Heavy Flavour at RHIC

Sonia Kabana

SUBATECH and University of Nantes, France

International Workshop on Excited QCD, 21-25 February 2011, Les Houches, France

Outline

- 1. Introduction
- 2. Open heavy flavour

Charm meson reconstruction and non photonic electrons

R(AA) and elliptic flow

Disentangling Beauty and Charm

3. Hidden heavy flavour

J/Psi

Y

4. Conclusions

Introduction Relativistic Heavy Ion Collider

RHIC site in BNL on Long Island, USA

The STAR Detector

Subatech

Probing of Dense Matter with jets

p+p Collision

Au+Au Collision

Average number of NN collisions in AA collision

- No "Effect" of nuclear matter:
 - $R_{AA} = 1$ at higher momenta where hard processes dominate
- Suppression: R_{AA} < 1
- Partons interact with medium gluon radiation/energy loss
- measuring high-p_T particles in Au+Au vs. p+p to extract the properties of medium

Heavy quarks as a probe

- p+p data:
- \rightarrow baseline of heavy ion measurements
- → test of pQCD calculations

 Due to their large mass heavy quarks are primarily produced by gluon fusion in early stage of collision
→ production rates calculable by pQCD
M. Gyulassy and Z. Lin, PRC 51, 2177 (1995)

•heavy ion data:

Study energy loss of heavy quarks
→ independent way to extract properties of the medium

5

10

15

E [GeV]

20

25

-> Flavour dependence of jet quenching

Quarkonia

Quarkonia: Thermometer of QGP through hierarchy of T(dissociation)

Many effects play a role: dissociation in QGP - cold matter absorbtion recombination/coalescence from c, cbar - heavy resonances ...

Open Heavy Flavour

Charm meson reconstruction and non photonic electrons

Open heavy flavor

Direct: reconstruction of all decay products $D^0 \rightarrow K^- \pi^+, \overline{D}^0 \rightarrow K^+ \pi^-,$ $B.R. = 3.80 \pm 0.07\%$ STAR

Indirect: charm and beauty via electrons

 $\begin{array}{l} c \rightarrow e^{+} + anything \quad (B.R.: 9.6\%) \\ b \rightarrow e^{+} + anything \quad (B.R.: 10.9\%) \\ issue of photonic background \\ \quad \ \ charm \ (and \ beauty) \ via \ muons \\ c \rightarrow \mu + + anything \ (B.R.: 9.5\%) \end{array}$

STAR and PHENIX

See talk by S. Margetis on open charm

direct reconstruction, eQCD2011

Direct D-meson reconstruction at STAR

• $K\pi$ invariant mass distribution in d+Au, Au+Au minbias, Cu+Cu minbias at 200 GeV collisions

Measurement of charm STAR

STAR charm measurement:

- D⁰ in d+Au, Au+Au, Cu+Cu 200GeV
- + low \textbf{p}_{T} muon in Au+Au 200GeV
- non-photonic electrons in p+p, d+Au, Cu+Cu, Au+Au 200GeV
- 90% of charm total kinematic range covered

Measurement of charm PHENIX

Non photonic electrons PHENIX, arXiv:1005.1627

Open heavy flavour from di-electron spectrum (PHENIX)

measured correlated e-e+ pairs

Independent cross-check for calculation charm and bottom quark cross sections:

 $\sigma_{cc} = 544 \pm 39 \text{(stat)} \pm 142 \text{(sys)} \\ \pm 200 \text{(model) mb}$

 σ_{bb} = 3.9 ± 2.5(stat) ± ³₂ (sys)

Good agreement with single heavy flavor electron results.

I. Garishvili, PHENIX, Purdue workshop Jan 2011

Open Charm Cross-section and STAR-PHENIX discrepancy

• Discrepancy between extracted total cross-section from STAR and PHENIX

Resolution of the high pT NPE STAR-PHENIX discrepancy

Discrepancy : STAR Coll, PRL98 (2007) 192301 (old result, now updated --> see right plot)

Resolution: STAR 2011 update of PRL98 (2007) 192301 (blue) and new data (red)

* STAR and PHENIX NPE results are consistent with FONLL in 200GeV p+p collisions Subotech EQCD2011, 21-25 Feb. 2011, Sonia Kabana 17

R(AA) and elliptic flow

Large suppression of Non-Photonic-Electrons

A Adare et al, PHENIX, arXiv:1005.1627

Thick dashed line: BDMPS (D,B)->e Upper band: DGLV (D<B)->e radiative dedx Lower band: DGLV collisional+rad. dedx Thin dashed curves: DGLV only D->e+X

NPE R_AA puzzle: Larger suppression (c+b) than expected for radiative dedx/dead cone effect

