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Asymptotic Series

in
Perturbative QFT
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Strength and Weakness of Pert. QFT

A lot of successive pert. calculations in QM and QFT.
Practically, it is synonym of Quantum Theory.
Feynman diagrams became a symbol of QFT.

Nevertheless, power expansion of the quantum amplitude
C(α) is not convergent.

Feynman Series
∑∑∑

ckα
k is not Convergent !
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Strength and Weakness of Pert. QFT

A lot of successive pert. calculations in QM and QFT.
Practically, it is synonym of Quantum Theory.
Feynman diagrams became a symbol of QFT.

Nevertheless, power expansion of the quantum amplitude
C(α) is not convergent.

Feynman Series
∑∑∑

ckα
k is not Convergent !

Due to

Essential singularity at α = 0

Factorial growth of coefficients ck ∼ k!
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Series
∑∑∑

ckα
k is not Convergent!

Dyson argument (1952)

In QED, change α(= e2

4π
) → −α is equivalent to e → i e .

As S = T (ei
∫
Lint (x) dx) = T (ei e

∫
jµAµ dx) ,

this change destroys Unitarity .
Hence, in the complex α plane, the origin α = 0 can not
be a regular point.
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Series
∑∑∑

ckα
k is not Convergent!

Dyson argument (1952)

In QED, change α(= e2

4π
) → −α is equivalent to e → i e .

As S = T (ei
∫
Lint (x) dx) = T (ei e

∫
jµAµ dx) ,

this change destroys Unitarity .
Hence, in the complex α plane, the origin α = 0 can not
be a regular point.

The ill-posed Problem
Small parameter g at highest nonlinearity — indispensable
attribute of Quantum Perturbation:

First, one quantizes linear system (as a set of
oscillators).
Second, one takes into account non-linear term(s)
∼ g � 1 as a small perturbation.

Non-linearity change equation seriously — new solutions
appear .
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Singularity at g = 0, factorial growth ck ∼ k!

For illustration, take the 0-dim analog I(g) =

∞∫∫∫

−∞

e−x2−gx4

dx

Expanding it in power-in- g series:

I(g) ∼
∑∑∑

k=0

(−g)kIk with Ik =
Γ(2k + 1/2)

Γ(k + 1)
→ 2k k!
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Singularity at g = 0, factorial growth ck ∼ k!

For illustration, take the 0-dim analog I(g) =

∞∫∫∫

−∞

e−x2−gx4

dx

Expanding it in power-in- g series:

I(g) ∼
∑∑∑

k=0

(−g)kIk with Ik =
Γ(2k + 1/2)

Γ(k + 1)
→ 2k k!

Meanwhile, I(g) can be expressed via MacDonald function

I(g) =
1

√
2g

e1/8g K1/4

(
1

8g

)

with known analytic properties in complex g plane.
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Essential Singularity at g = 0

The I(g) is a 4-sheeted function of the complex variable g,
analytical in the whole complex plane
with a cut from the origin g = 0.

There it has an essential singularity e−1/8g and can be written
down in the Cauchy integral form

I(g) =
√
π − g

√
2π

∫∫∫ ∞

0

dγ exp(−1/4γ)

γ(g + γ)
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Essential Singularity at g = 0

The I(g) is a 4-sheeted function of the complex variable g,
analytical in the whole complex plane
with a cut from the origin g = 0.

There it has an essential singularity e−1/8g and can be written
down in the Cauchy integral form

I(g) =
√
π − g

√
2π

∫∫∫ ∞

0

dγ exp(−1/4γ)

γ(g + γ)

As far as the origin is not an analytical point, the power Taylor
series has no convergence domain for real positive g values —
in concert with factorial growth of power expansion.

Also, the power series is not valid for negative g values — in
accordance with Dyson’s reasoning.
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Asymptotic Series and ‘Practic. Convergence’
The Henry Poincaré (end of XIX) analysis of Asymptotic Series
(AS) can be summed as follows:
AS can be used for obtaining quantitative information on
expanded function.

fk

0 1 2 3 . . . K K + 1 k

The error of approximating
F (g) by first K terms of ex-
pansion, FK(g),

F (g) → FK(g) =
∑∑∑

k≤K

fk(g) is

equal to the last detained term
fK(g).

For k ≥ K + 1 truncation er-
ror starts to grow!
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Asymptotic Series and ‘Practic. Convergence’
The Henry Poincaré (end of XIX) analysis of Asymptotic Series
(AS) can be summed as follows:
AS can be used for obtaining quantitative information on
expanded function. The error of approximating F (g) by first K
terms of expansion, FK(g),

F (g) → FK(g) =
∑∑∑

k≤K

fk(g)

is equal to the last detained term fK(g).

