Exclusive production /⁺/⁻ Results Inclusive diffractive production /⁺/⁻ Results Summary 0000 0000 00 0000 0000

Exclusive and diffractive production of lepton pairs in *pp* collision at high energy

Gabriela Kubasiak

Institute of Nuclear Physics (PAN), Cracow, Poland

in collaboration with A. Szczurek and R. Maciuła

Exited QCD 2011,20-25 February, Les Houches

Exclusive production I ⁺ I ⁻	Results	Inclusive diffractive production (⁺) ⁻	Results	Summary
0000	00000	00	0000	
Plan of the talk				

Exclusive production I^+I^-

- non-QED, $pp \rightarrow (\gamma \mathbf{P}) \rightarrow pl^+l^-p$ • QED, $pp \rightarrow (\gamma\gamma) \rightarrow pl^+l^-p$
- 2 Results

3 Inclusive diffractive production I^+I^-

- Single diffraction
- Double diffraction

Exclusive production I^+I^-	Results 00000	Inclusive diffractive production I^+I^-	Results 0000	Summary
Introduction				

 Measuring absolutely normalized cross sections at the LHC is of great importance for high-energy physics community.

Exclusive production I ⁺ I ⁻	Results	Inclusive diffractive production (⁺) ⁻	Results	Summary
0000	00000	00	0000	
Introduction				

- Measuring absolutely normalized cross sections at the LHC is of great importance for high-energy physics community.
- The QED process $pp \rightarrow pl^+l^-p$ via $\gamma\gamma$ fusion is often discussed as a process which can be used for measuring the luminosity at the LHC.

(日)

Exclusive production <i>I⁺I⁻</i>	Results	Inclusive diffractive production / ⁺ / ⁻	Results	Summary
0000	00000	00	0000	
Introduction				

- Measuring absolutely normalized cross sections at the LHC is of great importance for high-energy physics community.
- The QED process $pp \rightarrow pl^+l^-p$ via $\gamma\gamma$ fusion is often discussed as a process which can be used for measuring the luminosity at the LHC.
- It is therefore important to estimate non-QED contributions to exclusive l^+l^- production.

Exclusive production I^+I^-	Results 00000	Inclusive diffractive production I^+I^-	Results 0000	Summary	
non-QED, $pp ightarrow (\gamma \mathbf{P}) ightarrow pl^+ l^- p$					
Amplitude for $u \to l^+ l^- p$					

・ロット 小型マネ 山マ

Exclusive production I^+I^-	Results 00000	Inclusive diffractive production <i>I⁺I⁻</i> 00	Results 0000	Summary
non-QED, $pp ightarrow (\gamma {f P}) ightarrow pl^+ l^- p$				
Amplitude for γ	$p \rightarrow l^+ l^-$	p		

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Exclusive production I^+I^-	Results 00000	Inclusive diffractive production I ⁺ I ⁻ 00	Results 0000	Summary
non-QED, $pp ightarrow (\gamma \mathbf{P}) ightarrow pl^+ l^- p$				
Amplitude for γ	$ ho ightarrow I^+I^-$	p		

ヘロト ヘ部ト ヘヨト ヘヨト

Exclusive production I^+I^-	Results	Inclusive diffractive production I^+I^-	Results	Summary
0000				
non-QED, $pp ightarrow (\gamma \mathbf{P}) ightarrow pl^+ l^- p$				
Amplitude for 1	$l^+l \leftarrow \alpha v$	_a		

- $\gamma \rightarrow \gamma^*$ Time-like Compton Scatering (TCS)
- exchange of off-diagonal QCD gluon ladder
- W. Schafer, G. Slipek, A. Szczurek Phys. Lett. B 688 (2010) 185-191

Exclusive production I^+I^-	Results	Inclusive diffractive production I^+I^-	Results	Summary
0000				
non-QED, $pp ightarrow (\gamma \mathbf{P}) ightarrow pl^+ l^- p$				
Amplitude for γ	$p \rightarrow l^+ l^-$	p		

