Two-loop resummation in (F)APT

A. P. Bakulev

Bogoliubov Lab. Theor. Phys., JINR (Dubna, Russia)

OUTLINE

- Intro: Asymptotic Series in Perturbative QFT
- APT and FAPT
- Resummation in APT and FAPT
- Applications: Resummation for Adler function $D\left(Q^{2}\right)$
- Applications: Higgs decay $H^{0} \rightarrow b \bar{b}$
- Conclusions

Collaborators \& Publications

Collaborators:

S. Mikhailov (Dubna)

D. Shirkov (Dubna)

Publications:

- A. B.\&Mikhailov - Solovtsov Memorial Seminar, Dubna, Jan. 17-18, 2008, Dubna: JINR (2008) pp. 119-133
- A. B. - Phys. Part. Nucl. 40 (2009) 715
- A. B., Mikhailov, Stefanis - JHEP 1006 (2010) 085
- A. B.\&Shirkov - ArXiv:1102.2380[hep-ph]

Asymptotic Series

 in
Perturbative QFT

Strength and Weakness of Pert. QFT

A lot of successive pert. calculations in QM and QFT. Practically, it is synonym of Quantum Theory. Feynman diagrams became a symbol of QFT.

Nevertheless, power expansion of the quantum amplitude $C(\alpha)$ is not convergent.

Feynman Series $\sum c_{k} \alpha^{k}$ is not Convergent!

Strength and Weakness of Pert. QFT

A lot of successive pert. calculations in QM and QFT. Practically, it is synonym of Quantum Theory. Feynman diagrams became a symbol of QFT.

Nevertheless, power expansion of the quantum amplitude $C(\alpha)$ is not convergent.

$$
\text { Feynman Series } \sum c_{k} \alpha^{k} \text { is not Convergent! }
$$

Due to

- Essential singularity at $\alpha=0$
- Factorial growth of coefficients $c_{k} \sim k$!

Series $\sum c_{k} \alpha^{k}$ is not Convergent!

- Dyson argument (1952)

In QED, change $\alpha\left(=\frac{e^{2}}{4 \pi}\right) \rightarrow-\alpha$ is equivalent to $e \rightarrow i e$. As $S=T\left(e^{i \int L_{\text {int }}(x) d x}\right)=T\left(e^{i e \int j_{\mu} A^{\mu} d x}\right)$, this change destroys Unitarity.
Hence, in the complex α plane, the origin $\alpha=0$ can not be a regular point.

Series $\sum c_{k} \alpha^{k}$ is not Convergent!

- Dyson argument (1952)

In QED, change $\alpha\left(=\frac{e^{2}}{4 \pi}\right) \rightarrow-\alpha$ is equivalent to $e \rightarrow i e$.
As $S=T\left(e^{i \int L_{\text {int }}(x) d x}\right)=T\left(e^{i e \int j_{\mu} A^{\mu} d x}\right)$,
this change destroys Unitarity.
Hence, in the complex α plane, the origin $\alpha=0$ can not be a regular point.

- The ill-posed Problem

Small parameter g at highest nonlinearity - indispensable attribute of Quantum Perturbation:

- First, one quantizes linear system (as a set of oscillators).
- Second, one takes into account non-linear term(s) $\sim g \ll 1$ as a small perturbation.
Non-linearity change equation seriously - new solutions appear.

Singularity at $g=0$, factorial growth $c_{k} \sim k$!

For illustration, take the 0-dim analog $I(g)=\int_{-\infty}^{\infty} e^{-x^{2}-g x^{4}} d x$
Expanding it in power-in-g series:

$$
I(g) \sim \sum_{k=0}(-g)^{k} I_{k} \quad \text { with } \quad I_{k}=\frac{\Gamma(2 k+1 / 2)}{\Gamma(k+1)} \rightarrow 2^{k} k!
$$

Singularity at $g=0$, factorial growth $c_{k} \sim k$!

For illustration, take the $0-\mathrm{dim}$ analog $I(g)=\int_{-\infty}^{\infty} e^{-x^{2}-g x^{4}} d x$ Expanding it in power-in- g series:
$I(g) \sim \sum_{k=0}(-g)^{k} I_{k} \quad$ with $\quad I_{k}=\frac{\Gamma(2 k+1 / 2)}{\Gamma(k+1)} \rightarrow 2^{k} k!$
Meanwhile, $I(g)$ can be expressed via MacDonald function
$I(g)=\frac{1}{\sqrt{2 g}} e^{1 / 8 g} K_{1 / 4}\left(\frac{1}{8 g}\right)$
with known analytic properties in complex g plane.

Essential Singularity at $g=0$

The $I(g)$ is a 4-sheeted function of the complex variable g, analytical in the whole complex plane with a cut from the origin $g=0$.

There it has an essential singularity $e^{-1 / 8 g}$ and can be written down in the Cauchy integral form

$$
I(g)=\sqrt{\pi}-\frac{g}{\sqrt{2 \pi}} \int_{0}^{\infty} \frac{d \gamma \exp (-1 / 4 \gamma)}{\gamma(g+\gamma)}
$$

Essential Singularity at $g=0$

The $I(g)$ is a 4-sheeted function of the complex variable g, analytical in the whole complex plane with a cut from the origin $g=0$.

There it has an essential singularity $e^{-1 / 8 g}$ and can be written down in the Cauchy integral form

$$
I(g)=\sqrt{\pi}-\frac{g}{\sqrt{2 \pi}} \int_{0}^{\infty} \frac{d \gamma \exp (-1 / 4 \gamma)}{\gamma(g+\gamma)}
$$

As far as the origin is not an analytical point, the power Taylor series has no convergence domain for real positive g values in concert with factorial growth of power expansion.

Also, the power series is not valid for negative g values - in accordance with Dyson's reasoning.

Asymptotic Series and 'Practic. Convergence'

The Henry Poincaré (end of XIX) analysis of Asymptotic Series (AS) can be summed as follows:
AS can be used for obtaining quantitative information on expanded function.

Asymptotic Series and 'Practic. Convergence'

The Henry Poincaré (end of XIX) analysis of Asymptotic Series (AS) can be summed as follows:
AS can be used for obtaining quantitative information on expanded function. The error of approximating $F(g)$ by first K terms of expansion, $F_{K}(g)$,
$F(g) \rightarrow F_{K}(g)=\sum_{k \leq K} f_{k}(g)$
is equal to the last detained term $f_{K}(g)$.
For the power AS, $f_{k}(g)=f_{k} g^{k}$ with factorial growth $f_{k} \sim k$! absolute values of expansion terms $f_{k}(g)$ cease to diminish at $k \sim 1 / g$.
This yields to the natural best possible accuracy of a given AS (in contrast to convergent series!)

