

Excited QCD 2011 20-25 February 2011 Les Houches (France)



# The Pomeron and Vector Mesons at HERA

Valentina Sola (Torino University and INFN)



- > Diffraction in ep scattering
- > Latest inclusive diffractive ep results
- > QCD fits and diffractive PDFs extraction
- > Latest results on exclusive VM production



#### HERA Experiments



0.5 fb<sup>-1</sup> collected by H1 and ZEUS experiments Final analyses of HERA data are underway

### Diffraction in Hadron Scattering

Diffraction is a feature of hadron-hadron interactions (30% of  $\sigma_{tot}$ )

![](_page_2_Figure_2.jpeg)

- ⇒ Beam particles emerge intact or dissociated into low-mass states
  - $\rightarrow$  Very small fractional momentum losses (within a few %)
- ⇒ Final-state systems separated by a large polar angle (or pseudorapidity η = - ln[tan(θ/2)])
   → Large Rapidity Gap (LRG)
- Interaction mediated by t-channel exchange of an object with vacuum quantum numbers (no colour)
  - $\rightarrow$  Pomeron (IP)

#### Why Diffraction?

![](_page_3_Figure_1.jpeg)

$$\frac{I(\theta)}{I(\theta_0)} \approx 1 - \frac{R_0^2}{4} (k\theta)^2 \qquad k = 2\pi/\lambda$$

Forward peak for q=0 (diffractive peak)

Diffraction pattern related to size of target and wavelength of beam

Particle Physics:

Propagation/interaction of a a hadron  $\Rightarrow$  absorption of its wave function

![](_page_3_Figure_7.jpeg)

$$\frac{d\sigma/dt(t)}{d\sigma/dt(t=0)} \cong e^{-b|t|} \cong 1 - b(p\theta)^2$$

 $|t| \approx (p\theta)^2$  4-momentum transfer

 $\boldsymbol{\theta}$  scattering angle

 $b = R^2/4$ 

R transverse distance projectile-target

#### Diffraction at HERA

![](_page_4_Figure_1.jpeg)

Real and virtual photons can fluctuate in hadronic states ( $q\bar{q}, q\bar{q}g, ...$ )

![](_page_4_Figure_3.jpeg)

(as seen in the proton rest-frame)

- Q<sup>2</sup> = photon virtuality
- × = Bjorken scaling variable

- ✓ Lifetime of qq̄ dipole (hadron!) long because of large Lorentz boost (E<sub>γ</sub> ~ 50 TeV at HERA)
- $\rightarrow$  Dipole interacts hadronically with the proton
- ✓ Transverse size proportional to 1/J(Q<sup>2</sup>+M<sub>qq</sub><sup>2</sup>)
- → If dipole size small, its interaction with the proton can be treated perturbatively

Diffractive events contribute up to 15% of the inclusive DIS cross section

V. Sola

#### **Kinematics and Cross Sections**

- $\mathbf{Q}^2$  = virtuality of exchanged photon
- 🗙 = Bjorken scaling variable
- **y** = inelasticity of virtual photon
- $\mathbf{W}$  = invariant mass of  $\gamma^*$ -p system
- $M_X$  = invariant mass of  $\gamma^*$ -IP system
- $\boldsymbol{\beta} = x/x_{\text{IP}}$  = fraction of IP momentum carried by struck parton
- t = (4-momentum exchanged at p vertex)<sup>2</sup>
  typically: |t| < 1 GeV<sup>2</sup>

![](_page_5_Figure_9.jpeg)

