal{C}\Gamma)_{AB} \Big(\bar{Q}_C(-R/2) \chi_A^{(u)}(-R/2) \Big) \Big(\bar{Q}_C(+R/2) \chi_B^{(d)}(+R/2) \Big) \pm (u \leftrightarrow d).$$

Γ twisted, \pm	$ j_z $, $\mathcal{P}^{(ext{tm,light})}$, $\mathcal{P}^{(ext{tm,light})}_x$	Γ pseudo physical, \pm	$ j_z $, I, $\mathcal{P}^{(ext{light})}$, $\mathcal{P}^{(ext{light})}_x$
γ_5 , $+$	0, +, +	$+\gamma_5$, $+$	0, 1, +, +
$\gamma_0\gamma_5$, +	0, +, +	$+i\gamma_0$, $-$	0, 0, -, -
1,—	0, -, +	+1 , -	0, 0, +, -
γ_0 , $-$	0, +, +	$+i\gamma_0\gamma_5$, $+$	0, 1, +, +
γ_5 , $-$	0, +, -	$+\gamma_5$, $-$	0, 0, -, +
$\gamma_0\gamma_5$, —	0, +, -	$+i\gamma_0$, $+$	0, 1, +, -
1,+	0, -, -	+1 , +	0, 1, -, -
γ_0 , $+$	0, +, -	$+i\gamma_0\gamma_5$, $-$	0, 0, -, +
γ_3 , $+$	1, -, -	$+i\gamma_3\gamma_5$, $-$	0, 0, +, +
$\gamma_0\gamma_3$, $+$	1, -, -	$+\gamma_0\gamma_3$, $+$	0, 1, -, -
$\gamma_3\gamma_5$, $-$	1, -, -	$+i\gamma_3$, $+$	0, 1, -, -
$\gamma_0\gamma_3\gamma_5$, —	1, +, -	$+\gamma_0\gamma_3\gamma_5$, $-$	0, 0, -, +

Simulation setup (A)

• Fermionic action: Wilson twisted mass, $N_f = 2$ degenerate flavors,

$$S_{\rm F}[\chi,\bar{\chi},U] = a^4 \sum_x \bar{\chi}(x) \Big(D_{\rm W} + i\mu_{\rm q}\gamma_5\tau_3 \Big) \chi(x)$$
$$D_{\rm W} = \frac{1}{2} \Big(\gamma_\mu (\nabla_\mu + \nabla^*_\mu) - a\nabla^*_\mu \nabla_\mu \Big) + m_0$$

(m_0 : untwisted mass; μ_q : twisted mass; τ_3 : third Pauli matrix acting in flavor space).

• Relation between the physical basis ψ and the twisted basis χ (in the continuum):

$$\psi = \frac{1}{\sqrt{2}} \Big(\cos(\omega/2) + i \sin(\omega/2) \gamma_5 \tau_3 \Big) \chi$$

$$\bar{\psi} = \frac{1}{\sqrt{2}} \bar{\chi} \Big(\cos(\omega/2) + i \sin(\omega/2) \gamma_5 \tau_3 \Big)$$

(ω : twist angle; $\omega = \pi/2$: maximal twist).

Simulation setup (B)

- 200 0 potential V in MeV -200 -400 -600 -800 uu, $\Gamma = \gamma_3$, HYP2 static action uu, $\Gamma = \gamma_3$, no smearing in the static action -1000 0 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 meson separation R in fm
- $\beta = 3.90$, $L^3 \times T = 24^3 \times 48$, $\mu = 0.0040$
 - \rightarrow lattice spacing $a\approx 0.079\,{\rm fm}$
 - \rightarrow lattice extension $L\approx 1.90\,{\rm fm}$
 - \rightarrow pion mass $m_{\rm PS} \approx 340 \,{\rm MeV}.$
- Inversions/contractions on 210 gauge configurations for light u/d quarks.
- 12 *u* and 12 *d* inversions per gauge configuration (stochastic timeslice sources located on the same timeslice).
- APE smearing of spatial links and Gaussian smearing of light quark fields to "optimize" the ground state overlap of trial states.
- Wilson lines of static quarks are discretized by path ordered products of ordinary links (small separations) and HYP2 smeared links (large separations).