Adding collisional dedx improves agreement

Van Hees et al PRL100 (2008) 192301

Dedx by elastic scattering mediated by resonance excitation of D and Blike states in the medium

Describes ~ both R_AA, v2(NPE)

R_AA(NPE) and v2(NPE)

Collisional dedx+

running coupling constant,

EQCD2011, 21-25 Feb. 2011, Sonia Kabana

Greco et al: c flow assumes v2(c)=v2(u,d)

no c flow assumes v2(c)=0

Zhang et al: HIJING+(parton cascade)+(hadron cascade) for two charm quark scattering cross sections

Van Hees et al: resonant interaction in strongly interacting QGP and parton coalescence of c,b --> Reduction or flatening of v2 at high pT requires b contribution

Resonances required at low pT

Recent update of STAR R(AA) NPE Au+Au 200 GeV (2007 paper erratum)

Physics message remains the same as in original publication

Elliptic flow v2(NPE)

A Adare et al, PHENIX, arXiv:1005.1627

R_AA(NPE) suppression and sizable v2(NPE) :

Heavy quarks lose energy in the medium, while acquiring a substantial component of the medium's collective flow

Compare v2(NPE) to the expected v2(D) from coalescence production.

pT< 2 GeV to be sensitive only to c and not b

chi² for v2(c) vs v2(u)

both normalized to measured v2(u)

calculated from measured v2(light quarks) and v2(NPE)

 \rightarrow v2(c) ~ v2(u)

 \rightarrow the coalescence assumption for D seems supported

 \rightarrow indicates common quark collectivity

Disentangling Beauty and Charm

Beauty to charm ratio in p+p collisions

GeV C2

-

PHENIX:

Reconstruction of e-K (K unidentified) invariant mass

Fit with PYTHIA simulation varying the b/(c+b) ratio

Phenix Coll, PRL103, 082002, 2009.

STAR Coll. PRL105, 202301, 2010.

STAR and PHENIX :

e-hadron azimuthal correlations -->

different widths for NPE coming from Charm and Beauty decays

Fit with PYTHIA simulation varying the b/(c+b) ratio

STAR : Charm and beauty from e-D0 azimuthal correlations

See talk by W. Borowski, eQCD2011

Beauty contribution to electron spectrum in p+p at 200 GeV

* The beauty component in NPE in p+p collisions (r_B) enhances with pT and becomes comparable to Charm at pT~5 GeV.

- * PHENIX and STAR data on B/(B+C) ratio vs pT, agree within errors
- STAR results from e-h and e-D0 correlations agree within errors
 - --> 3 diferent methods give consistent results on B/(B+C) vs pT
- * Data agree with FONLL predictions.

ubatech

Beauty and Charm nuclear modification factors in Au+Au collisions at 200 GeV

M Aggarwal et al, STAR, arXiv:1007.1200

Confidence level contours for the nuclear modification factor R AA for beauty and charm are determined from R AA of NPE (Phenix) and the B/(C+B) measurement from e-h and e-D0 correlations for pT>5 GeV (STAR).

Models

I: (M.Djordjevic et al, PLB 632, 81, 2006) radiative energy loss with initial g density dN/dy(g)=1000. This model is excluded by the data.

II: (Adil, Vitev, PLB649, 139, 2007) collisional dissociation of D and B mesons in the QGP causes suppression of R AA.

III: (van Hees et al, PRC73, 034913, 2006) Large elastic scattering cross section associated with resonance states of D and B mesons in the QGP.

Beauty is also suppressed in Au+Au collisions. R AA of e from Beauty is < 1 even if R AA of e from Charm is zero.

Beauty and Charm are both suppressed in Au+Au collisions

-> Measurements of R AA of B and C separately in Au+Au are crucial I CN. LVIII, UVIIIA INANAHA

C and B cross sections in p+p collisions at 200 GeV at high pT (STAR 2011)

STAR Coll., arXiv:1102.2611 (Feb 2011)

Joatech

--> Using the measured ratio e(B)/NPE, cross sections for B and C for 3 GeV <pT<10 GeV in p+p collisions at 200 GeV have been extracted

Hidden Heavy Flavour

The "RHIC J/ ψ puzzle" : y-dependence

- Suppression doesn't increase with local density
 - R_{AA} (|y|<0.35) > R_{AA} (1.2<|y|<2.2)
 - R_{AA} (RHIC, |y|<0.35) ≈ R_{AA} (SPS)

R_AA is < 1 also for low N_part where J/Psi (meas./expect) of NA50 was = 1

--> need to correct R_AA for cold nuclear matter effect like done by NA50 with p+A

RHIC J/Psi "y"-puzzle

ubatech

T Frawley, (PHENIX) workshop ECT*,Trento, May 24-29 2009

Linden-Levy, (PHENIX), WWND2011 and ICHEO2010

Analysis of d+Au data of run 2009 in terms of sigma_abs to account for all nuclear matter effects

