Can one measure timelike Compton scattering at LHC ?

Jakub Wagner, Institute for Nuclear Studies, Warsaw, Poland

Excited QCD, 8-14 February 2009, Zakopane

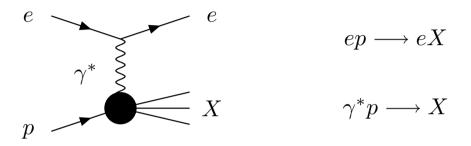
Phys.Rev.D79:014010,2009 arXiv:0811.0321 [hep-ph] in colaboration with: B.Pire, CPHT, École Polytechnique L.Szymanowski, Institute for Nuclear Studies

OUTLINE OF THE TALK.

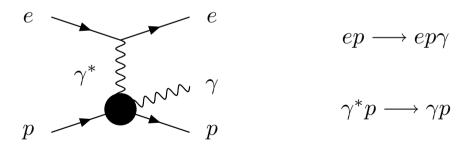
- 1. Deeply virtual Compton scattering (DVCS) and Generalized Parton Distributions (GDPs)
 - Big theoretical and experimental effort in the DVCS $(\gamma^* p \rightarrow \gamma p)$, an exclusive reaction where GPDs factorize from perturbative coefficient functions, when the virtuality of the incoming photon is high.
 - GDPs encodes also transverse momentum dependence of partons.
- 2. Properties of Timelike Compton Scattering (TCS)
 - Exclusive process $(\gamma p \to \gamma^* p)$, for large *timelike* virtuality shares many features of DVCS
 - Crossing from spacelike to timelike probe important test of QCD corrections.
- 3. Timelike Compton Scattering at LHC.
 - Hadron Colliders as powerful sources of quasi real photons in UPC.
 - First study of the feasibility of extraction of the TCS signal.

DIS vs. DVCS

• Deep Inelastic Scattering:

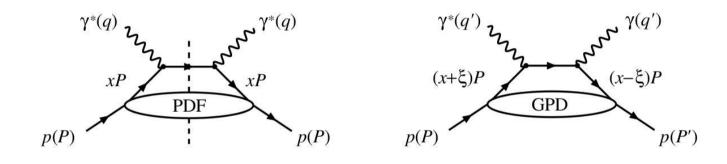


• Deeply Virtual Scattering (DVCS):



DIS vs. DVCS

• DIS vs. DVCS



• factorization: DIS : $\sigma = [PDF] \otimes [partonic cross section]$ DVCS : $\mathcal{M} = [GPD] \otimes [partonic amplitude].$

Definition of GPDs

• Definition of PDFs:

$$q(x) = \frac{1}{2} \sum_{spin} \int \frac{d\lambda}{2\pi} e^{-i\lambda x} \langle p(P) | \bar{\psi}_q(z) \not n \psi_q(0) | p(P) \rangle$$

where: $z^{\mu} = \lambda n^{\mu}, n^2 = 0, n \cdot P = 1.$

• Definition of GPDs:

$$\int \frac{d\lambda}{2\pi} e^{i\lambda x} \langle p(P') | \bar{\psi}_q(-z/2) \not h \psi_q(z/2) | p(P) \rangle = H^q(x,\xi,t) \bar{u}(P') \not h u(P)$$

+ $E^q(x,\xi,t) \bar{u}(P') \frac{i\sigma^{\beta\alpha} \Delta_{\alpha} n_{\beta}}{2M} u(P)$

where:
$$z^{\mu} = \lambda n^{\mu}, n^2 = 0, n \cdot \frac{P+P'}{2} = 1, \Delta^{\mu} = (P'-P)^{\mu}, t = \Delta^2.$$

GENERALIZED PARTON DISTRIBUTIONS

- GDPs enters factorization theorems for hard exlusive reactions (DVCS, deeply virtual meson production etc.), in a similar manner as PDFs enter factorization theorem for DIS.
- GPDs are functions of **three** kinematical variables: longitudal momentum fraction x, longitudinal momentum transfer ξ and overall momentum transfer t.

GENERALIZED PARTON DISTRIBUTIONS (2)

• In the forward limit: $t, \xi \to 0$, GPDs reduce to PDFs.

$$H^{q}(x,\xi=0,t=0) = \begin{cases} q(x) & \text{for} & x > 0\\ -\bar{q}(-x) & \text{for} & x < 0 \end{cases}$$

• When integrated over x, GPDs reduce to elastic form factors.

