

Precision measurements of radiative charged Kaon decays at NA48/2

Andrea Bizzeti University of Modena and Reggio Emilia and INFN – Sezione di Firenze

on behalf of the NA48/2 Collaboration

Cambridge, CERN, Chicago, Dubna, Edinburgh, Ferrara, Firenze, Mainz, Northwestern, Perugia, Pisa, Saclay, Siegen, Torino, Vienna

Excited QCD 09, Zakopane, february 11, 2009

Outline

- The NA48/2 experiment at CERN: beam and detector
- Study of the decays:
 - $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$ first observation of DE-IB interference
 - $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$ high statistics
 - $K^{\pm} \rightarrow \pi^{\pm} e^+ e^- \gamma$ first observation of the decay
 - $K^{\pm} \rightarrow \pi^{\pm} e^{+}e^{-}$ BR and Form Factor
- Conclusions

The NA48/2 beam line

The NA48 detector

- Magnetic spectrometer : 4 DCHs -> redundancy Δp/p = 1.0% + 0.044% · p [GeV/c]
- Liquid Krypton EM calorimeter (LKr) : High granularity, quasi-homogeneous $\Delta E/E = 3.2\%/\sqrt{E[GeV] + 9\%/E[GeV] + 0.42\%}$
- Scintillators hodoscope (2 planes) : fast trigger precise time measurement (150ps)
- hadron calorimeter
- muon veto counters
- photon vetoes

The NA48/2 data

2003 run: ~ 50 days 2004 run: ~ 60 days

 $\begin{array}{l} \underline{\mathrm{K}}_{\underline{3}\underline{\pi}} \ \underline{\mathrm{statistics}} \ \underline{\mathrm{in}} \ \underline{2} \ \underline{\mathrm{years:}} \\ \mathbf{\mathrm{K}}^{\pm} \rightarrow \ \pi^{\pm} \ \pi^{+} \pi^{-} \ \mathbf{:} \ \sim 4 \cdot 10^{9} \\ \mathbf{\mathrm{K}}^{\pm} \rightarrow \ \pi^{\pm} \ \pi^{0} \ \pi^{0} \ \mathbf{:} \ \sim 1 \cdot 10^{8} \end{array}$

<u>Rare K[±] decays:</u> Possibility to measure BRs down to 10⁻⁹

>200 TB of data recorded

 $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$

 $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$: theory

Two amplitudes contribute to this decay:

IB : electric dipole, calculable (related to $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}$ by Low's theorem)

DE : electric (E) and magnetic (M) amplitudes, both O(p⁴) in ChPT :

- E : non predictable, interferes with IB amplitude
- M: due to chiral anomaly (calculable) and direct contributions (non predictable)

$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$: separating DE from IB

IB, DE amplitudes depend on 2 kinematical variables:

 $T^*_{\pi} = \pi^{\pm}$ kinetic energy in the K \pm rest frame

$$W^{2} = \frac{(P_{K} \cdot P_{\gamma})(P_{\pi} \cdot P_{\gamma})}{(m_{K}m_{\pi})^{2}}$$

The decay width contains 3 terms (IB, **DE** and their interference INT), which can be disentangled using W variable (and integrating over T^*_{π}):

 $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$: T^{*}_π region

55 MeV < T^{*}_{π} < **90 MeV** region used in previous analyses to reject BG (mainly $\pi^{\pm}\pi^{0}$ and $\pi^{\pm}\pi^{0}\pi^{0}$). But.... this excludes most of the DE events

$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$: event selection

Analysis of data taken in 2003
 Require at least 1 track and 3 photons
 Apply acceptance and BG-rejection cuts
 [M_{inv}(π[±]π⁰γ), P_{tot} direction]

 $M_{inv}(\pi^{\pm}\pi^{0}\gamma)$ [GeV/c²]

- residual **BG** due only to $\pi^{\pm}\pi^{0}\pi^{0}$, <1% of DE
- γ mistagging probability (self BG) $\approx 10^{-3}$

K^{\pm} → $\pi^{\pm}\pi^{0}\gamma$: fit result

Fit the W data spectrum using MC shapes: **N(W)_{data}=(1-A-B)N(W)_{IB}+AN(W)_{DE}+BN(W)_{INT}** with **A** and **B** free parameters