- $\gamma \rightarrow \gamma^*$ Time-like Compton Scatering (TCS)
- exchange of off-diagonal QCD gluon ladder
- W. Schafer, G. Slipek, A. Szczurek Phys. Lett. B 688 (2010) 185-191
- the imaginary part of the forward TCS amplitude

$$\begin{split} \mathfrak{I}m\mathcal{M}_{f}(\gamma p \to \gamma^{*}(q^{2})p) &= W^{2} \, 16\pi^{2} a_{\mathrm{em}} e_{f}^{2} \\ &\cdot \left\{ \Theta(4m_{f}^{2}-q^{2}) \, \int_{4m_{f}^{2}}^{\infty} \, dM^{2} \frac{\Im m \, a_{f}(W^{2},M^{2})}{M^{2}-q^{2}} \right. \\ &+ \left. \Theta(q^{2}-4m_{f}^{2}) \left(\mathrm{PV} \, \int_{4m^{2}}^{\infty} \, dM^{2} \frac{\Im m \, a_{f}(W^{2},M^{2})}{M^{2}-q^{2}} + \pi \, \mathfrak{Re} \, a_{f}(W^{2},q^{2}) \right) \right\} \end{split}$$

Exclusive production I^+I^-	Results	Inclusive diffractive production I^+I^-	Results	Summary
0000				
non-QED, $pp ightarrow (\gamma \mathbf{P}) ightarrow pl^+ l^- p$				
Amplitude for γ	$p \rightarrow l^+ l^-$	p		

- $\gamma \rightarrow \gamma^*$ Time-like Compton Scatering (TCS)
- exchange of off-diagonal QCD gluon ladder
- W. Schafer, G. Slipek, A. Szczurek Phys. Lett. B 688 (2010) 185-191
- the imaginary part of the forward TCS amplitude

 $\Im m \mathcal{M}_f(\gamma p \to \gamma^*(q^2)p) = W^2 \, 16\pi^2 a_{\rm em} e_f^2$

$$\left. \left\{ \Theta(4m_{f}^{2}-q^{2}) \int_{4m_{f}^{2}}^{\infty} dM^{2} \frac{\Im m \, a_{f}(W^{2},M^{2})}{M^{2}-q^{2}} \right. \\ \left. + \Theta(q^{2}-4m_{f}^{2}) \left(\mathrm{PV} \int_{4m_{f}^{2}}^{\infty} dM^{2} \frac{\Im m \, a_{f}(W^{2},M^{2})}{M^{2}-q^{2}} + \pi \, \mathfrak{Re} \, a_{f}(W^{2},q^{2}) \right) \right\}$$

- spectral density $\Rightarrow a_t(W^2, M^2) = \int_0^{\frac{1}{4}M^2 m_t^2} \frac{dk^2}{J_t} \mathcal{A}_t(M^2, k^2, W^2),$
- $\mathcal{A}_{f}(M^{2}, k^{2}, W^{2}) \Rightarrow$ a convolution of $\mathcal{F}(x, \kappa^{2})$ and some functions

• The Gluone exchange ladder is modelled by $\mathcal{F}(x,\kappa^2)$

イロト イポト イヨト イヨト

Exclusive production I^+I^-	Results	Inclusive diffractive production I^+I^-	Results	Summary
0000				

non-QED, $pp \to (\gamma \mathbf{P}) \to pl^+ \Gamma p$

Amplitude for $pp \rightarrow pl^+l^-p$ (γP exchange)

Exclusive production I^+I^-	Results	Inclusive diffractive production I^+I^-	Results	Summary
0000				

non-QED, $pp \rightarrow (\gamma \mathbf{P}) \rightarrow pl^+ l^- p$

Amplitude for $pp \rightarrow pl^+l^-p$ (γP exchange)

