Baby-steps beyond rainbow-ladder

Richard Williams

TU Darmstadt

Excited QCD09 - Zakopane, 9/02/09

Christian S. Fischer, Dominik Nickel, RW, Eur.Phys.J.C,2008 [arXiv:0807.3486] Christian S. Fischer, RW, Phys.Rev.D78:074006,2008 [arXiv:0808.3372].

Richard Williams (TU Darmstadt)

Baby-steps beyond rainbow-ladder

Desire:

- Poincaré covariant description of mesons
- formulated in the continuum
- description in terms of fundamental quantities of QCD

Natural framework:

- Bethe-Salpeter equations
- Schwinger-Dyson equations

Studied in detail for many years

- Rarely extended beyond simplest truncations
- Ad-hoc 'improvements' used.
- Severe approximations (e.g. M-N)

Rainbow-Ladder:

- successful description of light-mesons subject to an apposite phenomenological ansatz for the interaction.
 - e.g. Maris-Tandy model.

[P. Maris, P. C. Tandy, PRC 60 (1999) 055214]

Lacking in many regards:

no unquenching effects – pion cloud

[A. W. Thomas, PPNP 61 (2008) 219]

- no η/η' splitting $U_A(1)$ anomaly
- admits (3)_c coloured diquark bound-states
 but useful in studying Baryons

[A. Bender, C. Roberts, L.v Smekal, PRLB 380 (1996) 7]

Moreover:

- Describes only pure qq̄-states:
- No flavour mixing
- No decay channels
- No exotics

Rainbow-Ladder provides ONLY

- $\gamma_{\mu} \otimes \gamma_{\mu}$ couplings
- Simplicity of interaction means higher spin states of mesons are poorly represented.
- No variety in attraction/repulsion.

Goal:

- Consistent Green's function approach
 - Ghost/Gluon solutions of DSE
 - Quark-Gluon vertex beyond γ^{μ}
 - BSE kernel satisfying axWTI

"Break the ladder:"

- Unquenching effects
- Leading Yang-Mills corrections

Outline

Introduction

- Bethe-Salpeter equations
- Schwinger-Dyson equations
- Rainbow-Ladder

Quark-gluon vertex

- Basic structure
- Beyond rainbow-ladder: Unquenching effects
 - Modelling the pion-cloud
- Beyond rainbow-ladder: Yang-Mills sector
 Gluonic Corrections

5 Outlook/Conclusions

Outline

Introduction

- Bethe-Salpeter equations
- Schwinger-Dyson equations
- Rainbow-Ladder

Quark-gluon vertex

- Basic structure
- Beyond rainbow-ladder: Unquenching effects
 Modelling the pion-cloud
- Beyond rainbow-ladder: Yang-Mills sector
 Gluonic Corrections

5 Outlook/Conclusions

Bethe-Salpeter equations

Bound states:

• poles in $n \ge$ 3-point colour singlet Green's functions

$$\Gamma_{H}(\rho, P) = \frac{r_{H}\Gamma_{h}(\rho, P)}{P^{2} + m_{H}^{2}} + \text{regular terms}$$

 $\Gamma_h(p, P)$ solves homogeneous Bethe-Salpeter Equation:

Required inputs

- Quark propagator
- Gluon propagator

- Quark-Gluon vertex
- Scattering kernel K

Schwinger-Dyson equations

Basic objects are the propagators of the theory.

Quark

$$\left\langle ar{\psi}^{a}\psi^{b}
ight
angle \equiv S_{F}^{ab}\left(p
ight) = \delta^{ab}rac{ip+M\left(p^{2}
ight)}{p^{2}+M^{2}\left(p^{2}
ight)}Z_{f}(p^{2})$$

Gluon[†]

$$\left\langle \mathsf{A}_{\mu}^{a}\mathsf{A}_{\nu}^{b}
ight
angle \equiv \mathsf{D}_{\mu
u}(\mathsf{p}) = \delta^{ab}\left(\delta_{\mu
u} - \frac{\mathsf{p}_{\mu}\mathsf{p}_{\nu}}{\mathsf{p}^{2}}\right) \frac{Z\left(\mathsf{p}^{2}
ight)}{\mathsf{p}^{2}}$$

Ghost

$$\left\langle ar{c}^{a}c^{b}
ight
angle \equiv D_{G}^{ab}(
ho) = -\delta^{ab}rac{G\left(
ho^{2}
ight)}{
ho^{2}}$$

Each satisfy a SDE in terms of higher–Green's fns.