Asymptotic Series and 'Practic. Convergence'

$I(g)=\int_{-\infty}^{\infty} e^{-x^{2}-g x^{4}} d x \quad ?=? \quad \sum_{k \geq 0} I_{k}(-g)^{k}$

g	K	$(-g)^{K} I_{K}$	$(-g)^{K+1} I_{K+1}$	$\Delta_{K} I(g)$
0.07	7	$-0.04(2 \%)$	$+0.07(4.4 \%)$	1.4%
0.07	9	$-0.17(10 \%)$	$+0.42(25 \%)$	7%

Asymptotic Series and 'Practic. Convergence'

$I(g)=\int_{-\infty}^{\infty} e^{-x^{2}-g x^{4}} d x \quad ?=? \quad \sum_{k \geq 0} I_{k}(-g)^{k}$

g	K	$(-g)^{K} I_{K}$	$(-g)^{K+1} I_{K+1}$	$\Delta_{K} I(g)$
0.07	7	$-0.04(2 \%)$	$+0.07(4.4 \%)$	1.4%
0.07	9	$-0.17(10 \%)$	$+0.42(25 \%)$	7%
0.15	2	$+0.13(8 \%)$	$-0.16(10 \%)$	4%
0.15	4	$+0.30(18 \%)$	$-0.72(44 \%)$	12%

Asymptotic Series and 'Practic. Convergence'

$I(g)=\int_{-\infty}^{\infty} e^{-x^{2}-g x^{4}} d x \quad ?=? \quad \sum_{k \geq 0} I_{k}(-g)^{k}$

g	K	$(-g)^{K} I_{K}$	$(-g)^{K+1} I_{K+1}$	$\Delta_{K} I(g)$
0.07	7	$-0.04(2 \%)$	$+0.07(4.4 \%)$	1.4%
0.07	9	$-0.17(10 \%)$	$+0.42(25 \%)$	7%
0.15	2	$+0.13(8 \%)$	$-0.16(10 \%)$	4%
0.15	4	$+0.30(18 \%)$	$-0.72(44 \%)$	12%

Thus, one has $K_{*}(g=0.07)=7$ and $K_{*}(g=0.15)=2$. It is not possible at all to get the 1% accuracy at $g=0.15$ for $I(g)$.

Analytic Perturbation Theory

 in
QCD

\quad Euclidean
$Q^{2}=\vec{q}^{2}-q_{0}^{2} \geq 0$

RG+Analyticity

ghost-free $\bar{\alpha}_{\text {QED }}\left(Q^{2}\right)$
Bogoliubov et al. 1959

DispRel+renormalons

IR finite $\alpha_{s}^{\text {eff }}\left(Q^{2}\right)$
Dokshitzer et al. 1995
RG+Analyticity
ghost-free $\alpha_{\mathrm{E}}\left(Q^{2}\right)$
Shirkov \& Solovtsov 1996
pQCD+RG: resum π^{2}-terms Arctg (s), UV Non-Power Series Radyush., Krasn. \& Pivov. 1982

pQCD+renormalons

$\operatorname{Arctg}(s)$ at LE region
Ball, Beneke \& Braun 1994-95
Integral Transformation:

$$
\mathcal{R}\left[\bar{\alpha}_{s}\right] \rightarrow \operatorname{Arctg}(s)
$$

Jones \& Solovtsov 1995

History of APT

RG+Analyticity
ghost-free $\alpha_{\mathrm{E}}\left(Q^{2}\right)$
Shirkov \& Solovtsov 1996

Integral Transformation:

$$
\mathcal{R}\left[\bar{\alpha}_{s}\right] \rightarrow \operatorname{Arctg}(s)
$$

Jones \& Solovtsov 1995
pQCD+RG+Analyticity
Transforms: $\hat{\mathcal{D}}=\hat{\mathcal{R}}^{-1}$
Couplings: $\alpha_{\mathrm{E}}\left(Q^{2}\right) \Leftrightarrow \alpha_{\mathrm{M}}(s)$
Milton \& Solovtsov 1996-97

Analytic (global) pQCD+Analyticity Global couplings: $\mathcal{A}_{n}\left(Q^{2}\right) \Leftrightarrow \mathfrak{A}_{n}(s)$ Non-Power perturbative expansions Shirkov 1999-2001

History of F(ractional)APT

$$
\begin{array}{cr}
\text { Euclidean } & \text { Minkowskian } \\
Q^{2}=\vec{q}^{2}-q_{0}^{2} \geq 0 & s=q_{0}^{2}-\vec{q}^{2} \geq 0
\end{array}
$$

Analytization of $\alpha_{s}^{\nu}: \mathcal{A}_{\nu}\left(Q^{2}\right) \Leftrightarrow \mathfrak{A}_{\nu}(s)$ Analytization of $\alpha_{s}^{\nu} \times \log ^{m}: \mathcal{L}_{\nu, m}\left(Q^{2}\right) \Leftrightarrow \mathfrak{L}_{\nu, m}(s)$
A. B. \& Mikhailov \& Stefanis 2005-2006

Resummation in 1-loop global FAPT
A. B. \& Mikhailov 2008

Analytization of $\alpha_{s}^{\nu}\left(1+c_{1} \alpha_{s}\right)^{\nu^{\prime}}: \mathcal{B}_{\nu, \nu^{\prime}}\left(Q^{2}\right) \Leftrightarrow \mathfrak{B}_{\nu, \nu^{\prime}}(s)$
A. B. 2008-2009

Resummation in 2-loop global FAPT
with 2-loop evolution factors $\mathcal{B}_{\nu, \nu^{\prime}}\left(Q^{2}\right) \Leftrightarrow \mathfrak{B}_{\nu, \nu^{\prime}}(s)$ A. B. \& Mikhailov \& Stefanis 2010

- coupling $\alpha_{s}\left(\mu^{2}\right)=\left(4 \pi / b_{0}\right) a_{s}[L]$ with $L=\ln \left(\mu^{2} / \Lambda^{2}\right)$
- RG equation $\frac{d a_{s}[L]}{d L}=-a_{s}^{2}-c_{1} a_{s}^{3}-\ldots$
- 1-loop solution generates Landau pole singularity: $a_{s}[L]=1 / L$
- 2-loop solution generates square-root singularity: $a_{s}[L] \sim 1 / \sqrt{L+c_{1} \ln c_{1}}$
- PT series: $D[L]=1+d_{1} a_{s}[L]+d_{2} a_{s}^{2}[L]+\ldots$
- RG evolution: $B\left(Q^{2}\right)=\left[Z\left(Q^{2}\right) / Z\left(\mu^{2}\right)\right] B\left(\mu^{2}\right)$ reduces in 1-loop approximation to

$$
\left.Z \sim a^{\nu}[L]\right|_{\nu=\nu_{0} \equiv \gamma_{0} /\left(2 b_{0}\right)}
$$

Basics of APT

- Different effective couplings in Euclidean (S\&S) and Minkowskian (R\&K\&P) regions
- Based on $\begin{array}{r}\mathrm{RG} \\ \Downarrow\end{array}$

UV asymptotics

Causality
 \Downarrow

- Euclidean: $-q^{2}=Q^{2}, L=\ln Q^{2} / \Lambda^{2},\left\{\mathcal{A}_{n}(L)\right\}_{n \in \mathbb{N}}$
- Minkowskian: $q^{2}=s, L_{s}=\ln s / \Lambda^{2},\left\{\mathfrak{A}_{n}\left(L_{s}\right)\right\}_{n \in \mathbb{N}}$
- PT $\sum_{m} d_{m} a_{s}^{m}\left(Q^{2}\right) \Rightarrow \sum_{m} d_{m} \mathcal{A}_{m}\left(Q^{2}\right) \quad \mathrm{APT}$

Spectral representation

By analytization we mean "Källen-Lehmann" representation

$$
\left[f\left(Q^{2}\right)\right]_{\mathrm{an}}=\int_{0}^{\infty} \frac{\rho_{f}(\sigma)}{\sigma+Q^{2}-i \epsilon} d \sigma
$$