• $\mathcal{M} \Rightarrow \sigma$

 four-body phase-space numerically ⇒ (long formula see P.Lebiedowicz,A. Szczurek Phys. Rev. D 81 (2010) 036003)

(日)

Exclusive production I^+I^-	Results	Inclusive diffractive production I^+I^-	Results	Summary
0000				
QED, $pp \rightarrow (\gamma\gamma) \rightarrow pl^+l^-p$				

Amplitude for $pp \rightarrow pl^+l^-p$ ($\gamma\gamma$ fusion)

$$\mathcal{M}_{\beta_{\alpha}\beta_{b} \to \beta_{1}\beta_{2}\beta_{3}\beta_{4}}^{pp \to ppl^{+}\Gamma} = \\ \bar{u}(p_{1}, \beta_{1})\Gamma_{1}^{\mu_{1}}(q_{1})u(p_{\alpha}, \beta_{\alpha})\left(\frac{-ig_{\mu_{1}\nu_{1}}}{t_{1}}\right) \\ \mathcal{V}_{\beta_{3}\beta_{4}}^{\nu_{1}\nu_{2}}(q_{1}, q_{2}, p_{3}, p_{4})\left(\frac{-ig_{\mu_{2}\nu_{2}}}{t_{2}}\right)\bar{u}(p_{2}, \beta_{2})\Gamma_{2}^{\mu_{2}}(q_{2})u(p_{b}, \beta_{b})$$

Exclusive production I^+I^-	Results	Inclusive diffractive production I^+I^-	Results	Summary
0000				
QED, $pp ightarrow (\gamma\gamma) ightarrow pl^+ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$				

Amplitude for $pp \rightarrow pl^+l^-p$ ($\gamma\gamma$ fusion)

$$\begin{split} \mathcal{M}_{\beta_{\sigma}\beta_{b} \to \beta_{1}\beta_{2}\beta_{3}\beta_{4}}^{pp \to pp^{l+\Gamma}} &= \\ \bar{u}(p_{1}, \beta_{1})\Gamma_{1}^{\mu_{l}}(q_{1})u(p_{\sigma}, \beta_{\sigma})\left(\frac{-ig_{\mu_{1}\nu_{1}}}{t_{1}}\right) \\ \mathcal{V}_{\beta_{3}\beta_{4}}^{\nu_{1}\nu_{2}}(q_{1}, q_{2}, p_{3}, p_{4})\left(\frac{-ig_{\mu_{2}\nu_{2}}}{t_{2}}\right)\bar{u}(p_{2}, \beta_{2})\Gamma_{2}^{\mu_{2}}(q_{2})u(p_{D}, \beta_{D}) \end{split}$$

• the production amplitude of lepton pair $V_{\hat{\beta}_3\hat{\beta}_4}^{\nu_1\nu_2}(q_1, q_2, p_3, p_4) = e^2 \bar{u}(p_3, \hat{\beta}_3) \left[\gamma^{\nu_1} \frac{\hat{q}_1 - \hat{p}_3 - m}{(q_1 - p_3)^2 - m^2} \gamma^{\nu_2} - \gamma^{\nu_2} \frac{\hat{q}_1 - \hat{p}_4 + m}{(q_1 - p_4)^2 - m^2} \gamma^{\nu_1} \right] v(p_4, \hat{\beta}_4)$

Exclusive production I^+I^-	Results	Inclusive diffractive production I^+I^-	Results	Summary
0000				
QED, $pp ightarrow (\gamma\gamma) ightarrow pl^+l^-p$				