(†in Landau gauge)

Schwinger-Dyson equations

Basic objects are the propagators of the theory.

Each satisfy a SDE in terms of higher-Green's fns.

(†in Landau gauge)

Rainbow-Ladder

Bethe-Salpeter equations Rainbow-Ladder truncation

Symmetries help constrain system

Axial-vector WTI

$$P_{\mu}\Gamma^{a}_{5\mu}(k; P) = S^{-1}(k_{+})\frac{1}{2}\lambda^{a}_{f}i\gamma_{5} + \frac{1}{2}\lambda^{a}_{f}i\gamma_{5}S^{-1}(k_{-}) \\ -M_{\zeta}i\Gamma^{a}_{5}(k; P) - i\Gamma^{a}_{5}(k; P)M_{\zeta} .$$

Symmetry preserving truncation in DSE and BSE
 → preserve Goldstone character of the pion

BSE

$$\Gamma_{tu}^{(\mu)}(p; P) = \lambda(P^2) \int \frac{d^4k}{(2\pi)^4} K_{tu;rs}(p, k; P) \left[S(k_+) \Gamma^{(\mu)}(k; P) S(k_-) \right]_{sr}$$

Solve by introducing an eigenvalue $\lambda(P^2)$

Rainbow-Ladder

Bethe-Salpeter equations Rainbow-Ladder truncation

Replace quark-gluon vertex by tree-level form.

Quark-gluon vertex

$$\Gamma^{\rm qg}_{\nu}({\it p}_1,{\it p}_2,{\it p}_3) = \gamma_{\nu} Z_2 / \widetilde{Z}_3 \Gamma^{YM}({\it p}_3^2)$$

BSE Kernel constructed by considering AVWTI:

Quark scattering kernel

$$\begin{array}{l} \mathcal{K}_{tu;sr}(q,p;P) &= \\ \frac{g^2 Z(k^2) \, \Gamma^{\rm YM}(k^2) \, Z_{1F}}{k^2} \left(\delta_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{k^2} \right) \left[\frac{\lambda^a}{2} \gamma_{\mu} \right]_{ts} \left[\frac{\lambda^a}{2} \gamma_{\nu} \right]_{ru} \end{array}$$

BSE obtained from quark SDE by the substitution:

$$\gamma^{\mu} S(k) \gamma^{\nu} \longrightarrow \gamma^{\mu} S(k_{-}) \Gamma_{M}^{(\rho)}(k; P) S(k_{+}) \gamma^{\nu}$$

Rainbow-Ladder

Bethe-Salpeter equations Rainbow-Ladder truncation

- Satisfies AV-WTI
- Reproduces:
- masses of light pseudoscalar, vectors
- leptonic decay constants
- electromagnetic form factors, pion charge radius.

Richard Williams (TU Darmstadt)

Baby-steps beyond rainbow-ladder

Rainbow-Ladder

Beyond Rainbow-Ladder

Moving beyond Rainbow-Ladder:

- akin to looking for a pot of gold at the end of a *rainbow*

Technically very challenging:

- Coupled integral equations
- Must preserve symmetries
- Computationally involved:
- Calculate input Green's functions
- Solve normalisation conditions.
- Want:
- Unquenching (quark-loops)
- Yang-Mills corrections

Beyond Rainbow-Ladder

Be more humble and ask for some pi at the end of our rainbow.

- Arises from unquenching (pion-cloud)
- Hadronic contribution (decay widths?)
- additional tensor structure
 → beyond the rainbow

Challenging, but tractable within further simplifying approximations.

Rainbow-Ladder

Beyond Rainbow-Ladder

Also mandatory to think about additional contributions from Yang-Mills sector.