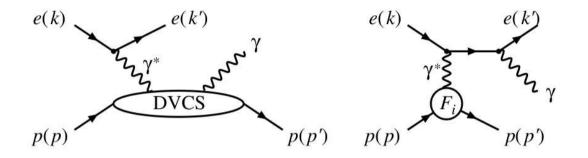
$$F_{1}(t) = \sum_{q} e_{q} \int_{-1}^{+1} dx H^{q}(x,\xi,t)$$
$$F_{2}(t) = \sum_{q} e_{q} \int_{-1}^{+1} dx E^{q}(x,\xi,t)$$

 ξ dependence vanishes after integration over x (also factorization scale dependence).

GENERALIZED PARTON DISTRIBUTIONS

- First moment of GPDs, enter the Ji's sum rule for the angular momentum carried by partons in the nucleon.
- Fourier transform of GPD's to impact parameter space can be interpreted as ,,tomographic" 3D pictures of nucleon, describing charge distribution in the transverse plane, for a given value of x.

DVCS AND BETHE-HEITLER CONTRIBUTION.



$$\sigma \sim |\mathcal{A}_{DVCS} + \mathcal{A}_{BH}|^2 = |\mathcal{A}_{DVCS}|^2 + |\mathcal{A}_{BH}|^2 + \mathcal{A}_{DVCS}\mathcal{A}_{BH}^* + \mathcal{A}_{DVCS}^*\mathcal{A}_{BH}$$

Different beam charges allow to filter the interference term (linear in lepton charge), and extract information about GPDs.

Exclusive photoproduction of dileptons, $\gamma N \rightarrow \ell^+ \ell^- N$

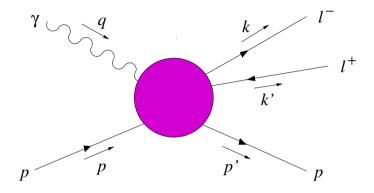
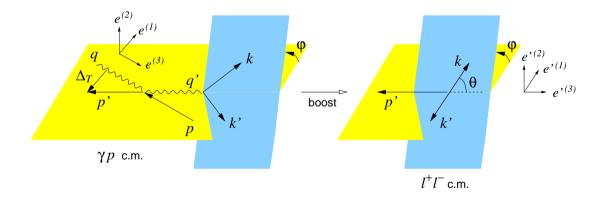


Figure 1: Real photon-proton scattering into a lepton pair and a proton.



BETHE-HEITLER PROCESS

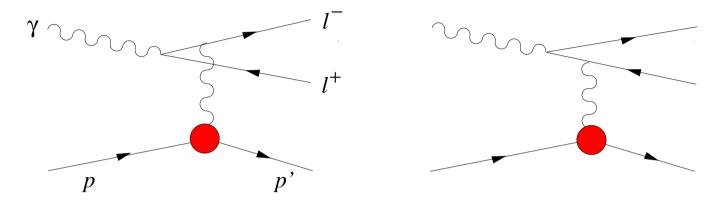


Figure 2: The Feynman diagrams for the Bethe-Heitler amplitude.

$$\frac{\mathrm{d}\sigma_{BH}}{\mathrm{d}Q'^2\mathrm{d}\Omega\mathrm{d}t} \longrightarrow \frac{\alpha^3}{4\pi} \frac{1}{-tL} (1+\cos^2\theta) \left(F_1^2 - \frac{t}{4M_p^2}F_2^2\right)$$

For small θ BH contribution becomes extremely large.

TIMELIKE COMPTON SCATTERING

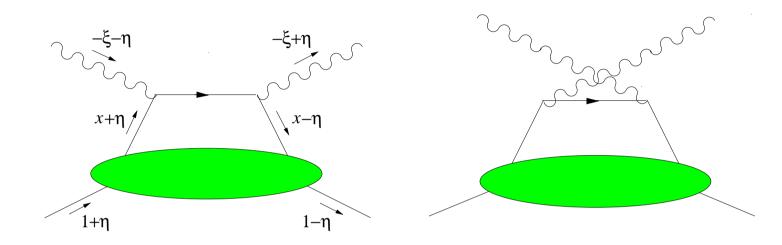


Figure 3: Handbag diagrams for the Compton process in the scaling limit. The plus-momentum fractions x, ξ, η refer to the average proton momentum $\frac{1}{2}(p+p')$.