- A and B highly correlated (corr. = -0.92)
- systematic dominated by trigger eff.
- **B**≠0 : first evidence of **INT** term

 $Frac(DE)_{0 < T^* \pi < 80 \text{ MeV}} = (3.35 \pm 0.35 \pm 0.25) \%$ Frac(INT)_{0 < T^* \pi < 80 \text{ MeV}} = (-2.67 \pm 0.81 \pm 0.73) \%

Frac INI

-0.01

-0.02

0.045

Frac DE

0.05

CL 68 %

$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$: outlook

- ✓ complete NA48/2 data set (2003+2004) being analysed:
- \rightarrow larger statistics (4x);
- \rightarrow lower systematics (trigger)
- \rightarrow also search for CP violating charge asymmetry

$$A_{CP} = \frac{B(K^+ \to \pi^+ \pi^0 \gamma) - B(K^- \to \pi^- \pi^0 \gamma)}{B(K^+ \to \pi^+ \pi^0 \gamma) + B(K^- \to \pi^- \pi^0 \gamma)}$$

with $\cong 10^{-3}$ sensitivity

 \rightarrow final result will be ready soon

 $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$

 $K^{\pm} \rightarrow \pi^{\pm}\gamma\gamma$: Theory

$K^{\pm} \rightarrow \pi^{\pm}$ γγ: Branching ratio

ChPT O(p⁴) predicts a dependence of the BR on the parameter \hat{c} : BR (K[±] $\rightarrow \pi^{\pm}\gamma\gamma$) = (5.26 + 1.64 $\cdot\hat{c}$ + 0.32 $\cdot\hat{c}^{2}$ + 0.49) \cdot 10⁻⁷ > 4 \cdot 10⁻⁷ [Ecker, Pich, De Rafael, Nucl.Phys.B 303 (1998), 665]

- Experimental goals:
 Measurement of BR and ĉ
- Existing measurement: BR = (1.10 ± 0.32) × 10⁻⁶
 ĉ = 1.8 ± 0.6
 [BNL E787 (1991), 31 evts.]

A. Bizzeti - Excited QCD 09 - Zakopane 11/02/2009

$K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$: Statistics

Data sample: 2003 data (40% of full statistics)

Data 2200 2000 MC $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}$ $M(\pi^{\pm}\pi^{0})$ 1800 1600 1400 1200 1000 800 600 400 200 0.475 0.48 0.505 0.485 0.49 0.495 0.5 0.51 m_{πvv} [GeV/c²]

Signal :

- 1 track + 2 photons + kinematical cuts
- **1164 events** (~40× world sample)
- Background: 3.3% (eval. from MC) from $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$ (IB)

Normalization channel $K^{\pm} \rightarrow \pi^{\pm} \pi^0$:

- Same particles in final state → first order cancellation of systematics
- Very large sample (6M events) with known BR

$K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$: preliminary results

• Clear evidence for the cusp at $m_{\gamma\gamma} = 0.28 \text{ GeV}/c^2$

Good agreement with O(p⁶)
 ĉ=2 generated MC sample

$$BR(K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma) = (1.07 \pm 0.04_{stat} \pm 0.08_{syst}) \times 10^{-6}$$
(preliminary, model dependent)

Next tasks:

- analysis of full data sample (~6000 events)
- ĉ measurement

 $K^{\pm} \rightarrow \pi^{\pm} e^{+}e^{-} \gamma$

$K^{\pm} \rightarrow \pi^{\pm} e^+ e^- \gamma$: Theory

- Theory is similar to $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$ decay [Gabbiani, Phys. Rev. D 59 (1999), 094022]
- Cusp $m_{\gamma\gamma}$ =2 m_{π} expected by O(p⁴) ChPT
- Naïve expectation: BR($K^{\pm} \rightarrow \pi^{\pm} e^{+} e^{-} \gamma$) ~ BR($K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$) · 2 α ~ 1.6 · 10⁻⁸
- ChPT uncertainty dominated by $\boldsymbol{\hat{c}}$
- $O(p^6)$ increases BR of ~40% wrt $O(p^4)$

ChPT O(p⁶) predicts BR = (0.9 ~ 1.7) × 10⁻⁸

Experimental goals

- Model-independent BR measurement (limited to visible kinematical range)
- Determination of **ĉ** from the data
- Use **ĉ** to compute model-dependent BR (in the full kinematical range)

Existing measurement:

Never observed

$K^{\pm} \rightarrow \pi^{\pm} e^+ e^- \gamma$: event selection

Data sample: 2003 and 2004 NA48/2 K^{\pm} runs.