For the power AS, fk(g) = fk g
k with factorial growth fk ∼ k!

absolute values of expansion terms fk(g) cease to diminish at
k ∼ 1/g .
This yields to the natural best possible accuracy of a given AS
(in contrast to convergent series! )
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Asymptotic Series and ‘Practic. Convergence’

I(g) =

∞∫∫∫

−∞

e−x2−gx4

dx ? = ?
∑∑∑

k≥0

Ik (−g)k

g K (−g)K IK (−g)K+1 IK+1 ∆KI(g)

0.07 7 −0.04(2%) +0.07(4.4%) 1.4%

0.07 9 −0.17(10%) +0.42(25%) 7%
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Asymptotic Series and ‘Practic. Convergence’

I(g) =

∞∫∫∫

−∞

e−x2−gx4

dx ? = ?
∑∑∑

k≥0

Ik (−g)k

g K (−g)K IK (−g)K+1 IK+1 ∆KI(g)

0.07 7 −0.04(2%) +0.07(4.4%) 1.4%

0.07 9 −0.17(10%) +0.42(25%) 7%

0.15 2 +0.13(8%) −0.16(10%) 4%

0.15 4 +0.30(18%) −0.72(44%) 12%
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Asymptotic Series and ‘Practic. Convergence’

I(g) =

∞∫∫∫

−∞

e−x2−gx4

dx ? = ?
∑∑∑

k≥0

Ik (−g)k

g K (−g)K IK (−g)K+1 IK+1 ∆KI(g)

0.07 7 −0.04(2%) +0.07(4.4%) 1.4%

0.07 9 −0.17(10%) +0.42(25%) 7%

0.15 2 +0.13(8%) −0.16(10%) 4%

0.15 4 +0.30(18%) −0.72(44%) 12%

Thus, one has K∗(g = 0.07) = 7 and K∗(g = 0.15) = 2 .
It is not possible at all to get the 1% accuracy at g = 0.15

for I(g).
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Analytic Perturbation Theory

in
QCD
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History of APT

Euclidean Minkowskian
Q2 = ~q2 − q20 ≥ 0 s = q20 − ~q2 ≥ 0

RG+Analyticity
ghost-free αQED(Q

2)

Bogoliubov et al. 1959

pQCD+RG: resum π2-terms
Arctg (s), UV Non-Power Series
Radyush.,Krasn. &Pivov. 1982

DispRel +renormalons
IR finite αeff

s (Q2)

Dokshitzer et al. 1995

pQCD+renormalons
Arctg (s) at LE region

Ball, Beneke & Braun 1994-95

RG+Analyticity
ghost-free αE(Q

2)

Shirkov & Solovtsov 1996

Integral Transformation :
R [αs] → Arctg (s)

Jones & Solovtsov 1995

Two-loop resummation in (F)APT – p. 12
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History of APT

Euclidean Minkowskian
Q2 = ~q2 − q20 ≥ 0 s = q20 − ~q2 ≥ 0

RG+Analyticity
ghost-free αE(Q

2)

Shirkov & Solovtsov 1996

Integral Transformation :
R [αs] → Arctg (s)

Jones & Solovtsov 1995

pQCD+RG+Analyticity

Transforms: D̂ = R̂−1

Couplings: αE(Q
2) ⇔ αM(s)

Milton & Solovtsov 1996–97

Analytic (global) pQCD +Analyticity
Global couplings: An(Q

2) ⇔ An(s)

Non-Power perturbative expansions
Shirkov 1999–2001
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History of F(ractional)APT

Euclidean Minkowskian
Q2 = ~q2 − q20 ≥ 0 s = q20 − ~q2 ≥ 0

Analytization of αν
s : Aν(Q

2) ⇔ Aν(s)

Analytization of αν
s × Log m: Lν,m(Q2) ⇔ Lν,m(s)

A. B. & Mikhailov & Stefanis 2005–2006

Resummation in 1-loop global FAPT
A. B. & Mikhailov 2008

Analytization of αν
s (1 + c1αs)

ν′

: Bν,ν′(Q2) ⇔ Bν,ν′(s)

A. B. 2008–2009

Resummation in 2-loop global FAPT
with 2-loop evolution factors Bν,ν′(Q2) ⇔ Bν,ν′(s)

A. B. & Mikhailov & Stefanis 2010
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PT in QCD

coupling αs(µ
2) = (4π/b0)as[L] with L = ln(µ2/Λ2)

RG equation
d as[L]

dL
= −a2

s − c1 a
3
s − . . .

1-loop solution generates Landau pole singularity:
as[L] = 1/L

2-loop solution generates square-root singularity:
as[L] ∼ 1/

√
L + c1lnc1

PT series: D[L] = 1+ d1as[L] + d2a
2
s[L] + . . .