Then (note here pole remover):

$$
\begin{aligned}
\rho(\sigma) & =\frac{1}{L_{\sigma}^{2}+\pi^{2}} \\
\mathcal{A}_{1}[L] & =\int_{0}^{\infty} \frac{\rho(\sigma)}{\sigma+Q^{2}} d \sigma=\frac{1}{L}-\frac{1}{e^{L}-1} \\
\mathfrak{A}_{1}\left[L_{s}\right] & =\int_{s}^{\infty} \frac{\rho(\sigma)}{\sigma} d \sigma=\frac{1}{\pi} \arccos \frac{L_{s}}{\sqrt{\pi^{2}+L_{s}^{2}}}
\end{aligned}
$$

Spectral representation

By analytization we mean "Källen-Lehmann" representation

$$
\left[f\left(Q^{2}\right)\right]_{\mathrm{an}}=\int_{0}^{\infty} \frac{\rho_{f}(\sigma)}{\sigma+Q^{2}-i \epsilon} d \sigma
$$

with spectral density $\rho_{f}(\sigma)=\operatorname{Im}[f(-\sigma)] / \pi$. Then:

$$
\begin{gathered}
\mathcal{A}_{n}[L]=\int_{0}^{\infty} \frac{\rho_{n}(\sigma)}{\sigma+Q^{2}} d \sigma=\frac{1}{(n-1)!}\left(-\frac{d}{d L}\right)^{n-1} \mathcal{A}_{1}[L] \\
\mathfrak{A}_{n}\left[L_{s}\right]=\int_{s}^{\infty} \frac{\rho_{n}(\sigma)}{\sigma} d \sigma=\frac{1}{(n-1)!}\left(-\frac{d}{d L_{s}}\right)^{n-1} \mathfrak{A}_{1}\left[L_{s}\right] \\
a_{s}^{n}[L]=\frac{1}{(n-1)!}\left(-\frac{d}{d L}\right)^{n-1} a_{s}[L]
\end{gathered}
$$

APT graphics: Distorting mirror

First, couplings: $\quad \mathfrak{A}_{1}(s)$ and $\mathcal{A}_{1}\left(Q^{2}\right)$

APT graphics: Distorting mirror

Second, square-images: $\mathfrak{A}_{2}(s)$ and $\mathcal{A}_{2}\left(Q^{2}\right)$

Non-power APT: Loop and RS Stability

Instead of universal power-in- α_{s} expansion:

$$
D_{\mathrm{PT}}\left(Q^{2}\right)=d_{0}+d_{1} \alpha_{s}\left(Q^{2}\right)+d_{2} \alpha_{s}^{2}\left(Q^{2}\right)+d_{3} \alpha_{s}^{3}\left(Q^{2}\right)
$$

in APTone should use non-power functional expansions:

$$
\begin{gather*}
\mathcal{D}_{\mathrm{APT}}\left(Q^{2}\right)=d_{0}+d_{1} \mathcal{A}_{1}\left(Q^{2}\right)+d_{2} \mathcal{A}_{2}\left(Q^{2}\right)+d_{3} \mathcal{A}_{3}\left(Q^{2}\right) \tag{*E}\\
\quad \mathcal{R}_{\mathrm{APT}}(s)=d_{0}+d_{1} \mathfrak{A}_{1}(s)+d_{2} \mathfrak{A}_{2}(s)+d_{3} \mathfrak{A}_{3}(s) \tag{*M}
\end{gather*}
$$

Non-power APT: Loop and RS Stability

Instead of universal power-in- α_{s} expansion:

$$
D_{\mathrm{PT}}\left(Q^{2}\right)=d_{0}+d_{1} \alpha_{s}\left(Q^{2}\right)+d_{2} \alpha_{s}^{2}\left(Q^{2}\right)+d_{3} \alpha_{s}^{3}\left(Q^{2}\right)
$$

in APTone should use non-power functional expansions:

$$
\begin{gather*}
\mathcal{D}_{\mathrm{APT}}\left(Q^{2}\right)=d_{0}+d_{1} \mathcal{A}_{1}\left(Q^{2}\right)+d_{2} \mathcal{A}_{2}\left(Q^{2}\right)+d_{3} \mathcal{A}_{3}\left(Q^{2}\right) \tag{*E}\\
\quad \mathcal{R}_{\mathrm{APT}}(s)=d_{0}+d_{1} \mathfrak{A}_{1}(s)+d_{2} \mathfrak{A}_{2}(s)+d_{3} \mathfrak{A}_{3}(s)
\end{gather*}
$$

This provides

- Better loop convergence and practical RS independence of observables;
- The d_{3} terms in (*E) and (*M) contribute less than 5%. Again the 2-loop ($\mathrm{N}^{2} \mathrm{LO}$) level is sufficient.

Relative size of \mathbf{N}^{k} LO terms

Standard pQCD:

Observable	Scale	LO	NLO	N 2 LO	N 3 LO	$\Delta_{\text {exp }}$
$R_{e^{+} e^{-} \rightarrow \text { hadrons }}$	10 GeV	92%	7.6%	1.0%	-0.6%	$12-30 \%$
R_{τ} in τ-decay	2 GeV	51%	27%	14%	8%	5%
Bjorken SR	2 GeV	56%	21%	12%	11%	6%

Relative size of \mathbf{N}^{k} LO terms

Standard PQCD:

Observable	Scale	LO	NLO	N 2 LO	N 3 LO	$\Delta_{\exp }$
$R_{e^{+} e^{-} \rightarrow \text { hadrons }}$	10 GeV	92%	7.6%	1.0%	-0.6%	$12-30 \%$
R_{τ} in τ-decay	2 GeV	51%	27%	14%	8%	5%
Bjorken SR	2 GeV	56%	21%	12%	11%	6%

QCD APT:

Observable	Scale	LO	NLO	N 2 LO	N 3 LO	$\Delta_{\exp }$
$\boldsymbol{R}_{\boldsymbol{e}^{+} e^{-} \rightarrow \text { hadrons }}$	10 GeV	$\mathbf{9 2} \%$	$\mathbf{7} \%$	0.9%	0.1%	$\mathbf{1 2 - 3 0} \%$
\boldsymbol{R}_{τ} in τ-decay	2 GeV	$\mathbf{9 0} \%$	8.8%	1%	0.2%	5%
Bjorken SR	$\mathbf{2 ~ G e V}$	75%	21%	4.1%	-0.1%	6%

Need

to use

Fractional APT

Problems of APT

In standard QCD PT we have not only power series
$F[L]=\sum_{m} f_{m} a_{s}^{m}[L]$, but also:

- RG-improvement to account for higher-orders \rightarrow

$$
Z[L]=\exp \left\{\int^{a_{s}[L]} \frac{\gamma(a)}{\beta(a)} d a\right\} \xrightarrow{1-\text { loop }}\left[a_{s}[L]\right]^{\gamma_{0} /\left(2 \beta_{0}\right)}
$$

- Factorization $\rightarrow\left[a_{s}[L]\right]^{n} L^{m}$
- Sudakov resummation $\rightarrow \exp \left[-a_{s}[L] \cdot f(x)\right]$

New functions: $\left(a_{s}\right)^{\nu},\left(a_{s}\right)^{\nu} \ln \left(a_{s}\right),\left(a_{s}\right)^{\nu} L^{m}, e^{-a_{s}}, \ldots$

Constructing one-Ioop FAPT

In one-loop APT we have a very nice recurrence relation

$$
\mathcal{A}_{n}[L]=\frac{1}{(n-1)!}\left(-\frac{d}{d L}\right)^{n-1} \mathcal{A}_{1}[L]
$$

and the same in Minkowski domain

$$
\mathfrak{A}_{n}[L]=\frac{1}{(n-1)!}\left(-\frac{d}{d L}\right)^{n-1} \mathfrak{A}_{1}[L] .
$$

We can use it to construct FAPT.