- Use of *ab initio* quantities to determine:
- gluon propagator
- quark-gluon interaction

model determined dynamically

non vector-vector couplings

richer pattern of chiral symmetry breaking exhibited by meson masses

Outline

- Bethe-Salpeter equations
- Schwinger-Dyson equations
- Rainbow-Ladder

Quark-gluon vertexBasic structure

- Beyond rainbow-ladder: Unquenching effects
 Modelling the pion-cloud
- Beyond rainbow-ladder: Yang-Mills sector
 Gluonic Corrections

Outlook/Conclusions

Quark-Gluon vertex

Quark-Gluon vertex

• Quark diagram Hadronic contributions

[C. Fischer, D. Nickel, J. Wambach, PRD 76 (2007) 094009]

[C. Fischer, D. Nickel, RW, arXiv:0807.3486, [hep-ph]]

[C. Fischer, RW, arXiv:0808.3372, [hep-ph]]

Ghost diagram Infrared leading

[R. Alkofer, C. Fischer, F. Llanes-Estrada, MPL A 23, 1105 (2008)]

[R. Alkofer, C. Fischer, F. Llanes-Estrada, K. Schwenzer, Annals of Physics, arXiv:0804.3042 [hep-ph]]

For all scales vanishing symmetrically, exhibit power law solutions

$$\Gamma^{n,m,l} \sim \left(p^2 / \Lambda_{
m QCD}^2
ight)^{(n-m)\kappa - l/2}$$

Quark-Gluon vertex

Quark-Gluon vertex

Quark-gluon vertex

Basic structure

Quark-Gluon vertex: Numerical solutions

[R. Alkofer, C. Fischer, F. Llanes-Estrada, K. Schwenzer, Annals of Physics, arXiv:0804.3042 [hep-ph]]

$$\Gamma^{\mu}(p_1, p_2) = \sum_{k=1}^{12} \lambda_k(p_1, p_2) L^{\mu}(p_1, p_2)$$

Outline

- Bethe-Salpeter equations
- Schwinger-Dyson equations
- Rainbow-Ladder

Quark-gluon vertexBasic structure

- Beyond rainbow-ladder: Unquenching effects
 Modelling the pion-cloud
- Beyond rainbow-ladder: Yang-Mills sector
 Gluonic Corrections

5 Outlook/Conclusions

Modelling the pion-cloud

Hadronic Unquenching Effects (Pion Cloud)

First steps

- Subsume all Yang-Mills corrections into a vertex dressing
 - form inspired by quark-gluon vertex calculations
 - scales left free (but constrained) for parameter fitting
- Icon propagator obtained from SDE solutions
- Focus on and quantify hadronic effects.

For investigatory purposes we simplify the truncation further:

- Gives idea of necessary difficulty
- Allows techniques to be refined:
 - Solving quark in the complex plane (Euclidean space)
 - Normalisation condition for non-trivial Kernel.

Hadronic Quenching Effects (Pion Cloud) Modelling the YM part

Yang-Mills part of quark-gluon interaction Γ_{μ} :

- $Z(k^2)\Gamma_{\rm YM} \sim \alpha(k^2)$: for large momenta
- $\Gamma_{\rm YM} \sim (k^2)^{-1/2-\kappa}$: IR soft-singularity in gluon momentum.

[R. Alkofer, C. Fischer, F. Llanes-Estrada, K. Schwenzer, Annals of Physics, arXiv:0804.3042 [hep-ph]]

• For consistency with axWTI, use $\Gamma_{\mu} \sim \Gamma_{YM} \gamma_{\mu}$

Soft-Divergence

$$\begin{aligned} \mathbf{Y}_{\mathrm{YM}}(k^{2}) &= \left(\frac{k^{2}}{k^{2}+d_{2}}\right)^{-1/2-\kappa} \\ &\times \left(\frac{d_{1}}{d_{2}+k^{2}}+\frac{k^{2}d_{3}}{d_{2}^{2}+(k^{2}-d_{2})^{2}}+\frac{k^{2}}{\Lambda_{\mathrm{QCD}}^{2}+k^{2}} \\ &\times \left[\frac{4\pi}{\beta_{0}\alpha_{\mu}}\left(\frac{1}{\log\left(\frac{k^{2}}{\Lambda_{\mathrm{QCD}}^{2}}\right)}-\frac{\Lambda_{\mathrm{QCD}}^{2}}{k^{2}-\Lambda_{\mathrm{QCD}}^{2}}\right)\right]^{-2\delta} \end{aligned}$$

Hadronic Quenching Effects (Pion Cloud) Modelling the YM part

Yang-Mills part of quark-gluon interaction Γ_{μ} :

- $Z(k^2)\Gamma_{\rm YM} \sim \alpha(k^2)$: for large momenta
- $\Gamma_{\rm YM} \sim (k^2)^{-1/2-\kappa}$: IR soft-singularity in gluon momentum.