RG evolution: B(Q2) =
[
Z(Q2)/Z(µ2)

]
B(µ2) reduces in

1-loop approximation to
Z ∼ aν [L]

∣∣∣
ν = ν0 ≡ γ0/(2b0)
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Basics of APT

Different effective couplings in Euclidean (S&S) and
Minkowskian (R&K&P) regions

Based on RG + Causality
⇓ ⇓

UV asymptotics Spectrality

Euclidean: −q2 = Q2, L = lnQ2/Λ2, {An(L)}n∈N

Minkowskian: q2 = s, Ls = ln s/Λ2, {An(Ls)}n∈N

PT
∑∑∑
m

dmam
s (Q2) ⇒

∑∑∑
m

dmAm(Q2) APT

Two-loop resummation in (F)APT – p. 16
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Spectral representation

By analytization we mean “Källen–Lehmann” representation

[
f(Q2)

]
an =

∫∫∫ ∞

0

ρf(σ)

σ + Q2 − iε
dσ

Then (note here pole remover ):

ρ(σ) =
1

L2
σ + π2

A1[L] =

∫∫∫ ∞

0

ρ(σ)

σ + Q2
dσ =

1

L
− 1

eL − 1

A1[Ls] =

∫∫∫ ∞

s

ρ(σ)

σ
dσ =

1

π
arccos

Ls√
π2 + L2

s

Two-loop resummation in (F)APT – p. 17
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Spectral representation

By analytization we mean “Källen–Lehmann” representation

[
f(Q2)

]
an =

∫∫∫ ∞

0

ρf(σ)

σ + Q2 − iε
dσ

with spectral density ρf(σ) = Im
[
f(−σ)

]
/π. Then:

An[L]=

∫∫∫ ∞

0

ρn(σ)

σ + Q2
dσ =

1

(n − 1)!

(
− d

dL

)n−1

A1[L]

An[Ls]=

∫∫∫ ∞

s

ρn(σ)

σ
dσ =

1

(n − 1)!

(
− d

dLs

)n−1

A1[Ls]

an
s [L] =

1

(n − 1)!

(
− d

dL

)n−1

as[L]
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APT graphics: Distorting mirror

First, couplings: A1(s) and A1(Q
2)

-4 -2 0 2 4

0.2

0.4

0.6

0.8

1

Q2 [GeV2]−s [GeV2]

A1(Q
2)

�

1(s)
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APT graphics: Distorting mirror

Second, square-images: A2(s) and A2(Q
2)

-10 -5 0 5 10

0.02

0.04

0.06

0.08

0.1

Q2 [GeV2]−s [GeV2]

A2(Q
2)

�

2(s)
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Non-power APT: Loop and RS Stability

Instead of universal power-in- αs expansion:

DPT(Q
2) = d0 + d1αs(Q

2) + d2α
2
s(Q

2) + d3α
3
s(Q

2)

in APTone should use non-power functional expansions:

DAPT(Q
2) = d0 + d1A1(Q

2) + d2A2(Q
2) + d3A3(Q

2) (*E)
RAPT(s) = d0 + d1A1(s) + d2A2(s) + d3A3(s) (*M)

Two-loop resummation in (F)APT – p. 20
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Non-power APT: Loop and RS Stability

Instead of universal power-in- αs expansion:

DPT(Q
2) = d0 + d1αs(Q

2) + d2α
2
s(Q

2) + d3α
3
s(Q

2)

in APTone should use non-power functional expansions:

DAPT(Q
2) = d0 + d1A1(Q

2) + d2A2(Q
2) + d3A3(Q

2) (*E)
RAPT(s) = d0 + d1A1(s) + d2A2(s) + d3A3(s) (*M)

This provides

Better loop convergence and practical RS independence
of observables;

The d3 terms in (*E) and (*M) contribute less than 5%.
Again the 2-loop ( N2LO) level is sufficient.
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Relative size of N kLO terms

Standard pQCD:

Observable Scale LO NLO N2LO N3LO ∆exp

Re+e−→hadrons 10 GeV 92% 7.6% 1.0% −0.6% 12–30%

Rτ in τ -decay 2 GeV 51% 27% 14% 8% 5%

Bjorken SR 2 GeV 56% 21% 12% 11% 6%

Two-loop resummation in (F)APT – p. 21
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Relative size of N kLO terms

Standard pQCD:

Observable Scale LO NLO N2LO N3LO ∆exp

Re+e−→hadrons 10 GeV 92% 7.6% 1.0% −0.6% 12–30%

Rτ in τ -decay 2 GeV 51% 27% 14% 8% 5%

Bjorken SR 2 GeV 56% 21% 12% 11% 6%

QCD APT:

Observable Scale LO NLO N2LO N3LO ∆exp

Re+e−→hadrons 10 GeV 92% 7% 0.9% 0.1% 12–30%
Rτ in τ -decay 2 GeV 90% 8.8% 1% 0.2% 5%
Bjorken SR 2 GeV 75% 21% 4.1% −0.1% 6%

Two-loop resummation in (F)APT – p. 21
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Need
to use

Fractional APT

Two-loop resummation in (F)APT – p. 22
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Problems of APT

In standard QCD PT we have not only power series
F [L] =

∑∑∑
m

fm am
s [L], but also:

RG-improvement to account for higher-orders →

Z[L] = exp

{∫∫∫ as[L] γ(a)

β(a)
da

}
1-loop−→ [as[L]]γ0/(2β0)

Factorization → [as[L]]nLm

Sudakov resummation → exp [−as[L] · f(x)]

New functions: (as)
ν , (as)

ν ln(as), (as)
ν Lm, e−as , . . .