(recent paper PHENIX, arXiv:1010.1246)

→sigma_abs increases from midrapidity to forward rapidity

→ Agreement of J/Psi R_AA/R_AA(Cold Nuclear Matter) at y=0 and y=1.75

The J/Psi RHIC-SPS-comparison -puzzle

J/ ψ suppression at low p_T maybe from excited stats (ψ ', χ_c) F. Karsch, D. Kharzeev and H. Satz, PLB 637, 75 (2006); B. Alessandro et al. (NA50), Eur. Phys. J. C 39 (2005) 335; R. Arnaldi et al. (NA60), Quark Matter 2005; PHENIX: Phys.Rev.Lett.98, 232301,2007. 60% of all J/Psi comes from direct J/ ψ . While 30% of all J/Psi come from χ_c and 10% ψ ' χ_c and ψ ' T(dissociation) ~Tc, while J/Psi T(dissociation)~ 2.1 T_c

--> suppression of J/Psi observed, maybe due to χ_{c} and ψ^{\prime} dissociation

--> directly produced J/Psi may not be suppressed at all at RHIC

--> expect more suppression at LHC due to direct J/Psi dissociation

(but must account for c,cbar coalescence-> J/Psi)

J/Psi assumed completely suppressed and resurrected by c,cbar "coalescence"

A Andronic et al, Phys Lett B 652 2007, p 259

-J/Psi is assumed to be completely suppressed at RHIC

- R_AA(J/Psi) is then estimated for the process of c, cbar coalescence to J/Psi, within a thermal model

→This estimate agrees with R_AA(J/Psi) at RHIC

→ It predicts a great enhancement of R_AA(J/Psi) at LHC

J/Psi in d+Au at 200 GeV (PHENIX, oct 2010)

PHENIX, arXiv:1010.1246

J/ψ in Au+Au and Cu+Cu 200 GeV pT dependence

R_{AA}(Cu+Cu, p_T>5 GeV/c) = 1.4± 0.4±0.2

• Cu+Cu: Consistent with no suppression at high p_T

A. Adil and I. Vitev, Phys.Lett. B649, 139 (2007),S. Wicks et al., Nucl. Phys. A784, 426 (2007)

- Cu+Cu: Inconsistent with AdS/CFT+Hydro and "heavy resonance" models
- •Two component model+J/ ψ form. time+ B feed down describes the trend well

R. Rapp, X. Zhao, nucl-th/0806.1239

J/Psi in Au+Au at 39 GeV (STAR)

Z Tang, STAR, Nucl Phys A (2010) 1-4, arXiv:1012.0233

B --> J/Psi

D Prindle et al, STAR, ICPAQGP, Goa, India 2010

$(B \rightarrow J/\psi) I$ (inclusive J/ψ)

B contribution to J/ψ is the same at 200 GeV and 7 TeV

ubatech EQC

STAR Y measurements in p+p

Υ signal in d+Au 200 GeV collisions

• Strong signal (8σ significance) extracted

Joatech

 $R_{dAu} = 0.98 \pm 0.32 \text{ (stat.)} \pm 0.28 \text{ (sys.)}$

• Consistent with N_{bin} scaling of cross-section p+p \rightarrow d+Au 200GeV

Upsilons in p+p

Upsilons Suppressed in Au+Au - PHENIX

Conclusions

* Large R_AA and flow of NP electrons in central Au+Au collisions at 200 GeV Heavy quarks lose energy in the medium, while acquiring a substantial component of the medium's collective flow

 * e-h, e-D0 correlations : In p+p at 200 GeV c~b contribution at pT ~5 GeV c/b contribution in p+p is consistent with FONLL b is also suppressed in Au+Au at 200 GeV

* J/Psi y-puzzle can be possibly attributed to cold nuclear matter absorbtion

* J/Psi sqrt(s) dependence from SPS to RHIC : remains to be understood

Chi_c, psi' suppressed, direct J/Psi not suppressed at RHIC ?

Direct J/Psi also suppressed at RHIC and produced through c,cbar coalescence?

* High pT J/Psi is consistent with no suppression (Cu+Cu 200 GeV)

* Y measured in p+p, d+Au, Au+Au

Outlook

•2009/2010 STAR run with full TOF , low material -> improve c,b ID

- D mesons with microvertexing cross section coming soon
- Phenix : new silicon tracker commissioned right now

• STAR : plans for new silicon vertex tracker to measure Heavy Flavour with great accuracy (HFT)

--> Heavy Flavour substantial element of RHIC plans

STAR Heavy Flavour Tracker : ~2014

Thank you very much