 $\frac{d^{4}\sigma^{ep \rightarrow e'Xp'}}{d\beta dQ^{2}dx_{IP}dt} = \frac{2\pi\alpha^{2}}{\beta Q^{4}} Y_{+} [F_{2}^{D(4)}(\beta, Q^{2}, x_{IP}, t) - \frac{Y^{2}}{Y_{+}} F_{L}^{D(4)}(\beta, Q^{2}, x_{IP}, t)]$   $where Y_{+} = 1 + (1-y)^{2} \qquad = \sigma_{r}^{D(4)}(\beta, Q^{2}, x_{IP}, t)$   $When t is not measured \qquad \sigma_{r}^{D(3)}(\beta, Q^{2}, x_{IP}) = \int \sigma_{r}^{D(4)}(\beta, Q^{2}, x_{IP}, t) dt$ 

![](_page_6_Figure_0.jpeg)

The QCD factorization theorem in diffractive DIS allows to write the diffractive cross section as a convolution of universal diffractive parton densities  $f_i^{D}(x,Q^2,x_{IP},t)$  and partonic cross sections

$$\sigma^{D}(\gamma^{*}p \rightarrow Xp) \sim f_{i}^{D}(x, Q^{2}, x_{IP}, t) \otimes \sigma_{\gamma^{*}i}(x, Q^{2})$$

Additionally, assuming Regge factorization, the diffractive parton densities are written as a term depending on  $x_{IP}$  (Pomeron flux) times the Pomeron parton densities

 $f_i^{D}(x, Q^2, x_{IP}, t) \sim f_{IP/p}(x_{IP}, t) \otimes f_{i/IP}^{D}(x/x_{IP}, Q^2)$ 

⇒ Universal DPDFs apply in DIS when vacuum quantum numbers are exchanged
V. Sola
Excited QCD 2011

7

![](_page_7_Figure_0.jpeg)

![](_page_8_Figure_0.jpeg)

V. Sola

![](_page_9_Figure_0.jpeg)

#### $x_{IP}$ Dependence of $\sigma_r^{D(3)}$

![](_page_10_Figure_1.jpeg)

## $Q^2$ Dependence of $\sigma_r^{D(3)}$

![](_page_11_Figure_1.jpeg)

All available LRG data used by both Collaborations

Very precise measurements of the scaling violation for diffraction

Reduced cross section constrains quark density

In Q<sup>2</sup> dependence constrains gluon density

⇒ QCD fits to data provide sets of diffractive PDFs

ZEUS corrected to  $M_{\rm N}$  < 1.6 GeV with PYTHIA MC

### Diffractive PDFs from NLO Fits

#### **Inclusive** Data

NLO QCD Fits:

- parametrize quark singlet and gluon at  $Q_0^2 = 1.8 \ GeV^2$ 
  - $\begin{array}{l} z \ f_{u,d,s} \left( z, \ Q^2_{\ 0} \right) = A_q \ z^{Bq} \left( 1{\text -}z \right) \ {}^{Cq} \\ z \ f_g (z, \ Q_0{}^2) = A_g \ z^{Bg} \left( 1{\text -}z \right) \ {}^{Cg} \end{array}$
- evolve with NLO DGLAP and fit

Different parametrizations

Well constrained singlet Gluon weakly constrained in the high  $z_{IP}$  region (gluon density from  $\ln Q^2$  dependence of  $\sigma_r^{D}$ )

DPDFs are gluon dominated

(z = momentum fraction of the diffr exchange entering the hard scattering)

![](_page_12_Figure_10.jpeg)

#### Diffractive PDFs from NLO Fits

#### Inclusive and Dijet Data

Diffractive dijiet data are directly sensitive to the gluon as the photon-gluon fusion contributes at first order

Singlet and gluon constrained with similar precision across the whole kinematic range

![](_page_13_Figure_4.jpeg)

ZEUS

ZEUS

![](_page_13_Figure_6.jpeg)

#### Vector Meson Production

![](_page_14_Figure_1.jpeg)

With increasing scale ( $Q^2$ ,  $M_{VM}$ , t)

 $\sigma(W) \propto W^{\delta}$ 

 Expect 
 δ to increase from soft (~0.2 'soft Pomeron' value) to hard (~0.8 reflecting large gluon density at low x)

$$\frac{d\sigma}{dt} \propto e^{-b|t|}$$

Expect b to decrease from soft (~10 GeV<sup>-2</sup>) to hard (~4-5 GeV<sup>-2</sup>)