Two-loop resummation in (F)APT – p. 23
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Constructing one-loop FAPT

In one-loop APT we have a very nice recurrence relation

An[L] =
1

(n − 1)!

(
− d

dL

)n−1

A1[L]

and the same in Minkowski domain

An[L] =
1

(n − 1)!

(
− d

dL

)n−1

A1[L] .

We can use it to construct FAPT.

Two-loop resummation in (F)APT – p. 24
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FAPT(E): Properties of Aν[L]

First, Euclidean coupling ( L = L(Q2)):

Aν [L] =
1

Lν
− F (e−L, 1 − ν)

Γ(ν)

Here F (z, ν) is reduced Lerch transcendent. function. It is
analytic function in ν. Properties:

A0[L] = 1;

A−m[L] = Lm for m ∈ N;

Am[L] = (−1)mAm[−L] for m ≥ 2 , m ∈ N;

Am[±∞] = 0 for m ≥ 2 , m ∈ N;

Two-loop resummation in (F)APT – p. 25
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FAPT(M): Properties of Aν[L]

Now, Minkowskian coupling ( L = L(s)):

Aν [L] =
sin

[
(ν − 1)arccos

(
L/

√
π2 + L2

)]

π(ν − 1) (π2 + L2)(ν−1)/2

Here we need only elementary functions. Properties:

A0[L] = 1;

A−1[L] = L;

A−2[L] = L2 − π2

3
, A−3[L] = L

(
L2 − π2

)
, . . . ;

Am[L] = (−1)mAm[−L] for m ≥ 2 , m ∈ N;

Am[±∞] = 0 for m ≥ 2 , m ∈ N

Two-loop resummation in (F)APT – p. 26
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FAPT(E): Graphics of Aν[L] vs. L

Aν [L] =
1

Lν
− F (e−L, 1 − ν)

Γ(ν)

Graphics for fractional ν ∈ [2,3] :

-15 -10 -5 0 5 10 15

0

0.02

0.04

0.06

0.08

0.1

L

A2.25(L)

A2.5(L)

A3(L)

A2(L)
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FAPT(M): Graphics of Aν[L] vs. L

Aν [L] =
sin

[
(ν − 1)arccos

(
L/

√
π2 + L2

)]

π(ν − 1) (π2 + L2)(ν−1)/2

Compare with graphics in Minkowskian region :

-15 -10 -5 0 5 10 15

0

0.02

0.04

0.06

0.08

0.1

L

�

2.25(L)
�

2.5(L)

�

3(L)

�
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FAPT(E): Comparing Aν with (A1)
ν

∆E(L,ν) =
Aν [L] −

(
A1[L]

)ν

Aν[L]

Graphics for fractional ν =0.62, 1.62 and 2.62:

2 4 6 8 10

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

L

∆E[L, ν]
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FAPT(M): Comparing Aν with (A1)
ν

∆M(L,ν) =
Aν [L] −

(
A1[L]

)ν

Aν [L]

Minkowskian graphics for ν =0.62, 1.62 and 2.62:

2 4 6 8 10

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

L

∆M[L, ν]
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Resummation
in

one-loop APT and FAPT
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Resummation in one-loop APT

Consider series D[L] = d0 +

∞∑∑∑

n=1

dnAn[L]

Two-loop resummation in (F)APT – p. 32
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Resummation in one-loop APT

Consider series D[L] = d0 +

∞∑∑∑

n=1

dnAn[L]

Let exist the generating function P (t) for coefficients:

dn = d1

∫∫∫ ∞

0
P (t) tn−1dt with

∫∫∫ ∞

0
P (t)dt = 1 .

We define a shorthand notation

〈〈f(t)〉〉P (t) ≡
∫∫∫ ∞

0
f(t)P (t)dt .

Then coefficients dn = d1 〈〈tn−1〉〉P (t).

Two-loop resummation in (F)APT – p. 32



Excited QCD 2011 @Les Houches (France)

Resummation in one-loop APT

Consider series D[L] = d0 +

∞∑∑∑

n=1

dnAn[L]

with coefficients dn = d1 〈〈tn−1〉〉P (t).
We have one-loop recurrence relation:

An+1[L] =
1

Γ(n + 1)

(
− d

dL

)n

A1[L] .
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Resummation in one-loop APT

Consider series D[L] = d0 +

∞∑∑∑

n=1

dnAn[L]

with coefficients dn = d1 〈〈tn−1〉〉P (t).
We have one-loop recurrence relation:

An+1[L] =
1

Γ(n + 1)

(
− d

dL

)n

A1[L] .

Result:
D[L] = d0 + d1 〈〈A1[L − t]〉〉P (t)
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Resummation in one-loop APT

Consider series D[L] = d0 +

∞∑∑∑

n=1

dnAn[L]

with coefficients dn = d1 〈〈tn−1〉〉P (t).
We have one-loop recurrence relation:

An+1[L] =
1

Γ(n + 1)

(
− d

dL

)n

A1[L] .