Amplitude for $pp \rightarrow pl^+l^-p$ ($\gamma\gamma$ fusion)

$$\begin{split} \mathcal{M}_{\beta_{\sigma}\beta_{b} \to \beta_{1}\beta_{2}\beta_{3}\beta_{4}}^{pp \to ppl^{+}\Gamma} &= \\ \bar{u}(p_{1}, \beta_{1})\Gamma_{1}^{\mu_{1}}(q_{1})u(p_{\sigma}, \beta_{\sigma})\left(\frac{-ig_{\mu_{1}\nu_{1}}}{t_{1}}\right) \\ \mathcal{V}_{\beta_{3}\beta_{4}}^{\nu_{1}\nu_{2}}(q_{1}, q_{2}, p_{3}, p_{4})\left(\frac{-ig_{\mu_{2}\nu_{2}}}{t_{2}}\right)\bar{u}(p_{2}, \beta_{2})\Gamma_{2}^{\mu_{2}}(q_{2})u(p_{b}, \beta_{b}) \end{split}$$

• the production amplitude of lepton pair

$$V_{\hat{\beta}_{3}\hat{j}_{4}}^{\nu_{1}\nu_{2}}(q_{1}, q_{2}, p_{3}, p_{4}) = e^{2}\bar{u}(p_{3}, \hat{\eta}_{3}) \left[\gamma^{\nu_{1}} \frac{\hat{q}_{1} - \hat{p}_{3} - m}{(q_{1} - p_{3})^{2} - m^{2}} \gamma^{\nu_{2}} - \gamma^{\nu_{2}} \frac{\hat{q}_{1} - \hat{p}_{4} + m}{(q_{1} - p_{4})^{2} - m^{2}} \gamma^{\nu_{1}} \right] v(p_{4}, \hat{\eta}_{4})$$
• $\Gamma_{1}^{\mu_{1}}(q_{1}) = \gamma^{\mu_{1}}F_{1}(q_{1}) + \frac{i\kappa_{p}}{2M_{p}} \sigma^{\mu_{1}\nu_{1}} q_{\nu_{1}}F_{2}(q_{1})$
 $\Gamma_{2}^{\mu_{2}}(q_{2}) = \gamma^{\mu_{2}}F_{1}(q_{2}) + \frac{i\kappa_{p}}{2M_{p}} \sigma^{\mu_{2}\nu_{2}} q_{\nu_{2}}F_{2}(q_{2})$

Exclusive production I^+I^-	Results	Inclusive diffractive production I^+I^-	Results	Summary
	00000			

Dependence on dilepton invariant mass and $p_{t.sum}$

M_{II} invariant mass of outgoing leptons

• $\overrightarrow{p_{t,sum}} = \overrightarrow{p_{1t}} + \overrightarrow{p_{2t}}$

<ロト < 部 > < き > < き > … き

Exclusive production I^+I^-	Results	Inclusive diffractive production I^+I^-	Results	Summary
	0000			

Azimuthal angle and rapidity distributions

Exclusive production I^+I^-	Results	Inclusive diffractive production I^+I^-	Results	Summary
	00000			

Transverse momentum correlations of outgoing protons

• $\xi_1 = \log_{10}[p_{1t}/1\text{GeV}]$ $\xi_2 = \log_{10}[p_{1t}/1\text{GeV}]$

• expect \Rightarrow difficult to measure

Exclusive production I^+I^-	Results	Inclusive diffractive production I^+I^-	Results	Summary
	00000			

Transverse momentum correlations of outgoing leptons

Exclusive production I^+I^-	Results	Inclusive diffractive production I^+I^-	Results	Summary
0000	00000		0000	

Rapidity correlations of leptons

ъ

177 ▶ ◀

E

Exclusive production I^+I^-	Results	Inclusive diffractive production I^+I^-	Results	Summary
Introduction				

• more complicated processes \Rightarrow inclusive diffractive processes. They are discussed in terms of Pomeron exchanges.