FAPT(E): Properties of $\mathcal{A}_{\nu}[L]$

First, Euclidean coupling $\left(L=L\left(Q^{2}\right)\right)$:

$$
\mathcal{A}_{\nu}[L]=\frac{1}{L^{\nu}}-\frac{F\left(e^{-L}, 1-\nu\right)}{\Gamma(\nu)}
$$

Here $F(z, \nu)$ is reduced Lerch transcendent. function. It is analytic function in ν. Properties:

- $\mathcal{A}_{0}[L]=1$;
- $\mathcal{A}_{-m}[\boldsymbol{L}]=L^{m}$ for $m \in \mathbb{N}$;
- $\mathcal{A}_{m}[L]=(-1)^{m} \mathcal{A}_{m}[-L]$ for $m \geq 2, m \in \mathbb{N}$;
- $\mathcal{A}_{m}[\pm \infty]=0$ for $m \geq 2, m \in \mathbb{N}$;

FAPT(M): Properties of $\mathfrak{A}_{\nu}[L]$

Now, Minkowskian coupling ($L=L(s)$):

$$
\mathfrak{A}_{\nu}[L]=\frac{\sin \left[(\nu-1) \arccos \left(L / \sqrt{\pi^{2}+L^{2}}\right)\right]}{\pi(\nu-1)\left(\pi^{2}+L^{2}\right)^{(\nu-1) / 2}}
$$

Here we need only elementary functions. Properties:

- $\mathfrak{A}_{0}[L]=1$;
- $\mathfrak{A}_{-1}[L]=L$;
- $\mathfrak{A}_{-2}[L]=L^{2}-\frac{\pi^{2}}{3}, \quad \mathfrak{A}_{-3}[L]=L\left(L^{2}-\pi^{2}\right), \ldots$;
- $\mathfrak{A}_{m}[L]=(-1)^{m} \mathfrak{A}_{m}[-L]$ for $m \geq 2, m \in \mathbb{N}$;
- $\mathfrak{A}_{m}[\pm \infty]=0$ for $m \geq 2, m \in \mathbb{N}$

FAPT(E): Graphics of $\mathcal{A}_{\nu}[L]$ vs. L

$$
\mathcal{A}_{\nu}[L]=\frac{1}{L^{\nu}}-\frac{F\left(e^{-L}, 1-\nu\right)}{\Gamma(\nu)}
$$

Graphics for fractional $\nu \in[2,3]$:

FAPT(M): Graphics of $\mathfrak{A}_{\nu}[L]$ vs. L

$$
\mathfrak{A}_{\nu}[L]=\frac{\sin \left[(\nu-1) \arccos \left(L / \sqrt{\pi^{2}+L^{2}}\right)\right]}{\pi(\nu-1)\left(\pi^{2}+L^{2}\right)^{(\nu-1) / 2}}
$$

Compare with graphics in Minkowskian region :

FAPT(E): Comparing \mathcal{A}_{ν} with $\left(\mathcal{A}_{1}\right)^{\nu}$

$$
\Delta_{\mathrm{E}}(L, \nu)=\frac{\mathcal{A}_{\nu}[L]-\left(\mathcal{A}_{1}[L]\right)^{\nu}}{\mathcal{A}_{\nu}[L]}
$$

Graphics for fractional $\nu=0.62,1.62$ and 2.62:

FAPT(M): Comparing \mathfrak{A}_{ν} with $\left(\mathfrak{A}_{1}\right)^{\nu}$

$$
\Delta_{\mathbf{M}}(\boldsymbol{L}, \nu)=\frac{\mathfrak{A}_{\nu}[\boldsymbol{L}]-\left(\mathfrak{A}_{1}[\boldsymbol{L}]\right)^{\nu}}{\mathfrak{A}_{\nu}[\boldsymbol{L}]}
$$

Minkowskian graphics for $\nu=0.62,1.62$ and 2.62:

Resummation

in one-Ioop APT and FAPT

Resummation in one-loop APT

Consider series $\mathcal{D}[L]=d_{0}+\sum_{n=1}^{\infty} d_{n} \mathcal{A}_{n}[L]$

Resummation in one-loop APT

Consider series $\quad \mathcal{D}[L]=d_{0}+\sum_{n=1}^{\infty} d_{n} \mathcal{A}_{n}[L]$
Let exist the generating function $P(t)$ for coefficients:

$$
d_{n}=d_{1} \int_{0}^{\infty} P(t) t^{n-1} d t \text { with } \int_{0}^{\infty} P(t) d t=1
$$

We define a shorthand notation

$$
\langle\langle f(t)\rangle\rangle_{P(t)} \equiv \int_{0}^{\infty} f(t) P(t) d t
$$

Then coefficients $d_{n}=d_{1}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)}$.

Resummation in one-loop APT

Consider series $\mathcal{D}[L]=d_{0}+\sum_{n=1}^{\infty} d_{n} \mathcal{A}_{n}[L]$
with coefficients $d_{n}=d_{1}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)}$.
We have one-loop recurrence relation:

$$
\mathcal{A}_{n+1}[L]=\frac{1}{\Gamma(n+1)}\left(-\frac{d}{d L}\right)^{n} \mathcal{A}_{1}[L]
$$

Resummation in one-loop APT

Consider series $\quad \mathcal{D}[L]=d_{0}+\sum_{n=1}^{\infty} d_{n} \mathcal{A}_{n}[L]$
with coefficients $d_{n}=d_{1}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)}$.
We have one-loop recurrence relation:

$$
\mathcal{A}_{n+1}[L]=\frac{1}{\Gamma(n+1)}\left(-\frac{d}{d L}\right)^{n} \mathcal{A}_{1}[L] .
$$

Result:

$$
\mathcal{D}[L]=d_{0}+d_{1}\left\langle\left\langle\mathcal{A}_{1}[L-t]\right\rangle\right\rangle_{P(t)}
$$

Resummation in one-loop APT

Consider series $\quad \mathcal{D}[L]=d_{0}+\sum_{n=1}^{\infty} d_{n} \mathcal{A}_{n}[L]$
with coefficients $d_{n}=d_{1}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)}$.
We have one-loop recurrence relation:

$$
\mathcal{A}_{n+1}[L]=\frac{1}{\Gamma(n+1)}\left(-\frac{d}{d L}\right)^{n} \mathcal{A}_{1}[L] .
$$

Result:

$$
\mathcal{D}[L]=d_{0}+d_{1}\left\langle\left\langle\mathcal{A}_{1}[L-t]\right\rangle\right\rangle_{P(t)}
$$

and for Minkowski region:

$$
\mathcal{R}[\boldsymbol{L}]=d_{0}+d_{1}\left\langle\left\langle\mathfrak{A}_{1}[L-t]\right\rangle\right\rangle_{P(t)}
$$

Resummation in one-loop FAPT

Consider seria $\quad \mathcal{R}_{\nu}[L]=d_{0} \mathfrak{A}_{\nu}[L]+\sum_{n=1}^{\infty} d_{n} \mathfrak{A}_{n+\nu}[L]$
and

$$
\mathcal{D}_{\nu}[L]=d_{0} \mathcal{A}_{\nu}[L]+\sum_{n=1}^{\infty} d_{n} \mathcal{A}_{n+\nu}[L]
$$

with coefficients $d_{n}=d_{1}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)}$.
Result:

$$
\begin{aligned}
\mathcal{R}_{\nu}[L] & =d_{0} \mathfrak{A}_{\nu}[L]+d_{1}\left\langle\left\langle\mathfrak{A}_{1+\nu}[L-t]\right\rangle\right\rangle_{P_{\nu}(t)} \\
\mathcal{D}_{\nu}[L] & =d_{0} \mathcal{A}_{\nu}[L]+d_{1}\left\langle\left\langle\mathcal{A}_{1+\nu}[L-t]\right\rangle\right\rangle_{P_{\nu}(t)}
\end{aligned}
$$

where $P_{\nu}(t)=\int_{0}^{1} P\left(\frac{t}{1-z}\right) \nu z^{\nu-1} \frac{d z}{1-z}$.