Result:
D[L] = d0 + d1 〈〈A1[L − t]〉〉P (t)

and for Minkowski region:

R[L] = d0 + d1 〈〈A1[L − t]〉〉P (t)

Two-loop resummation in (F)APT – p. 32



Excited QCD 2011 @Les Houches (France)

Resummation in one-loop FAPT

Consider seria Rν [L] = d0Aν [L] +

∞∑∑∑

n=1

dnAn+ν [L]

and Dν [L] = d0Aν [L] +

∞∑∑∑

n=1

dnAn+ν [L]

with coefficients dn = d1 〈〈tn−1〉〉P (t).

Result:

Rν [L] = d0Aν [L] + d1 〈〈A1+ν [L − t]〉〉Pν(t) ;

Dν [L] = d0Aν [L] + d1 〈〈A1+ν [L − t]〉〉Pν(t) .

where Pν(t) =

1∫∫∫

0

P

(
t

1 − z

)
ν zν−1 dz

1 − z
.
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Resummation
in

two-loop APT and FAPT
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Resummation in two-loop APT

Consider series S[L] =

∞∑∑∑

n=1

〈〈tn−1〉〉P (t)Fn[L].

Here Fn[L] = A(2)
n [L] or A

(2)
n [L].
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Resummation in two-loop APT

Consider series S[L] =

∞∑∑∑

n=1

〈〈tn−1〉〉P (t)Fn[L].

Here Fn[L] = A(2)
n [L] or A

(2)
n [L].

We have two-loop recurrence relation ( c1 = b1/b
2
0):

− 1

n

d

dL
Fn[L] = Fn+1[L] + c1Fn+2[L]
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Resummation in two-loop APT

Consider series S[L] =

∞∑∑∑

n=1

〈〈tn−1〉〉P (t)Fn[L].

Here Fn[L] = A(2)
n [L] or A

(2)
n [L].

We have two-loop recurrence relation ( c1 = b1/b
2
0):

− 1

n

d

dL
Fn[L] = Fn+1[L] + c1Fn+2[L]

Result ( τ(t) = t− c1ln(1 + t/c1)):

S[L] =
〈〈

c1 F1[L]+tF1[L−τ(t)]
c1+t

+ c1 t
c1+t

F2[L− τ(t)]
〉〉

P (t)

−
〈〈

c1 t
c1+t

∫∫∫ t
0

dt′

c1+t′
dF1[L+τ(t′)−τ(t)]

dL

〉〉

P (t)
.
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Resummation in two-loop (global) FAPT

Consider series Sν [L] =

∞∑∑∑

n=1

〈〈tn−1〉〉P (t)Fn+ν [L].

Here Fν [L] = A(2)
ν [L] or A

(2)
ν [L] (or ρ

(2)
ν [L] — for global).
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Resummation in two-loop (global) FAPT

Consider series Sν [L] =

∞∑∑∑

n=1

〈〈tn−1〉〉P (t)Fn+ν [L].

Here Fν [L] = A(2)
ν [L] or A

(2)
ν [L] (or ρ

(2)
ν [L] — for global).

We have two-loop recurrence relation ( c1 = b1/b
2
0):

− 1

n + ν

d

dL
Fn+ν [L] = Fn+1+ν [L] + c1Fn+2+ν [L] .
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Resummation in two-loop (global) FAPT

Consider series Sν [L] =

∞∑∑∑

n=1

〈〈tn−1〉〉P (t)Fn+ν [L].

Here Fν [L] = A(2)
ν [L] or A

(2)
ν [L] (or ρ

(2)
ν [L] — for global).

We have two-loop recurrence relation ( c1 = b1/b
2
0):

− 1

n + ν

d

dL
Fn+ν [L] = Fn+1+ν [L] + c1Fn+2+ν [L] .

Result ( τ(t) = t− c1ln(1 + t/c1)):

S[L] =

〈〈
F1+ν [L]− t2

c1 + t

∫∫∫ 1

0
zνdz Ḟ1+ν [L+ τ(t z)− τ(t)]

+
c1 t

c1 + t

{
F2+ν [L]−

∫∫∫ 1

0
dz

t2 zν+1

c1 + t z
Ḟ2+ν [L+ τ(t z)− τ(t)]

}〉〉

P (t)
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Resummation in two-loop (global) FAPT

Consider series Sν0,ν1
[L] =

∞∑∑∑

n=1

〈〈tn−1〉〉P (t)Fn+ν0,ν1
[L].

Here Fn+ν0,ν1
[L] = B(2)

n+ν0,ν1
[L] or B

(2)
n+ν0,ν1

[L]

(or ρ
(2)
n+ν0,ν1

[L] — for global),

where
Bν;ν1

[L] = AE,M

[
aν
(2)[L]

(
1 + c1 a(2)

)ν1 [L]
]

is the analytic image of the two-loop evolution factor.