Exclusive production I^+I^-	Results	Inclusive diffractive production I^+I^-	Results	Summary
Introduction				
innoquenon				

• G. Ingelman and P. E. Schlein, Phys. Lett. B 152 (1985) 256

Exclusive production I^+I^-	Results	Inclusive diffractive production I^+I^-	Results	Summary
Intro du ation				
Introduction				

- G. Ingelman and P. E. Schlein, Phys. Lett. B 152 (1985) 256
- Pomeron has a well defined partonic structure

Exclusive production I ⁺ I ⁻	Results	Inclusive diffractive production <i>I⁺I⁻</i>	Results	Summary
0000	00000	00	0000	
Introduction				

- G. Ingelman and P. E. Schlein, Phys. Lett. B 152 (1985) 256
- Pomeron has a well defined partonic structure
- the hard process take place in
 - pomeron-proton or proton-pomeron \rightarrow single diffraction

Image: A math a math

Exclusive production I ⁺ I ⁻	Results	Inclusive diffractive production / ⁺ / ⁻	Results	Summary
0000	00000	00	0000	
Introduction				

- G. Ingelman and P. E. Schlein, Phys. Lett. B 152 (1985) 256
- Pomeron has a well defined partonic structure
- the hard process take place in
 - pomeron-proton or proton-pomeron \rightarrow single diffraction

• pomeron-pomeron \rightarrow double diffraction

Exclusive production I^+I^-	Results	Inclusive diffractive production I^+I^-	Results	Summary
		•0		
Single diffraction				
Single diffractio	n			

• $|M|^2$ - matrix element (text book formula) $|M(q\bar{q} \rightarrow l^+ l^-)|^2 = 32\pi^2 a_{em}^2 \frac{(m_l^2 - \tilde{t})^2 + (m_l^2 - \hat{u})^2 + 2m_l^2 \hat{s}}{\hat{s}^2}.$

Exclusive production I^+I^-	Results	Inclusive diffractive production I^+I^-	Results	Summary
		$\bullet \circ$		
Single diffraction				
Single diffraction				

(日)

• $|\mathbf{M}|^2$ - matrix element (text book formula) $|\mathbf{M}(q\bar{q} \to l^+ l^-)|^2 = 32\pi^2 a_{em}^2 \frac{(m_l^2 - \hat{t})^2 + (m_l^2 - \hat{u})^2 + 2m_l^2 \hat{s}}{\hat{s}^2}.$ • $x_1 = \frac{m_t}{\sqrt{s}} (\exp(\gamma_1) + \exp(\gamma_2)),$ $x_2 = \frac{m_t}{\sqrt{s}} (\exp(-\gamma_1) + \exp(-\gamma_2)),$ where $m_t = \sqrt{p_t^2 + m_l^2}.$

Exclusive production I^+I^-	Results	Inclusive diffractive production I^+I^-	Results	Summary
		•0		
Single diffraction				
Single diffractio	n			

• K - factor \Rightarrow effectively higher order Drell-Yan contributions $K = 1 + \frac{a_s}{2\pi} \frac{4}{3} \left(1 + \frac{4}{3} \pi^2 \right)$. V. Barger and R. Phillips"Collider Physics"

Exclusive production I^+I^-	Results	Inclusive diffractive production I^+I^-	Results	Summary
		•0		
Single diffraction				

Single diffraction

- K factor \Rightarrow effectively higher order Drell-Yan contributions $K = 1 + \frac{a_s}{2\pi} \frac{4}{3} \left(1 + \frac{4}{3} \pi^2 \right)$. V. Barger and R. Phillips'Collider Physics'
- diffractive quark distribution $\begin{aligned} & d_{f}^{D}(x, \mu^{2}) = \int dx_{P} d\beta \, \delta(x - x_{P} \beta) q_{f/P}(\beta, \mu^{2}) \, f_{P}(x_{P}) = \int_{x}^{1} \frac{dx_{P}}{x_{P}} \, f_{P}(x_{P}) q_{f/P}(\frac{x}{x_{P}}, \mu^{2}) \\ & q_{f/P}(\frac{x}{x_{P}}, \mu^{2}) \rightarrow \text{the parton distribution in the Pomeron} \\ & f_{P}(x_{P}) \text{ and } q_{f/P}(\frac{x}{x_{P}}, \mu^{2}) \end{aligned}$
 - ⇒ A.Aktas et. al (H1 Collaboration) Eur. Phys. J. C 48 (2006) 715