[R. Alkofer, C. Fischer, F. Llanes-Estrada, K. Schwenzer, Annals of Physics, arXiv:0804.3042 [hep-ph]]

• For consistency with axWTI, use $\Gamma_{\mu} \sim \Gamma_{YM} \gamma_{\mu}$

Richard Williams (TU Darmstadt)

Baby-steps beyond rainbow-ladder

Modelling the pion-cloud

Quark-Gluon vertex - Hadronic unquenching

Truncation

Modelling the pion-cloud

Pion-cloud effects in light mesons

Coupled SDE/BSE system

• AxWTI satisfied in χ -limit:

$$P_{\mu}\Gamma^{a}_{5\mu}(k;P) = S^{-1}(k_{+})\frac{1}{2}\lambda^{a}_{f}i\gamma_{5} + \frac{1}{2}\lambda^{a}_{f}i\gamma_{5}S^{-1}(k_{-}) \\ -M_{\zeta}i\Gamma^{a}_{5}(k;P) - i\Gamma^{a}_{5}(k;P)M_{\zeta} .$$

Generalised GMOR relation well-satisfied:

$$f_{\pi}m_{\pi}^2 = r_{\pi}\left(m_u(\mu^2) + m_d(\mu^2)\right) \;,$$

Modelling the pion-cloud

Pion-cloud effects in light mesons

Simple off-shell prescription

$$\Gamma^{j}_{\pi}(oldsymbol{
ho};oldsymbol{P})= au^{j}\gamma_{5}rac{B_{\chi}(oldsymbol{
ho}^{2})}{f_{\pi}}$$

Modelling the pion-cloud

Pion-cloud effects in light mesons

Normalisation

$$\begin{split} ^{ij} &= 2 \frac{\partial}{\partial P^2} \mathrm{tr} \int \frac{d^4 k}{(2\pi)^4} \\ & \left[3 \left(\overline{\Gamma}^i_{\pi}(k, -Q) S(k+P/2) \Gamma^j_{\pi}(k, Q) S(k-P/2) \right) \right. \\ & \left. + \int \frac{d^4 q}{(2\pi)^4} [\overline{\chi}^i_{\pi}]_{sr}(q, -Q) \mathcal{K}^{\mathrm{pion}}_{tu;rs}(q, k; P) [\chi^j_{\pi}]_{ut}(k, Q) \right] \end{split}$$

Canonical condition:

Demand residue of bound-state in inhomogeneous Bethe-Salpeter equation is equal to unity.

Modelling the pion-cloud

Pion-cloud effects in light mesons

Normalisation

$$egin{aligned} \delta^{jj} &= & 2rac{\partial}{\partial P^2} \mathrm{tr} \int rac{d^4 k}{(2\pi)^4} \ & \left[& 3\left(\overline{\Gamma}^i_{\pi}(k,-Q)S(k+P/2)\Gamma^j_{\pi}(k,Q)S(k-P/2)
ight)
ight. \ & + \int rac{d^4 q}{(2\pi)^4} [\overline{\chi}^j_{\pi}]_{sr}(q,-Q) \mathcal{K}^{\mathrm{pion}}_{tu;rs}(q,k;P)[\chi^j_{\pi}]_{ut}(k,Q)
ight], \end{aligned}$$

Results

Spectrum of light mesons

	Maris-Tandy		Our Model		Experiment
	w/o pi	incl. pi	w/o pi	incl. pi	
M_{π}	140	138 [†]	125	138 [†]	138
f_{π}	104	93 †	102	93 [†]	93
		(90)		(90)	
M_{σ}	746	598	638	485	400 - 1200
$M_{ ho}$	821	720	795	703	776
$f_{ ho}$	160	167	159	162	156
		(167)		(165)	
M_{a_1}	979	913	941	873	1230
M_{b_1}	820	750	879	806	1230

Results

Spectrum of light mesons

	Maris-Tandy		Our Model		Experiment
	w/o pi	incl. pi	w/o pi	incl. pi	
M_{π}	140	138 [†]	125	138 [†]	138
f_{π}	104	93 †	102	93 [†]	93
		(90)		(90)	
M_{σ}	746	598	638	485	400 - 1200
$M_{ ho}$	821	720	795	703	776
$f_{ ho}$	160	167	159	162	156
		(167)		(165)	
M _{a1}	979	913	941	873	1230
M_{b_1}	820	750	879	806	1230
M_{η}			493	497	548
$M_{\eta'}$			949	963	948

Yang-Mills part of vertex too simple.