We have constructed formulas of resummation for Sν0,ν1
[L]

as well.
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Resummation
for

Adler function D(Q2)
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Adler function D(Q2) in vector channel

Adler function D(Q2) can be expressed in QCD by means of
the correlator of quark vector currents

ΠV(Q
2) =

(4π)2

3q2
i

∫∫∫
dxeiqx〈0| T [ Jµ(x)J

µ(0) ] |0〉

in terms of discontinuity of its imaginary part

RV(s) =
1

π
Im ΠV(−s− iε) ,

so that

D(Q2) = Q2

∫∫∫ ∞

0

RV(σ)

(σ + Q2)2
dσ .
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APT analysis of D(Q2) and RV(s)

QCD PT gives us

D(Q2) = 1+
∑∑∑

m>0

dm

πm

(
αs(Q

2)
)m

.

Two-loop resummation in (F)APT – p. 40



Excited QCD 2011 @Les Houches (France)

APT analysis of D(Q2) and RV(s)

QCD PT gives us

D(Q2) = 1+
∑∑∑

m>0

dm

πm

(
αs(Q

2)
)m

.

In APT(E) we obtain

DN(Q2) = 1+

N∑∑∑

m>0

dm

πm
Aglob

m (Q2)
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APT analysis of D(Q2) and RV(s)

QCD PT gives us

D(Q2) = 1+
∑∑∑

m>0

dm

πm

(
αs(Q

2)
)m

.

In APT(E) we obtain

DN(Q2) = 1+

N∑∑∑

m>0

dm

πm
Aglob

m (Q2)

and in APT(M)

RV;N(s) = 1+

N∑∑∑

m>0

dm

πm
A

glob
m (s)
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Model for perturbative coefficients

Coefficients dm of the PT series:

Model d1 d2 d3 d4 d5

pQCD with Nf = 4 1 1.52 2.59 —
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Model for perturbative coefficients

Coefficients dm of the PT series:

Model d1 d2 d3 d4 d5

pQCD with Nf = 4 1 1.52 2.59 —

c = 3.467, β = 1.325 1 1.50 2.62

We use model d̃mod
n =

cn−1(βn+1 − n)

β2 − 1
Γ(n)

with parameters β and c estimated by known d̃n

that possesses the Lipatov asymptotics d̃mod
n ∼ bnn! at n � 1.
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Model for perturbative coefficients

Coefficients dm of the PT series:

Model d1 d2 d3 d4 d5

pQCD with Nf = 4 1 1.52 2.59 27.4 —

c = 3.467, β = 1.325 1 1.50 2.62 27.8

We use model d̃mod
n =

cn−1(βn+1 − n)

β2 − 1
Γ(n)

with parameters β and c estimated by known d̃n

that possesses the Lipatov asymptotics d̃mod
n ∼ bnn! at n � 1.
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Model for perturbative coefficients

Coefficients dm of the PT series:

Model d1 d2 d3 d4 d5

pQCD with Nf = 4 1 1.52 2.59 27.4 —

c = 3.467, β = 1.325 1 1.50 2.62 27.8

c = 3.456, β = 1.325 1 1.49 2.60 27.5

We use model d̃mod
n =

cn−1(βn+1 − n)

β2 − 1
Γ(n)

with parameters β and c estimated by known d̃n

that possesses the Lipatov asymptotics d̃mod
n ∼ bnn! at n � 1.
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Model for perturbative coefficients

Coefficients dm of the PT series:

Model d1 d2 d3 d4 d5

pQCD with Nf = 4 1 1.52 2.59 27.4 —

c = 3.467, β = 1.325 1 1.50 2.62 27.8 1888

c = 3.456, β = 1.325 1 1.49 2.60 27.5 1865

We use model d̃mod
n =

cn−1(βn+1 − n)

β2 − 1
Γ(n)

with parameters β and c estimated by known d̃n

that possesses the Lipatov asymptotics d̃mod
n ∼ bnn! at n � 1.
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Model for perturbative coefficients

Coefficients dm of the PT series:

Model d1 d2 d3 d4 d5

pQCD with Nf = 4 1 1.52 2.59 27.4 —

c = 3.467, β = 1.325 1 1.50 2.62 27.8 1888

c = 3.456, β = 1.325 1 1.49 2.60 27.5 1865

“INNA” model 1 1.44 [3,9] [20,48] [674,2786]

We use model d̃mod
n =

cn−1(βn+1 − n)

β2 − 1
Γ(n)

with parameters β and c estimated by known d̃n

that possesses the Lipatov asymptotics d̃mod
n ∼ bnn! at n � 1.

Two-loop resummation in (F)APT – p. 41
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APT(E) for D(Q2): Truncation errors

We define relative errors of series truncation at N th term:

∆V
N [L] = 1−DN [L]/D∞[L]

2.5 5 7.5 10 12.5 15 17.5 20

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Q2 [GeV2]

∆V
1

∆V
2
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APT(E) for D(Q2): Truncation errors

Conclusion: The best accuracy (better than 0.1%) is
achieved for N2LO approximation.

2.5 5 7.5 10 12.5 15 17.5 20
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0.004
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Q2 [GeV2]
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APT(E) for D(Q2): Truncation errors

Conclusion: If we add more terms N3LO — truncation error
increases.