$$T^{\alpha\beta} = -\frac{1}{(p+p')^{+}}\bar{u}(p')\left[g_{T}^{\alpha\beta}\left(\mathcal{H}\gamma^{+} + \mathcal{E}\frac{i\sigma^{+\rho}\Delta_{\rho}}{2M}\right) + i\epsilon_{T}^{\alpha\beta}\left(\tilde{\mathcal{H}}\gamma^{+}\gamma_{5} + \tilde{\mathcal{E}}\frac{\Delta^{+}\gamma_{5}}{2M}\right)\right]u(p)$$

FACTORIZATION

$$\begin{aligned} \mathcal{H}(\xi,\eta,t) &= \sum_{q} e_q^2 \int_{-1}^{1} \mathrm{d}x \left(\frac{1}{\xi - x - i\epsilon} - \frac{1}{\xi + x - i\epsilon} \right) H^q(x,\eta,t) \\ \mathcal{E}(\xi,\eta,t) &= \sum_{q} e_q^2 \int_{-1}^{1} \mathrm{d}x \left(\frac{1}{\xi - x - i\epsilon} - \frac{1}{\xi + x - i\epsilon} \right) E^q(x,\eta,t) \\ \tilde{\mathcal{H}}(\xi,\eta,t) &= \sum_{q} e_q^2 \int_{-1}^{1} \mathrm{d}x \left(\frac{1}{\xi - x - i\epsilon} + \frac{1}{\xi + x - i\epsilon} \right) \tilde{H}^q(x,\eta,t) \\ \tilde{\mathcal{E}}(\xi,\eta,t) &= \sum_{q} e_q^2 \int_{-1}^{1} \mathrm{d}x \left(\frac{1}{\xi - x - i\epsilon} + \frac{1}{\xi + x - i\epsilon} \right) \tilde{H}^q(x,\eta,t) \end{aligned}$$

$$\frac{\mathrm{d}\sigma_{TCS}}{\mathrm{d}Q'^2\mathrm{d}\Omega\mathrm{d}t} \approx \frac{\alpha^3}{8\pi} \frac{1}{s^2} \frac{1}{Q'^2} \left(\frac{1+\cos^2\theta}{4}\right) 2(1-\eta^2) \left(|\mathcal{H}|^2+|\tilde{\mathcal{H}}|^2\right)$$

MODELIZING GPDs

In this first study of the feasibility of the extraction of the TCS signal, we simplify our calculations by using a factorization ansatz for the t dependence of GPD's:

$$H^{u}(x,\eta,t) = h^{u}(x,\eta)\frac{1}{2}F_{1}^{u}(t)$$
$$H^{d}(x,\eta,t) = h^{d}(x,\eta)F_{1}^{d}(t)$$
$$H^{s}(x,\eta,t) = h^{s}(x,\eta)F_{D}(t)$$

and a double distribution ansatz for h^q :

$$h^{q}(x,\eta) = \int_{0}^{1} dx' \int_{-1+x'}^{1-x'} dy' \Big[\delta(x-x'-\eta y')q(x') - \delta(x+x'-\eta y')\bar{q}(x') \Big] \pi(x',y')$$

$$\pi(x',y') = \frac{3}{4} \frac{(1-x')^{2}-y'^{2}}{(1-x')^{3}}$$

FACTORIZATION SCALE DEPENDENCE.

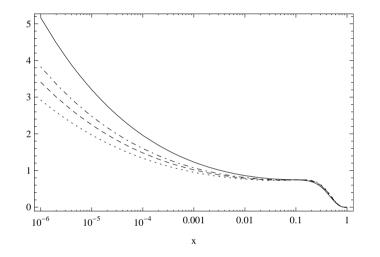


Figure 4: The NLO(\overline{MS}) GRVGJR 2008 parametrization of $u(x) + \bar{u}(x)$ for different factorization scales $\mu_F^2 = 4$ (dotted), 5 (dashed), 6 (dash-dotted), 10 (solid) GeV².