V. Sola

#### W Dependence in Photoproduction

![](_page_15_Figure_1.jpeg)

#### W Dependence in Bins of $Q^2$

![](_page_16_Figure_1.jpeg)

#### Soft to Hard Transition - $\sigma(W)$

![](_page_17_Figure_1.jpeg)

⇒ Process becomes harder as the scale (Q<sup>2</sup> + M<sup>2</sup>) becomes larger Excited QCD 2011

18

![](_page_18_Figure_0.jpeg)

 $r_{proton} \sim 0.8$  fm - radius of charge density in the proton

#### Summary

✓ After 15 years of running HERA provided unique diffractive data

 Consistency reached between different experiments, methods and data sets

⇒ Ready to combine inclusive cross sections between experiments

- ✓ DPDFs well constrained which can be used to predict other processes in DDIS
  - ⇒ Inclusion of dijet data in the QCD fits provides a much better constraint of the gluon density at high fractional momentum
- ✓ Lots of inputs from exclusive vector meson production
  - $\Rightarrow$  Precision measurements can constrain the gluon density
  - ⇒ Transition from soft to hard regime is visible

#### Thank You

![](_page_21_Figure_0.jpeg)

![](_page_22_Figure_0.jpeg)

V. Sola

#### $x_{IP}$ Dependence of $\sigma_r^{D(3)}$

![](_page_23_Figure_1.jpeg)

Wide kinematic coverage and very good statistical precision

#### Factorization Test in Diffractive DIS

Use DPDFs extracted from inclusive DDIS for calculating NLO predictions to semi-inclusive final states: **test universality of DPDFs** 

 $\rightarrow$  Open charm and dijets in DIS: hard scales in the process ensure use of pQCD

**Open charm:** 

![](_page_24_Figure_4.jpeg)

H1, EPJ C50 (2007) 1

ZEUS, NP B672 (2003) 3

 $\rightarrow$  QCD factorisation holds in DDIS!

Dijets: ZH

H1, JHEP 0710:042 (2007) ZEUS, EPJ C52 (2007) 813

First measurement of dijets in DDIS with a tagged proton (H1 FPS) - H1prelim-10-013

![](_page_24_Figure_9.jpeg)

Deviations might be related to missing pomeron remnant in NLO predictions (NLOJET++) Deviations at high  $\Delta \eta^* \rightarrow$  interesting to look at forward jets

#### Factorization Test in PHP at HERA

![](_page_25_Figure_1.jpeg)

![](_page_26_Figure_0.jpeg)

Data compared to NLO calculations using HERA DPDFs to test  $E_T$  dependence

Small suppression at small  $\mathsf{E}_{\mathsf{T}}$  Both data still compatible

#### Factorisation Test at Tevatron

![](_page_27_Figure_1.jpeg)

Suppression expected in QCD and understood in terms of soft interactions between the hadrons and their remnants suppressing the Large Rapidity Gap

⇒ To understand diffraction at LHC a detailed undertanding on this mechanism is needed

## First Measurement of $F_L^D$ $\sigma_r^D = F_2^D - \frac{\gamma^2}{\gamma_+}F_L^D$ $F_L^D \sim \alpha_S \times g(x)$

Challenging measurement, requires good understanding of the detector Measurement is performed with data taken at 3 proton beam energies: 920, 460 and 575 GeV

$$(Q^2 = sxy, x = \beta x_{IP})$$

 $\Rightarrow$  At fixed Q² and  $x_{\rm IP},$  high y corresponds to low  $\beta$ 

![](_page_28_Figure_4.jpeg)

V. Sola

#### Flash on Exclusive Results ( $ep \rightarrow epVM$ )

![](_page_29_Figure_1.jpeg)

![](_page_29_Figure_2.jpeg)