Event selection: 3 tracks + 1 photon, e^{\pm} ID(E/p), kin. cuts ($M_{ee\gamma}$, $M_{\pi ee\gamma}$, $\vartheta_{e\gamma}$)

$K^{\pm} \rightarrow \pi^{\pm} e^+ e^- \gamma$: results

- Model independent BR measured in bins of M_{eeγ} (each bin 5 MeV/c² wide)
- Least squares fit on M_{eeγ} to extract ĉ
- Main systematics:
 - BG subtraction
 - normalization
 - MC statistics

NA48/2 final results:

$$\begin{split} &\mathsf{BR}_{\mathsf{MI}} = (1.19 \pm 0.12_{\mathsf{stat}} \pm 0.04_{\mathsf{syst}}) \times 10^{-8} \ (\mathsf{M}_{\mathsf{ee}\gamma} > 0.260 \ \mathsf{MeV/c^2}, \ \mathsf{model} \ \mathsf{independent}) \\ &\hat{\mathsf{c}} = 0.90 \pm 0.45 \quad (1.2\sigma \ \mathsf{from} \ \mathsf{BNL} \ \mathsf{E787} \ \mathsf{result} \ \mathsf{in} \ \mathsf{K}^{\pm} \rightarrow \pi^{\pm} \gamma \gamma: \ \hat{\mathsf{c}} = 1.8 \pm 0.6) \\ &\mathsf{BR} = (1.29 \pm 0.13_{\mathsf{exp}} \pm 0.03_{\hat{\mathsf{c}}}) \times 10^{-8} \ (\mathsf{model} \ \mathsf{dependent}, \ \mathsf{assuming} \ \hat{\mathsf{c}} = 0.9 \pm 0.45 \) \end{split}$$

Errors dominated by statistics

Phys. Lett. B 695 (2008) 493

 $K^{\pm} \rightarrow \pi^{\pm} e^{+}e^{-}$

$K^{\pm} \rightarrow \pi^{\pm} e^+ e^-$: Theory

- Suppressed FCNC process
 Loop -induced decay (K[±]→π[±]γ^{*})

$$d\Gamma/dz = P(z) |W(z)|^2$$

P(z) = phase space factor
 $z = (M_{ee}/M_K)^2$

- Different models tested for W(z):
 - Polynomial: $W(z) = G_F M_K^2 f_0 \cdot (1 + \delta \cdot z)$
 - ChPT O(p⁶): W(z) = $G_F M_K^2 \cdot (a_+ + b_+ z) + W^{\pi\pi}(z)$ [JHEP 8 (1998) 4]
 - "Dubna" ChPT: $W(z) = W(M_a, M_o, z)$ [hep-ph/0611175]

 (f_0, δ) or (a_+, b_+) or (M_a, M_o) fully determine a model-dependent BR

- Experimental goals:
 - model-independent BR(z>0.8) in accepted kinematical range
 - for each model: parameters and BR in the full kinematical range
- Previous measurements: BR = $(2.94 \pm 0.15) \cdot 10^{-7}$ [BNL E865 (1999), 10300 evts]

$K^{\pm} \rightarrow \pi^{\pm} e^+ e^-$: event selection

- Data sample: 2003 + 2004 runs
- Event selection: 3 tracks, particle ID (E/p), invariant mass cut
- Background subtraction:
 - □ MC used only to identify BG
 - BG by particle misID ($\pi^{\pm} \leftrightarrow e^{\pm}$) in $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}{}_{D}$ and $K^{\pm} \rightarrow e^{\pm}\nu\pi^{0}{}_{D}$) estimated directly on data using "same sign" ($\pi^{+}e^{-}e^{-}$) events
- Normalization channel: $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}{}_{D} \rightarrow \pi^{+} e^{+}e^{-} \gamma$
 - Same final state as the signal, plus one photon
 - □ Same charged particles → first order cancellation of systematics (trigger and PID inefficiency) in the BR ratio
 - Large sample with known BR.