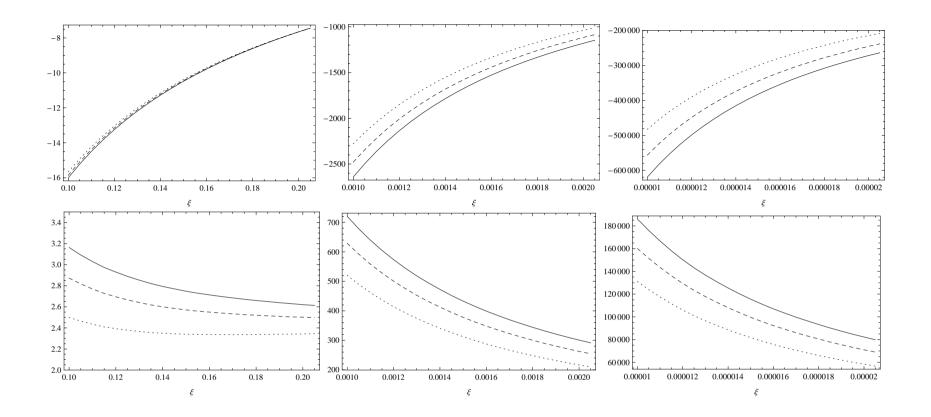


Figure 5: Im \mathcal{H}^u (up) and Re \mathcal{H}^u (down) divided by $\frac{1}{2}F^u$ for various factorization scales $\mu_F^2 = 4$ (dotted), 5 (dashed), 6 (solid) GeV² and various ranges of ξ : $[1 \cdot 10^{-1}, 2 \cdot 10^{-1}], [1 \cdot 10^{-3}, 2 \cdot 10^{-3}], [1 \cdot 10^{-5}, 2 \cdot 10^{-5}].$

INTERFERENCE

$$\frac{d\sigma_{INT}}{dQ'^2 dt d\cos\theta d\varphi} = -\frac{\alpha_{em}^3}{4\pi s^2} \frac{1}{-t} \frac{M}{Q'} \frac{1}{\tau\sqrt{1-\tau}} \cos\varphi \frac{1+\cos^2\theta}{\sin\theta} \operatorname{Re}\mathcal{M}$$

with

$$\mathcal{M} = \frac{2\sqrt{t_0 - t}}{M} \frac{1 - \eta}{1 + \eta} \left[F_1 \mathcal{H} - \frac{t}{4M^2} F_2 \mathcal{E} \right]$$

Since the amplitudes for the Compton and Bethe-Heitler processes transform with opposite signs under reversal of the lepton charge, the interference term between TCS and BH is odd under exchange of the ℓ^+ and ℓ^- momenta. It is thus possible to project out the interference term through a clever use of the angular distribution of the lepton pair.

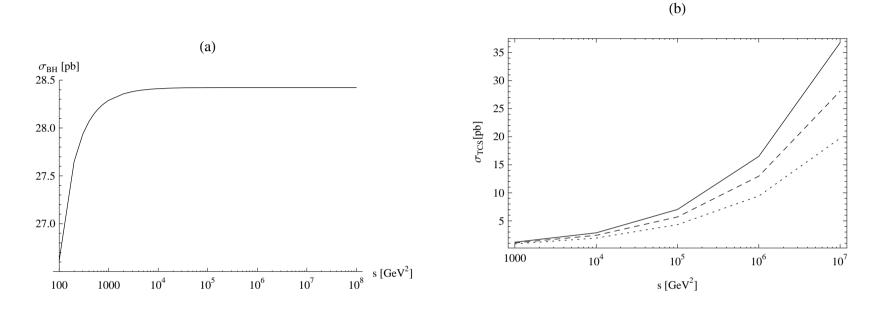
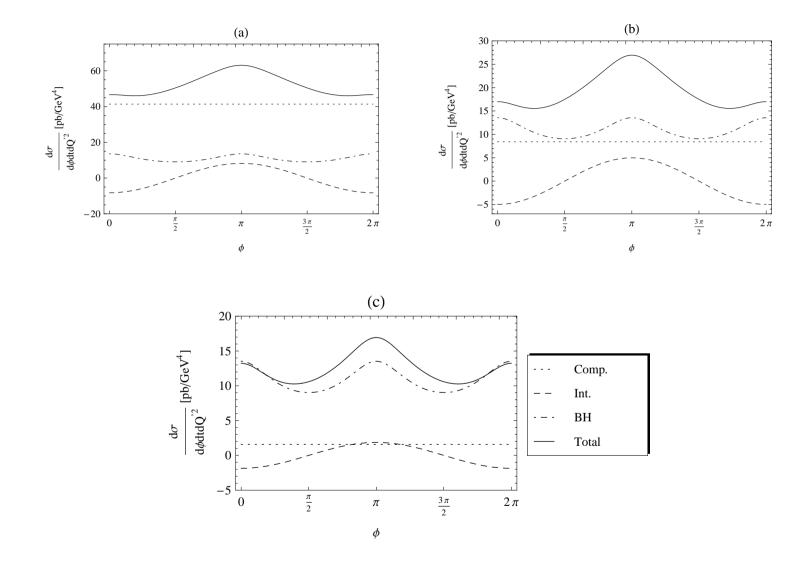
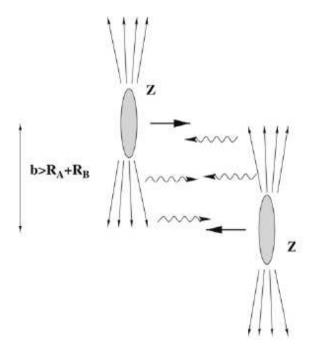