Resummation

in
 two-loop APT and FAPT

Resummation in two-loop APT

Consider series $\quad \mathcal{S}[L]=\sum_{n=1}^{\infty}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)} \mathcal{F}_{n}[L]$.
Here $\mathcal{F}_{n}[L]=\mathcal{A}_{n}^{(2)}[L]$ or $\mathfrak{A}_{n}^{(2)}[L]$.

Resummation in two-loop APT

Consider series $\mathcal{S}[L]=\sum_{n=1}^{\infty}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)} \mathcal{F}_{n}[\boldsymbol{L}]$.
Here $\mathcal{F}_{n}[L]=\mathcal{A}_{n}^{(2)}[L]$ or $\mathfrak{A}_{n}^{(2)}[L]$.
We have two-loop recurrence relation ($c_{1}=b_{1} / b_{0}^{2}$):

$$
-\frac{1}{n} \frac{d}{d L} \mathcal{F}_{n}[L]=\mathcal{F}_{n+1}[L]+c_{1} \mathcal{F}_{n+2}[L]
$$

Resummation in two-loop APT

Consider series $\quad \mathcal{S}[L]=\sum_{n=1}^{\infty}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)} \mathcal{F}_{n}[L]$.
Here $\mathcal{F}_{n}[L]=\mathcal{A}_{n}^{(2)}[L]$ or $\mathfrak{A}_{n}^{(2)}[L]$.
We have two-loop recurrence relation ($c_{1}=b_{1} / b_{0}^{2}$):

$$
-\frac{1}{n} \frac{d}{d L} \mathcal{F}_{n}[L]=\mathcal{F}_{n+1}[L]+c_{1} \mathcal{F}_{n+2}[L]
$$

Result $\left(\tau(t)=t-c_{1} \ln \left(1+t / c_{1}\right)\right)$:

$$
\begin{aligned}
\mathcal{S}[L] & =\left\langle\left\langle\frac{c_{1} \mathcal{F}_{1}[L]+t \mathcal{F}_{1}[L-\tau(t)]}{c_{1}+t}+\frac{c_{1} t}{c_{1}+t} \mathcal{F}_{2}[L-\tau(t)]\right\rangle\right\rangle_{P(t)} \\
& -\left\langle\left\langle\frac{c_{1} t}{c_{1}+t} \int_{0}^{t} \frac{d t^{\prime}}{c_{1}+t^{\prime}} \frac{d \mathcal{F}_{1}\left[L+\tau\left(t^{\prime}\right)-\tau(t)\right]}{d L}\right\rangle\right\rangle_{P(t)} .
\end{aligned}
$$

Resummation in two-loop (global) FAPT

Consider series $\mathcal{S}_{\nu}[L]=\sum_{n=1}^{\infty}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)} \mathcal{F}_{n+\nu}[L]$.
Here $\mathcal{F}_{\nu}[L]=\mathcal{A}_{\nu}^{(2)}[L]$ or $\mathfrak{A}_{\nu}^{(2)}[L]$ (or $\rho_{\nu}^{(2)}[L]$ — for global).

Resummation in two-loop (global) FAPT

Consider series $\mathcal{S}_{\nu}[L]=\sum_{n=1}^{\infty}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)} \mathcal{F}_{n+\nu}[L]$.
Here $\mathcal{F}_{\nu}[L]=\mathcal{A}_{\nu}^{(2)}[L]$ or $\mathfrak{A}_{\nu}^{(2)}[L]$ (or $\rho_{\nu}^{(2)}[L]$ - for global).
We have two-loop recurrence relation ($c_{1}=b_{1} / b_{0}^{2}$):

$$
-\frac{1}{n+\nu} \frac{d}{d L} \mathcal{F}_{n+\nu}[L]=\mathcal{F}_{n+1+\nu}[L]+c_{1} \mathcal{F}_{n+2+\nu}[L]
$$

Resummation in two-loop (global) FAPT

Consider series $\quad \mathcal{S}_{\nu}[L]=\sum_{n=1}^{\infty}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)} \mathcal{F}_{n+\nu}[L]$.
Here $\mathcal{F}_{\nu}[L]=\mathcal{A}_{\nu}^{(2)}[L]$ or $\mathfrak{A}_{\nu}^{(2)}[L]$ (or $\rho_{\nu}^{(2)}[L]$ — for global).
We have two-loop recurrence relation ($c_{1}=b_{1} / b_{0}^{2}$):

$$
-\frac{1}{n+\nu} \frac{d}{d L} \mathcal{F}_{n+\nu}[L]=\mathcal{F}_{n+1+\nu}[L]+c_{1} \mathcal{F}_{n+2+\nu}[L]
$$

Result $\left(\tau(t)=t-c_{1} \ln \left(1+t / c_{1}\right)\right)$:

$$
\mathcal{S}[L]=\left\langle\left\langle\mathcal{F}_{1+\nu}[L]-\frac{t^{2}}{c_{1}+t} \int_{0}^{1} z^{\nu} d z \dot{\mathcal{F}}_{1+\nu}[L+\tau(t z)-\tau(t)]\right.\right.
$$

$$
\left.+\frac{c_{1} t}{c_{1}+t}\left\{\mathcal{F}_{2+\nu}[L]-\int_{0}^{1} d z \frac{t^{2} z^{\nu+1}}{c_{1}+t z} \dot{\mathcal{F}}_{2+\nu}[L+\tau(t z)-\tau(t)]\right\}\right\rangle_{P(t)}
$$

Resummation in two-loop (global) FAPT

Consider series $\quad \mathcal{S}_{\nu_{0}, \nu_{1}}[\boldsymbol{L}]=\sum_{n=1}^{\infty}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)} \mathcal{F}_{n+\nu_{0}, \nu_{1}}[L]$.
Here $\mathcal{F}_{n+\nu_{0}, \nu_{1}}[L]=\mathcal{B}_{n+\nu_{0}, \nu_{1}}^{(2)}[L]$ or $\mathfrak{B}_{n+\nu_{0}, \nu_{1}}^{(2)}[L]$
(or $\rho_{n+\nu_{0}, \nu_{1}}^{(2)}[L]$ - for global),
where

$$
\mathcal{B}_{\nu ; \nu_{1}}[L]=\mathcal{A}_{\mathrm{E}, \mathrm{M}}\left[a_{(2)}^{\nu}[L]\left(1+c_{1} a_{(2)}\right)^{\nu_{1}}[L]\right]
$$

is the analytic image of the two-loop evolution factor.
We have constructed formulas of resummation for $\mathcal{S}_{\nu_{0}, \nu_{1}}[L]$ as well.