(日)

Exclusive production I^+I^-	Results	Inclusive diffractive production I^+I^-	Results	Summary
		•0		
Single diffraction				

Single diffraction

- K factor \Rightarrow effectively higher order Drell-Yan contributions $K = 1 + \frac{a_s}{2\pi} \frac{4}{3} \left(1 + \frac{4}{3} \pi^2 \right)$. V. Barger and R. Phillips'Collider Physics'
- diffractive quark distribution $\begin{aligned} & d_{f}^{D}(x, \mu^{2}) = \int dx_{P} d\beta \, \delta(x - x_{P} \beta) q_{f/P}(\beta, \mu^{2}) \, f_{P}(x_{P}) = \int_{x}^{1} \frac{dx_{P}}{x_{P}} \, f_{P}(x_{P}) q_{f/P}(\frac{x}{x_{P}}, \mu^{2}) \\ & q_{f/P}(\frac{x}{x_{P}}, \mu^{2}) \rightarrow \text{the parton distribution in the Pomeron} \\ & f_{P}(x_{P}) \text{ and } q_{f/P}(\frac{x}{x_{P}}, \mu^{2}) \end{aligned}$
 - ⇒ A.Aktas et. al (H1 Collaboration) Eur. Phys. J. C 48 (2006) 715

(日)

Exclusive production I^+I^-	Results	Inclusive diffractive production I^+I^-	Results	Summary	
		0•			
Double diffraction					
Double diffraction					

$$\frac{d\sigma_{DD}}{dy_1 dy_2 dp_t^2} = \kappa \frac{|M|^2}{16\pi^2 \hat{s}^2} \left(x_1 q_f^D(x_1, \mu^2) x_2 \bar{q}_f^D(x_2, \mu^2) \right) \\ + \left(x_1 \bar{q}_f^D(x_1, \mu^2) x_2 q_f^D(x_2, \mu^2) \right) \cdot \prod_{r=1}^{n} \sum_{k=1}^{n} \sum_{k=1}^{n}$$

Exclusive production I^+I^-	Results	Inclusive diffractive production I^+I^-	Results	Summary
			•000	

Dependence on dilepton invariant mass and p_t

Exclusive production I^+I^-	Results	Inclusive diffractive production I^+I^-	Results	Summary
			0000	

Dependence on dilepton rapidity

◆□▶ ◆圖▶ ◆注▶ ◆注▶

Exclusive production I^+I^-	Results	Inclusive diffractive production I^+I^-	Results	Summary
			0000	

Rapidity correlations of leptons

Exclusive production I^+I^-	Results	Inclusive diffractive production I^+I^-	Results	Summary
			0000	

EXCLUSIVE Vs DIFFRACTIVE

◆□▶ ◆圖▶ ◆注▶ ◆注▶

Exclusive production I^+I^-	Results	Inclusive diffractive production I^+I^-	Results	Summary

• I have presented results for exclusive and diffractive production of lepton pairs.

Exclusive production I^+I^-	Results	Inclusive diffractive production I^+I^-	Results	Summary

- I have presented results for exclusive and diffractive production of lepton pairs.
- Both of them were calculated and compared for the first time.

Exclusive production I^+I^-	Results	Inclusive diffractive production I^+I^-	Results	Summary

- I have presented results for exclusive and diffractive production of lepton pairs.
- Both of them were calculated and compared for the first time.
- We find that non-QCD contribution to exclusive production dominant in large p_{tsum}

Future:

- to include absorptive corrections (the 'elastic rescattering')
- to include Pauli form factor

Exclusive production I^+I^-	Results	Inclusive diffractive production I^+I^-	Results	Summary

Thank You for attention!