Figure 6: (a) The BH cross section integrated over $\theta \in [\pi/4, 3\pi/4]$, $\varphi \in [0, 2\pi]$, $Q'^2 \in [4.5, 5.5] \,\text{GeV}^2$, $|t| \in [0.05, 0.25] \,\text{GeV}^2$, as a function of γp c.m. energy squared s. (b) σ_{TCS} as a function of γp c.m. energy squared s, for GRVGJR2008 NLO parametrizations, for different factorization scales $\mu_F^2 = 4$ (dotted), 5 (dashed), 6 (solid) GeV^2 .



HADRON COLLIDERS AS PHOTON COLLIDERS.

Ultraperipherical collisions:



EFFECTIVE PHOTON APPROXIMATION

The cross section for photoproduction in hadron collisions is given by:

$$\sigma_{pp} = 2 \int \frac{dn(k)}{dk} \sigma_{\gamma p}(k) dk$$

where $\sigma_{\gamma p}(k)$ is the cross section for the $\gamma p \to pl^+l^-$ process and k is the photon energy. $\frac{dn(k)}{dk}$ is an equivalent photon flux (the number of photons with energy k), and is given by:

$$\frac{dn(k)}{dk} = \frac{\alpha}{2\pi k} \left[1 + \left(1 - \frac{2k}{\sqrt{s_{pp}}}\right)^2 \right] \left(\ln A - \frac{11}{6} + \frac{3}{A} - \frac{3}{2A^2} + \frac{1}{3A^3} \right)$$

where: $A = 1 + \frac{0.71 \,\text{GeV}^2}{Q_{min}^2}$, $Q_{min}^2 \approx \frac{4M_p^2 k^2}{s_{pp}}$ is the minimal squared fourmomentum transfer for the reaction, and s_{pp} is the proton-proton energy squared $(\sqrt{s_{pp}} = 14 \,\text{TeV})$. The relationship between γp energy squared s and k is given by:

$$s \approx 2\sqrt{s_{pp}}k$$

Full cross sections

The pure Bethe - Heitler contribution to σ_{pp} , integrated over $\theta = [\pi/4, 3\pi/4]$, $\phi = [0, 2\pi], t = [-0.05 \,\text{GeV}^2, -0.25 \,\text{GeV}^2], Q'^2 = [4.5 \,\text{GeV}^2, 5.5 \,\text{GeV}^2]$, and photon energies $k = [20, 900] \,\text{GeV}$ gives:

$$\sigma_{pp}^{BH} = 2.9 \,\mathrm{pb} \;.$$

The Compton contribution (calculated with NLO GRVGJR2008 PDFs, and $\mu_F^2 = 5 \,{\rm GeV}^2$) gives:

$$\sigma_{pp}^{TCS}=1.9\,\mathrm{pb}$$
 .

- The range of photon energies expected capabilities to tag photon energies at the LHC.
- 10^5 events/year at the LHC with its nominal luminosity $(10^{34} \text{ cm}^{-2} \text{s}^{-1})$.

SUMMARY

- Compton scattering in ultraperipheral collisions at hadron colliders opens a new way to measure generalized parton distributions.
- Sizeble rates even for the lower luminosity which can be achieved in the first months of run.
- Our work has to be supplemented by studies of higher order contributions which will involve the gluon GPDs; they will hopefully lead to a weaker factorization scale dependence of the amplitudes.