Resummation

 for
Adler function $D\left(Q^{2}\right)$

Adler function $D\left(Q^{2}\right)$ in vector channel

Adler function $D\left(Q^{2}\right)$ can be expressed in QCD by means of the correlator of quark vector currents

$$
\Pi_{\mathrm{V}}\left(Q^{2}\right)=\frac{(4 \pi)^{2}}{3 q^{2}} i \int d x e^{i q x}\langle 0| T\left[J_{\mu}(x) J^{\mu}(0)\right]|0\rangle
$$

in terms of discontinuity of its imaginary part

$$
R_{\mathrm{V}}(s)=\frac{1}{\pi} \operatorname{Im} \Pi_{\mathrm{V}}(-s-i \epsilon)
$$

so that

$$
D\left(Q^{2}\right)=Q^{2} \int_{0}^{\infty} \frac{R_{\mathrm{v}}(\sigma)}{\left(\sigma+Q^{2}\right)^{2}} d \sigma .
$$

APT analysis of $D\left(Q^{2}\right)$ and $R_{V}(s)$

QCD PT gives us

$$
D\left(Q^{2}\right)=1+\sum_{m>0} \frac{d_{m}}{\pi^{m}}\left(\alpha_{s}\left(Q^{2}\right)\right)^{m}
$$

APT analysis of $D\left(Q^{2}\right)$ and $R_{V}(s)$

QCD PT gives us

$$
D\left(Q^{2}\right)=1+\sum_{m>0} \frac{d_{m}}{\pi^{m}}\left(\alpha_{s}\left(Q^{2}\right)\right)^{m}
$$

In APT(E) we obtain

$$
\mathcal{D}_{N}\left(Q^{2}\right)=1+\sum_{m>0}^{N} \frac{d_{m}}{\pi^{m}} \mathcal{A}_{m}^{\text {glob }}\left(Q^{2}\right)
$$

APT analysis of $D\left(Q^{2}\right)$ and $R_{V}(s)$

QCD PT gives us

$$
D\left(Q^{2}\right)=1+\sum_{m>0} \frac{d_{m}}{\pi^{m}}\left(\alpha_{s}\left(Q^{2}\right)\right)^{m}
$$

In APT(E) we obtain

$$
\mathcal{D}_{N}\left(Q^{2}\right)=1+\sum_{m>0}^{N} \frac{d_{m}}{\pi^{m}} \mathcal{A}_{m}^{\text {glob }}\left(Q^{2}\right)
$$

and in APT(M)

$$
\mathcal{R}_{\mathrm{V} ; N}(s)=1+\sum_{m>0}^{N} \frac{d_{m}}{\pi^{m}} \mathfrak{A}_{m}^{\mathrm{glob}}(s)
$$

Model for perturbative coefficients

Coefficients d_{m} of the PT series:

Model	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}
pQCD with $N_{f}=4$	1	1.52	2.59		-

Model for perturbative coefficients

Coefficients d_{m} of the PT series:

Model	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}
pQCD with $N_{f}=4$	1	1.52	2.59		-
$c=3.467, \beta=1.325$	1	1.50	2.62		

We use model $\tilde{d}_{n}^{\text {mod }}=\frac{c^{n-1}\left(\beta^{n+1}-n\right)}{\beta^{2}-1} \Gamma(n)$
with parameters β and c estimated by known \tilde{d}_{n}
that possesses the Lipatov asymptotics $\tilde{d}_{n}^{\text {mod }} \sim b^{n} n$! at $n \gg 1$.

Model for perturbative coefficients

Coefficients d_{m} of the PT series:

Model	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}
pQCD with $N_{f}=4$	1	1.52	2.59	27.4	-
$c=3.467, \beta=1.325$	1	1.50	2.62	27.8	

We use model $\tilde{d}_{n}^{\text {mod }}=\frac{c^{n-1}\left(\beta^{n+1}-n\right)}{\beta^{2}-1} \Gamma(n)$
with parameters β and c estimated by known \tilde{d}_{n}
that possesses the Lipatov asymptotics $\tilde{d}_{n}^{\text {mod }} \sim b^{n} n$! at $n \gg 1$.

Model for perturbative coefficients

Coefficients d_{m} of the PT series:

Model	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}
pQCD with $N_{f}=4$	1	1.52	2.59	27.4	-
$c=3.467, \beta=1.325$	1	1.50	2.62	27.8	
$c=3.456, \beta=1.325$	1	1.49	2.60	27.5	

We use model $\tilde{d}_{n}^{\text {mod }}=\frac{c^{n-1}\left(\beta^{n+1}-n\right)}{\beta^{2}-1} \Gamma(n)$
with parameters β and c estimated by known \tilde{d}_{n}
that possesses the Lipatov asymptotics $\tilde{d}_{n}^{\text {mod }} \sim b^{n} n!$ at $n \gg 1$.

Model for perturbative coefficients

Coefficients d_{m} of the PT series:

Model	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}
pQCD with $N_{f}=4$	1	1.52	2.59	27.4	-
$c=3.467, \beta=1.325$	1	1.50	2.62	27.8	1888
$c=3.456, \beta=1.325$	1	1.49	2.60	27.5	1865

We use model $\tilde{d}_{n}^{\text {mod }}=\frac{c^{n-1}\left(\beta^{n+1}-n\right)}{\beta^{2}-1} \Gamma(n)$
with parameters β and c estimated by known \tilde{d}_{n}
that possesses the Lipatov asymptotics $\tilde{d}_{n}^{\text {mod }} \sim b^{n} n!$ at $n \gg 1$.

Model for perturbative coefficients

Coefficients d_{m} of the PT series:

Model	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}
pQCD with $N_{f}=4$	1	1.52	2.59	27.4	-
$c=3.467, \beta=1.325$	1	1.50	2.62	27.8	1888
$c=3.456, \beta=1.325$	1	1.49	2.60	27.5	1865
"INNA" model	1	1.44	$[3,9]$	$[20,48]$	$[674,2786]$

We use model $\tilde{d}_{n}^{\text {mod }}=\frac{c^{n-1}\left(\beta^{n+1}-n\right)}{\beta^{2}-1} \Gamma(n)$
with parameters β and c estimated by known \tilde{d}_{n}
that possesses the Lipatov asymptotics $\tilde{d}_{n}^{\bmod } \sim b^{n} n$! at $n \gg 1$.

APT(E) for $\mathcal{D}\left(Q^{2}\right)$: Truncation errors

We define relative errors of series truncation at N th term:

$$
\Delta_{N}^{\vee}[L]=1-\mathcal{D}_{N}[L] / \mathcal{D}_{\infty}[L]
$$

$A P T(E)$ for $\mathcal{D}\left(Q^{2}\right)$: Truncation errors

Conclusion: The best accuracy (better than 0.1%) is achieved for $\mathrm{N}^{2} \mathrm{LO}$ approximation.

APT(E) for $\mathcal{D}\left(Q^{2}\right)$: Truncation errors

Conclusion: If we add more terms $\mathrm{N}^{3} \mathrm{LO}$ - truncation error increases.

$A P T(E)$ for $\mathcal{D}\left(Q^{2}\right)$: Truncation errors

Conclusion: The best accuracy (better than 0.1%) is achieved for $\mathrm{N}^{2} \mathrm{LO}$ approximation.

APT(E) for $\mathcal{D}\left(Q^{2}\right)$: Errors of modelling $P(t)$

We use model $d_{n}^{\text {mod }}=\frac{c^{n-1}\left(\beta^{n+1}-n\right)}{\beta^{2}-1} \Gamma(n)$
with parameters $\beta=1.325$ and $c=3.456$ estimated by known
\tilde{d}_{n} and with use of Lipatov asymptotics.
We apply it to resum APT series and obtain $\mathcal{D}\left(Q^{2}\right)$.