• $M_{ee} > 140 \text{ MeV/c}^2$ (z > 0.08) : signal region

- □ $M_{ee} < 140 MeV/c^2$ dominated by background (K[±]→ $\pi^+\pi^0_D$, K[±]→ $\pi^+\pi^0_D$)
- After BG subtraction, the $\pi^0 \rightarrow e^+e^-$ peak (~500 events) can be seen

$K^{\pm} \rightarrow \pi^{\pm} e^+ e^-$: Statistics

Signal: 7146 candidates

Background: 0.6% (from same sign events), due to particle misID($\pi^{\pm} \leftrightarrow e^{\pm}$) in K[±] $\rightarrow \pi^{\pm} \pi^{0}{}_{D}$, $\pi^{0}{}_{D}e^{\pm}v$

Normalization: 12.2×10⁶ events
 Background: ~0.15% (K[±]→π⁰_Dμ[±]ν)
 BR(π[±]π⁰) from PDG

$K^{\pm} \rightarrow \pi^{\pm} e^+ e^-$: Preliminary Results

Measured dΓ/dz (corrected for acceptance)

Model independent BR (z > 0.08): BR = (2.26 ± 0.03_{stat} ± 0.03_{syst} ± 0.06_{ext})×10⁻⁷

Form factors (fit to $d\Gamma/dz$): Polynomial $\delta = 2.35 \pm 0.15_{stat} \pm 0.09_{syst}$ $f_0 = 0.532 \pm 0.012_{stat} \pm 0.008_{syst} \pm 0.007_{ext}$ ChPT $a_+ = -0.579 \pm 0.012_{stat} \pm 0.008_{syst} \pm 0.007_{ext}$ $b_+ = -0.798 \pm 0.053_{stat} \pm 0.037_{syst} \pm 0.017_{ext}$ "Dubna" ChPT (GeV/c²) $M_a = 0.965 \pm 0.028_{stat} \pm 0.018_{syst} \pm 0.002_{ext}$ $M_{\rho} = 0.711 \pm 0.010_{stat} \pm 0.007_{syst} \pm 0.002_{ext}$

 $\begin{aligned} & \mathsf{BR} = (3.08 \pm 0.04_{\mathsf{stat}} \pm 0.04_{\mathsf{syst}} \pm 0.08_{\mathsf{ext}} \pm 0.07_{\mathsf{model}}) \times 10^{-7} \\ & \text{(including uncertainty due to model dependence), in agreement with BNL E865 result} \\ & \mathsf{CPV} \text{ asymm.: } (\mathsf{BR}^+ - \mathsf{BR}^-)/(\mathsf{BR}^+ + \mathsf{BR}^-) = (-2.1 \pm 1.5_{\mathsf{stat}} \pm 0.3_{\mathsf{syst}})\% \text{ (first measurement)} \end{aligned}$

 $K^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$

 Previous experiments:
 <800 world sample (BNL E865 ~400, HyperCP@FNAL ~110 in 20% of data)
 Poor PDG agreement on BR
 Linear form factor agrees with πee

- Experimental difficulty
 Large BG from K→3π (E865: 6.5%)
- NA48/2 analysis on going
 2003 + 2004 data
 Few thousands of events
 Background O(1%)

Conclusions

• $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$: first evidence of DE-IB interference in the decay

- Measurement of DE/IB and INT/IB branching ratios
- $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$: statistics improved 40x wrt previous measurements
 - Clear evidence for the 2π cusp
 - Measured BR in agreement with ChPT
- $K^{\pm} \rightarrow \pi^{\pm} e^+ e^- \gamma$: first observation
 - Independent evidence for the 2π cusp
 - □ Final results on BR and shape analysis (ChPT parameter ĉ)
- $K^{\pm} \rightarrow \pi^{\pm} e^{+}e^{-}$: Sample and precision comparable to world's best ones
 - BR and FF in agreement with ChPT and other measurements
 - First limit on the CP violating charge asymmetry
- Large sample of $K^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$ with small background (analysis on-going)