2.5 5 7.5 10 12.5 15 17.5 20
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∆V
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∆V
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∆V
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APT(E) for D(Q2): Truncation errors

Conclusion: The best accuracy (better than 0.1%) is
achieved for N2LO approximation.

2.5 5 7.5 10 12.5 15 17.5 20

1.08

1.09

1.1

1.11

1.12

Q2 [GeV2]

D(Q2) ≈ D2(Q
2)

D1(Q
2)
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APT(E) for D(Q2): Errors of modelling P (t)

We use model dmod
n =

cn−1(βn+1 − n)

β2 − 1
Γ(n)

with parameters β = 1.325 and c = 3.456 estimated by known
d̃n and with use of Lipatov asymptotics.

We apply it to resum APT series and obtain D(Q2).
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APT(E) for D(Q2): Errors of modelling P (t)

We use model dmod
n =

cn−1(βn+1 − n)

β2 − 1
Γ(n)

with parameters β = 1.325 and c = 3.456 estimated by known
d̃n and with use of Lipatov asymptotics.

We apply it to resum APT series and obtain D(Q2).

We deform our model for dn by using coefficients
βNNA = 1.322 and cNNA = 3.885

that deforms d4 = 27.5 → dNNA
4 = 20.4

Two-loop resummation in (F)APT – p. 43



Excited QCD 2011 @Les Houches (France)

APT(E) for D(Q2): Errors of modelling P (t)

We use model dmod
n =

cn−1(βn+1 − n)

β2 − 1
Γ(n)

with parameters β = 1.325 and c = 3.456 estimated by known
d̃n and with use of Lipatov asymptotics.

We apply it to resum APT series and obtain D(Q2).

We deform our model for dn by using coefficients
βNNA = 1.322 and cNNA = 3.885

that deforms d4 = 27.5 → dNNA
4 = 20.4

We apply it to resum APT series and obtain DNNA(Q
2).
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APT(E) for D(Q2): Errors of modelling P (t)

Conclusion: The result of resummation is stable to the vari-
ations of higher-order coefficients: deviation is of the ord er
of 0.1%.
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Higgs boson

decay

H0 → bb̄

Two-loop resummation in (F)APT – p. 44



Excited QCD 2011 @Les Houches (France)

Higgs boson decay into bb̄-pair

This decay can be expressed in QCD by means of the
correlator of quark scalar currents JS(x) = : b̄(x)b(x):

Π(Q2) = (4π)2i

∫∫∫
dxeiqx〈0| T [ JS(x)JS(0) ] |0〉
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Higgs boson decay into bb̄-pair

This decay can be expressed in QCD by means of the
correlator of quark scalar currents JS(x) = : b̄(x)b(x):

Π(Q2) = (4π)2i

∫∫∫
dxeiqx〈0| T [ JS(x)JS(0) ] |0〉

in terms of discontinuity of its imaginary part

RS(s) = Im Π(−s− iε)/(2π s) ,

so that

ΓH→bb(MH) =
GF

4
√
2π

MH m2
b(MH)RS(s = M2

H) .
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FAPT(M) analysis of RS

Running mass m(Q2) is described by the RG equation

m2(Q2) = m̂2αν0

s (Q2)

[
1 +

c1b0αs(Q
2)

4π2

]ν1

.

with RG-invariant mass m̂2 (for b-quark m̂b ≈ 8.53 GeV) and
ν0 = 1.04, ν1 = 1.86.
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FAPT(M) analysis of RS

Running mass m(Q2) is described by the RG equation

m2(Q2) = m̂2αν0

s (Q2)

[
1 +

c1b0αs(Q
2)

4π2

]ν1

.

with RG-invariant mass m̂2 (for b-quark m̂b ≈ 8.53 GeV) and
ν0 = 1.04, ν1 = 1.86. This gives us

[
3 m̂2

b

]−1
D̃S(Q

2) = αν0

s (Q2) +
∑∑∑

m>0

dm

πm
αm+ν0

s (Q2) .
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FAPT(M) analysis of RS

Running mass m(Q2) is described by the RG equation

m2(Q2) = m̂2αν0

s (Q2)

[
1 +

c1b0αs(Q
2)

4π2

]ν1

.

with RG-invariant mass m̂2 (for b-quark m̂b ≈ 8.53 GeV) and
ν0 = 1.04, ν1 = 1.86. This gives us

[
3 m̂2

b

]−1
D̃S(Q

2) = αν0

s (Q2) +
∑∑∑

m>0

dm

πm
αm+ν0

s (Q2) .

In 1-loop FAPT(M) we obtain

R̃(1);N

S [L] = 3m̂2

[
A

(1);glob
ν0

[L] +

N∑∑∑

m>0

dm

πm
A

(1);glob
m+ν0

[L]

]
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FAPT(M) analysis of RS

Running mass m(Q2) is described by the RG equation

m2(Q2) = m̂2αν0

s (Q2)

[
1 +

c1b0αs(Q
2)

4π2

]ν1

.

with RG-invariant mass m̂2 (for b-quark m̂b ≈ 8.53 GeV) and
ν0 = 1.04, ν1 = 1.86. This gives us

[
3 m̂2

b

]−1
D̃S(Q

2) = αν0

s (Q2) +
∑∑∑

m>0

dm

πm
αm+ν0

s (Q2) .