APT(E) for $\mathcal{D}\left(Q^{2}\right)$: Errors of modelling $P(t)$

We use model $d_{n}^{\text {mod }}=\frac{c^{n-1}\left(\beta^{n+1}-n\right)}{\beta^{2}-1} \Gamma(n)$
with parameters $\beta=1.325$ and $c=3.456$ estimated by known
\tilde{d}_{n} and with use of Lipatov asymptotics.
We apply it to resum APT series and obtain $\mathcal{D}\left(Q^{2}\right)$.
We deform our model for d_{n} by using coefficients $\beta_{\text {NNA }}=1.322$ and $c_{\text {NNA }}=3.885$
that deforms $d_{4}=27.5 \rightarrow d_{4}^{\text {NNA }}=20.4$

APT(E) for $\mathcal{D}\left(Q^{2}\right)$: Errors of modelling $P(t)$

We use model $d_{n}^{\text {mod }}=\frac{c^{n-1}\left(\beta^{n+1}-n\right)}{\beta^{2}-1} \Gamma(n)$
with parameters $\beta=1.325$ and $c=3.456$ estimated by known \tilde{d}_{n} and with use of Lipatov asymptotics.

We apply it to resum APT series and obtain $\mathcal{D}\left(Q^{2}\right)$.
We deform our model for d_{n} by using coefficients $\beta_{\text {NNA }}=1.322$ and $c_{\text {NNA }}=3.885$
that deforms $d_{4}=27.5 \rightarrow d_{4}^{\text {NNA }}=20.4$
We apply it to resum APT series and obtain $\mathcal{D}_{\mathrm{NNA}}\left(Q^{2}\right)$.

APT(E) for $\mathcal{D}\left(Q^{2}\right)$: Errors of modelling $P(t)$

Conclusion: The result of resummation is stable to the variations of higher-order coefficients: deviation is of the order of 0.1%.

Higgs boson

decay

$$
H^{0} \rightarrow b \stackrel{\rightharpoonup}{b}
$$

Higgs boson decay into b̄ -pair

This decay can be expressed in QCD by means of the correlator of quark scalar currents $J_{\mathrm{S}}(x)=: \bar{b}(x) b(x)$:

$$
\Pi\left(Q^{2}\right)=(4 \pi)^{2} i \int d x e^{i q x}\langle 0| T\left[J_{\mathrm{S}}(x) J_{\mathrm{S}}(0)\right]|0\rangle
$$

Higgs boson decay into b̄ -pair

This decay can be expressed in QCD by means of the correlator of quark scalar currents $J_{\mathrm{S}}(x)=: \bar{b}(x) b(x)$:

$$
\Pi\left(Q^{2}\right)=(4 \pi)^{2} i \int d x e^{i q x}\langle 0| T\left[J_{\mathrm{S}}(x) J_{\mathrm{S}}(0)\right]|0\rangle
$$

in terms of discontinuity of its imaginary part

$$
R_{\mathbf{S}}(s)=\operatorname{Im} \Pi(-s-i \epsilon) /(2 \pi s)
$$

so that

$$
\Gamma_{\mathrm{H} \rightarrow b \bar{b}}\left(M_{\mathrm{H}}\right)=\frac{G_{F}}{4 \sqrt{2} \pi} M_{\mathrm{H}} m_{b}^{2}\left(M_{\mathrm{H}}\right) R_{\mathrm{S}}\left(s=M_{\mathrm{H}}^{2}\right)
$$

FAPT(M) analysis of R_{S}

Running mass $m\left(Q^{2}\right)$ is described by the RG equation

$$
m^{2}\left(Q^{2}\right)=\hat{m}^{2} \alpha_{s}^{\nu_{0}}\left(Q^{2}\right)\left[1+\frac{c_{1} b_{0} \alpha_{s}\left(Q^{2}\right)}{4 \pi^{2}}\right]^{\nu_{1}}
$$

with RG-invariant mass $\hat{\boldsymbol{m}}^{2}$ (for b-quark $\hat{m}_{b} \approx 8.53 \mathrm{GeV}$) and $\nu_{0}=1.04, \nu_{1}=1.86$.

FAPT(M) analysis of R_{S}

Running mass $m\left(Q^{2}\right)$ is described by the RG equation

$$
m^{2}\left(Q^{2}\right)=\hat{m}^{2} \alpha_{s}^{\nu_{0}}\left(Q^{2}\right)\left[1+\frac{c_{1} b_{0} \alpha_{s}\left(Q^{2}\right)}{4 \pi^{2}}\right]^{\nu_{1}}
$$

with RG-invariant mass \hat{m}^{2} (for b-quark $\hat{m}_{b} \approx 8.53 \mathrm{GeV}$) and $\nu_{0}=1.04, \nu_{1}=1.86$. This gives us

$$
\left[3 \hat{m}_{b}^{2}\right]^{-1} \widetilde{D}_{\mathrm{S}}\left(Q^{2}\right)=\alpha_{s}^{\nu_{0}}\left(Q^{2}\right)+\sum_{m>0} \frac{d_{m}}{\pi^{m}} \alpha_{s}^{m+\nu_{0}}\left(Q^{2}\right)
$$

FAPT(M) analysis of R_{S}

Running mass $m\left(Q^{2}\right)$ is described by the $\mathbf{R G}$ equation

$$
m^{2}\left(Q^{2}\right)=\hat{m}^{2} \alpha_{s}^{\nu_{0}}\left(Q^{2}\right)\left[1+\frac{c_{1} b_{0} \alpha_{s}\left(Q^{2}\right)}{4 \pi^{2}}\right]^{\nu_{1}} .
$$

with RG-invariant mass \hat{m}^{2} (for b-quark $\hat{m}_{b} \approx 8.53 \mathrm{GeV}$) and $\nu_{0}=1.04, \nu_{1}=1.86$. This gives us

$$
\left[3 \hat{m}_{b}^{2}\right]^{-1} \widetilde{D}_{\mathrm{S}}\left(Q^{2}\right)=\alpha_{s}^{\nu_{0}}\left(Q^{2}\right)+\sum_{m>0} \frac{d_{m}}{\pi^{m}} \alpha_{s}^{m+\nu_{0}}\left(Q^{2}\right)
$$

In 1-loop FAPT(M) we obtain

$$
\widetilde{\mathcal{R}}_{\mathrm{S}}^{(1) ; N}[L]=3 \hat{m}^{2}\left[\mathfrak{A}_{\nu_{0}}^{(1) ; \text { glob }}[L]+\sum_{m>0}^{N} \frac{d_{m}}{\pi^{m}} \mathfrak{A}_{m+\nu_{0}}^{(1) ; \text { glob }}[L]\right]
$$

FAPT(M) analysis of R_{S}

Running mass $m\left(Q^{2}\right)$ is described by the $\mathbf{R G}$ equation

$$
m^{2}\left(Q^{2}\right)=\hat{m}^{2} \alpha_{s}^{\nu_{0}}\left(Q^{2}\right)\left[1+\frac{c_{1} b_{0} \alpha_{s}\left(Q^{2}\right)}{4 \pi^{2}}\right]^{\nu_{1}} .
$$

with RG-invariant mass \hat{m}^{2} (for b-quark $\hat{m}_{b} \approx 8.53 \mathrm{GeV}$) and $\nu_{0}=1.04, \nu_{1}=1.86$. This gives us

$$
\left[3 \hat{m}_{b}^{2}\right]^{-1} \widetilde{D}_{\mathbf{S}}\left(Q^{2}\right)=\alpha_{s}^{\nu_{0}}\left(Q^{2}\right)+\sum_{m>0} \frac{d_{m}}{\pi^{m}} \alpha_{s}^{m+\nu_{0}}\left(Q^{2}\right) .
$$