Richard Williams (TU Darmstadt)

Baby-steps beyond rainbow-ladder

Modelling the pion-cloud

Vector vs. Pseudoscalar mass

Mass plots

Richard Williams (TU Darmstadt)

Baby-steps beyond rainbow-ladder

Outline

- Bethe-Salpeter equations
- Schwinger-Dyson equations
- Rainbow-Ladder

Quark-gluon vertex
 Basic structure

Beyond rainbow-ladder: Unquenching effects
 Modelling the pion-cloud

Beyond rainbow-ladder: Yang-Mills sector
 Gluonic Corrections

5 Outlook/Conclusions

Gluonic corrections

Consider the approximated system:

Gluonic corrections

Solving vertex SDE for real Euclidean Momenta

- Nowadays ROUTINE.

all basic QCD vertices tackled to date within some approximation

Bound-states in Euclidean space $\rightarrow P^2 = -M^2$.

- Need both quark propagator and Quark-Gluon vertex for C-momenta
- Only a (very) technical difficulty surmounted.

Gluonic Corrections

Gluonic corrections Bethe-Salpeter equation

Cutting propagators/substitution rules give BSE Kernel:

- We really calculate these two-loop diagrams
- No Munczek-Nemirovsky
- Axial-Vector WTI preserving truncation.

Gluonic corrections Simple exploratory model

Replace three-gluon vertex with tree-level form

$$\Gamma^{(0)abc}_{\mu
u
ho}(m{p},m{k},m{q})=m{g}\,m{f}^{abc}\left(\delta_{\mu
u}\,(m{p}-m{q})_{
ho}+\delta_{
u
ho}\,(m{q}-m{k})_{\mu}+\delta_{
ho\mu}\,(m{k}-m{p})_{
u}
ight)$$

- Replace internal quark-gluon vertices with γ_{μ} .
- Replace gluon with some integrated strength

$$Z(p^2) = rac{g^2}{4\pi} rac{\pi D}{\omega^2} p^4 \exp\left(-p^2/\omega^2
ight)$$

NOT representative of what we expect in nature:

- think of effective gluon interaction compensating for lack of internally dressed vertices.
- no ultraviolet support renormalisation trivial.

Gluonic Corrections

Gluonic corrections Simple exploratory model

Replace three-gluon vertex with tree-level form •

$$\Gamma^{(0)abc}_{\mu
u
ho}(m{p},m{k},m{q})=m{g}\,m{f}^{abc}\left(\delta_{\mu
u}\,(m{p}-m{q})_{
ho}+\delta_{
u
ho}\,(m{q}-m{k})_{\mu}+\delta_{
ho\mu}\,(m{k}-m{p})_{
u}
ight)$$

- Replace internal quark-gluon vertices with γ_{μ} .
- Replace gluon with some integrated strength

Gluonic Corrections

Gluonic corrections Simple exploratory model – Results

Richard Williams (TU Darmstadt)

Baby-steps beyond rainbow-ladder

Outline

- Bethe-Salpeter equations
- Schwinger-Dyson equations
- Rainbow-Ladder

Quark-gluon vertex

- Beyond rainbow-ladder: Unquenching effects
 Modelling the pion-cloud
- Beyond rainbow-ladder: Yang-Mills sector
 Gluonic Corrections

5 Outlook/Conclusions

Outlook

• Unquenching: Improve pion off-shell prescription

- Inputs: Employ solutions from SDE solutions
- Results: Meson spectrum, EM form factors

Seven down - two to go. But we must still solve ...

Richard Williams (TU Darmstadt)

Baby-steps beyond rainbow-ladder

Outlook

Normalisation

Need in order to determine leptonic decay constants

Conclusions

Summary

Quark-Gluon vertex critical object. Contains

- Hadronic unquenching effects
- Yang-Mills corrections

Demonstrated that effects from the pion-cloud:

- are generally attractive
- generate effects of right size
- can be successfully modelled in a simple model

Presented progress on state-of-the-art calculations:

- incorporation of leading corrections to vertex
- full two-loop calculations no kinematic restrictions.