In 2-loop FAPT(M) we obtain

R̃(2);N

S [L] = 3m̂2

[
B

(2);glob
ν0,ν1

[L] +

N∑∑∑

m>0

dm

πm
B

(2);glob
m+ν0,ν1

[L]

]
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Model for perturbative coefficients

Coefficients of our series, d̃m = dm/d1, with d1 = 17/3:

Model d̃1 d̃2 d̃3 d̃4 d̃5

pQCD 1 7.42 62.3 620 —
c = 2.5, β = −0.48 1 7.42 62.3 662 —
c = 2.4, β = −0.52 1 7.50 61.1 625 7826

“PMS” model — — 64.8 547 7782

We use model d̃mod
n =

cn−1(β Γ(n) + Γ(n + 1))

β + 1

with parameters β and c estimated by known d̃n

that possesses the Lipatov asymptotics d̃mod
n ∼ cnn! at n � 1.

Two-loop resummation in (F)APT – p. 47



Excited QCD 2011 @Les Houches (France)

FAPT(M) for ΓH→b̄b(mH): Truncation errors

We define relative errors of series truncation at N th term:

∆N [L] = 1− R̃(2;N)

S [L]/R̃(2;∞)

S [L]
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FAPT(M) for ΓH→b̄b(mH): Truncation errors

We define relative errors of series truncation at N th term:

∆N [L] = 1− R̃(2;N)

S [L]/R̃(2;∞)

S [L]
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FAPT(M) for ΓH→b̄b(mH): Truncation errors

We define relative errors of series truncation at N th term:

∆N [L] = 1− R̃(2;N)

S [L]/R̃(2;∞)

S [L]

10 10.5 11 11.5 12

0.005

0.01

0.015
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0.025

0.03

0.035

L

∆2[L]

∆3[L]

∆4[L]

∆5[L]
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FAPT(M) for ΓH→b̄b(mH): Truncation errors

Conclusion: If we need accuracy better than 0.5% —
only then we need to calculate the 5-th correction.
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FAPT(M) for ΓH→b̄b(mH): Truncation errors

Conclusion: If we need accuracy better than 0.5% —
only then we need to calculate the 5-th correction.

But profit will be tiny — instead of 0.5% one’ll obtain 0.3%!
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FAPT(M) for ΓH→b̄b(mH): Truncation errors

Conclusion: If we need accuracy of the order 0.5% —
then we need to take into account up to the 4-th correction.

Note: uncertainty due to P (t)-modelling is small ... 0.6%.
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FAPT(M) for ΓH→b̄b(mH): Truncation errors

Conclusion: If we need accuracy of the order 1% —
then we need to take into account up to the 3-rd correction
— in agreement with Kataev&Kim [0902.1442] .
Note: RG-invariant mass uncertainty ∼ 2%.
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FAPT(M) for ΓH→b̄b(mH): Truncation errors

Conclusion: If we need accuracy of the order 1% —
then we need to take into account up to the 3-rd correction
— in agreement with Kataev&Kim [0902.1442] .
Note: overall uncertainty ∼ 3% .
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Resummation for ΓH→b̄b(mH): Loop orders

Comparison of 1- ( upper strip ) and 2- ( lower strip ) loop results.
We observe a 5% reduction of the two-loop estimate.
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CONCLUSIONS

APT provides natural way to Minkowski region for
coupling and related quantities.
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CONCLUSIONS

APT provides natural way to Minkowski region for
coupling and related quantities.

FAPT provides effective tool to apply APT approach for
renormgroup improved perturbative amplitudes.

Both APT and FAPT produce finite resummed answers for
perturbative quantities if one knows generating function
P (t) for PT coefficients.

Using quite simple model generating function P (t) for
Adler function D(Q2) we show that already at N2LO we
have accuracy of the order 0.1%...
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renormgroup improved perturbative amplitudes.

Both APT and FAPT produce finite resummed answers for
perturbative quantities if one knows generating function
P (t) for PT coefficients.

Using quite simple model generating function P (t) for
Adler function D(Q2) we show that already at N2LO we
have accuracy of the order 0.1%...

... and for Higgs boson decay H → bb at N3LO — of the
order of:
1% — due to truncation error... .
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CONCLUSIONS

APT provides natural way to Minkowski region for
coupling and related quantities.

FAPT provides effective tool to apply APT approach for
renormgroup improved perturbative amplitudes.

Both APT and FAPT produce finite resummed answers for
perturbative quantities if one knows generating function
P (t) for PT coefficients.

Using quite simple model generating function P (t) for
Adler function D(Q2) we show that already at N2LO we
have accuracy of the order 0.1%...

... and for Higgs boson decay H → bb at N3LO — of the
order of:
1% — due to truncation error ;
2% — due to RG-invariant mass uncertainty.
Agreement with Kataev&Kim [PoS, ACAT08 (2009) 004] .
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