In 2-loop FAPT(M) we obtain

$$
\widetilde{\mathcal{R}}_{\mathrm{S}}^{(2) ; N}[L]=3 \hat{m}^{2}\left[\mathfrak{B}_{\nu_{0}, \nu_{1}}^{(2) ; \text { glob }}[L]+\sum_{m>0}^{N} \frac{d_{m}}{\pi^{m}} \mathfrak{B}_{m+\nu_{0}, \nu_{1}}^{(2) ; \text {;glob }}[L]\right]
$$

Model for perturbative coefficients

Coefficients of our series, $\tilde{d}_{m}=d_{m} / d_{1}$, with $d_{1}=17 / 3$:

Model	\tilde{d}_{1}	\tilde{d}_{2}	\tilde{d}_{3}	\tilde{d}_{4}	\tilde{d}_{5}
PQCD	1	7.42	62.3	620	-
$c=2.5, \beta=-0.48$	1	7.42	62.3	662	-
$c=2.4, \beta=-0.52$	1	7.50	61.1	625	7826
"PMS" model	-	-	64.8	547	7782

We use model $\tilde{d}_{n}^{\text {mod }}=\frac{c^{n-1}(\beta \Gamma(n)+\Gamma(n+1))}{\beta+1}$
with parameters β and c estimated by known \tilde{d}_{n}
that possesses the Lipatov asymptotics $\tilde{d}_{n}^{\text {mod }} \sim c^{n} n!$ at $n \gg 1$.

FAPT(M) for $\Gamma_{H \rightarrow \bar{b} b}\left(m_{H}\right)$: Truncation errors

We define relative errors of series truncation at N th term:

$$
\Delta_{N}[L]=1-\widetilde{\mathcal{R}}_{\mathrm{S}}^{(2 ; N)}[L] / \widetilde{\mathcal{R}}_{\mathrm{S}}^{(2 ; \infty)}[L]
$$

FAPT(M) for $\Gamma_{H \rightarrow \bar{b} b}\left(m_{H}\right)$: Truncation errors

We define relative errors of series truncation at N th term:

$$
\Delta_{N}[L]=1-\widetilde{\mathcal{R}}_{\mathrm{S}}^{(2 ; N)}[L] / \widetilde{\mathcal{R}}_{\mathrm{S}}^{(2 ; \infty)}[L]
$$

FAPT(M) for $\Gamma_{H \rightarrow \bar{b} b}\left(m_{H}\right)$: Truncation errors

We define relative errors of series truncation at N th term:

$$
\Delta_{N}[\boldsymbol{L}]=1-\widetilde{\mathcal{R}}_{\mathrm{S}}^{(2 ; N)}[\boldsymbol{L}] / \widetilde{\mathcal{R}}_{\mathrm{S}}^{(2 ; \infty)}[\boldsymbol{L}]
$$

FAPT(M) for $\Gamma_{H \rightarrow \bar{b} b}\left(m_{H}\right)$: Truncation errors

Conclusion: If we need accuracy better than 0.5% only then we need to calculate the 5-th correction.

FAPT(M) for $\Gamma_{H \rightarrow \bar{b} b}\left(m_{H}\right)$: Truncation errors

Conclusion: If we need accuracy better than 0.5% only then we need to calculate the 5 -th correction.

But profit will be tiny - instead of 0.5% one'll obtain 0.3% !

FAPT(M) for $\Gamma_{H \rightarrow \bar{b} b}\left(m_{H}\right)$: Truncation errors

Conclusion: If we need accuracy of the order 0.5% then we need to take into account up to the 4-th correction.

Note: uncertainty due to $P(t)$-modelling is small $\lesssim 0.6 \%$.

FAPT(M) for $\Gamma_{H \rightarrow \bar{b} b}\left(m_{H}\right)$: Truncation errors

Conclusion: If we need accuracy of the order 1\% then we need to take into account up to the 3-rd correction - in agreement with Kataev\&Kim [0902.1442]. Note: RG-invariant mass uncertainty $\sim \mathbf{2 \%}$.

FAPT(M) for $\Gamma_{H \rightarrow \bar{b} b}\left(m_{H}\right)$: Truncation errors

Conclusion: If we need accuracy of the order 1\% then we need to take into account up to the 3-rd correction - in agreement with Kataev\&Kim [0902.1442]. Note: overall uncertainty $\sim 3 \%$.

Resummation for $\Gamma_{H \rightarrow \bar{b} b}\left(m_{H}\right)$: Loop orders

Comparison of 1- (upper strip) and 2- (lower strip) loop results. We observe a 5% reduction of the two-loop estimate.

CONCLUSIONS

- APT provides natural way to Minkowski region for coupling and related quantities.

CONCLUSIONS

- APT provides natural way to Minkowski region for coupling and related quantities.
- FAPT provides effective tool to apply APT approach for renormgroup improved perturbative amplitudes.

CONCLUSIONS

- APT provides natural way to Minkowski region for coupling and related quantities.
- FAPT provides effective tool to apply APT approach for renormgroup improved perturbative amplitudes.
- Both APT and FAPT produce finite resummed answers for perturbative quantities if one knows generating function $P(t)$ for PT coefficients.

CONCLUSIONS

- APT provides natural way to Minkowski region for coupling and related quantities.
- FAPT provides effective tool to apply APT approach for renormgroup improved perturbative amplitudes.
- Both APT and FAPT produce finite resummed answers for perturbative quantities if one knows generating function $P(t)$ for PT coefficients.
- Using quite simple model generating function $P(t)$ for Adler function $\mathcal{D}\left(Q^{2}\right)$ we show that already at N^{2} LO we have accuracy of the order 0.1\%...

CONCLUSIONS

- APT provides natural way to Minkowski region for coupling and related quantities.
- FAPT provides effective tool to apply APT approach for renormgroup improved perturbative amplitudes.
- Both APT and FAPT produce finite resummed answers for perturbative quantities if one knows generating function $P(t)$ for PT coefficients.
- Using quite simple model generating function $P(t)$ for Adler function $\mathcal{D}\left(Q^{2}\right)$ we show that already at N^{2} LO we have accuracy of the order 0.1\%...
- ... and for Higgs boson decay $H \rightarrow \bar{b} b$ at $\mathbf{N}^{3} \mathrm{LO}$ - of the order of:
1% - due to truncation error... .

CONCLUSIONS

- APT provides natural way to Minkowski region for coupling and related quantities.
- FAPT provides effective tool to apply APT approach for renormgroup improved perturbative amplitudes.
- Both APT and FAPT produce finite resummed answers for perturbative quantities if one knows generating function $P(t)$ for PT coefficients.
- Using quite simple model generating function $P(t)$ for Adler function $\mathcal{D}\left(Q^{2}\right)$ we show that already at N^{2} LO we have accuracy of the order 0.1\%...
- ... and for Higgs boson decay $H \rightarrow \bar{b} b$ at $\mathbf{N}^{3} \mathrm{LO}$ - of the order of:
1\% - due to truncation error ;
2\% - due to RG-invariant mass uncertainty. Agreement with Kataev\&Kim [PoS, ACAT08 (2009) 004].

