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Motivation and Introduction

e Confinement and chiral symmetry breaking as nonper-
turbative phenomena in QCD.

— Confinement - there are no free colored (long time
living) states.

— Chsb - Dynamical mass generation; the masses
appear without its explicit presence in the classical
action. For spin 1/2- chiral symmetry is broken
because of "strong" interaction in QCD, 2+1 QED
with small N4, Technicolors ...

If there are no singularities in the Green's functions
associated with colored objects, the associated objects
cannot propagate freely in spacetime, they must be con-

fined.

QFT: classical action-> Green's function->knowledge
of the poles S/matrix-> do

Instead of some general proof of mass gap in QCD
or a general proof of confinement ( Witten at all) |
expect step by step approximate evidence of confinement
of simple colored object that we can imagine.



free moving particles or bound states- Singularities
are expected in GFs in timelike regime of momenta

permanently confined objects- Singularities are
NOT expected in GFs in timelike regime of momenta

Technique providing the results for GFs in timelike axis of
momenta is welcome!

In practise- Wick rotation is done. All lattice and most of the
other nonperturbative first principle QCD calculations are performed
in the Euclidean space. The property of GFs at timelike momenta
are estimated by continuation (within a doubts).

Direct Minkowski approach:

e Perturbation theory (any standard text-books)

e spectral SDE solutions C — Ry analytical assumption V.S.
JHEP2001,FBS2005 works only for subcritical coupling V.S. |
J. Adam, P. Bicudo: PRD2007

e Gauge (Pinch) Technique- Salam, Delbourgho (QED), Cornwall
(QCD)

conclusion: Solution for timelike momenta based on the weaker
assumption is necessary



Schwinger-Dyson equations

Quantum equation of motion- 8" /d¢ system of Eqs. for
Greens functions (see Itzykson-Zuber)

S /quark, G//gluon, g-ghost

S = F[S, G, T]
G = F[G,9,TcaaTaaaa Taggr S Tsas]

9g="Fr[G,9,Tqaa - Taaaa T'aggl
I's = F[S,G,g,T'3,I'4]

.. reviews, applications, methods of solution:

Euclidean space: R. Alkofer, L. Smekal, An. Phys. 1999.
P. Maris, C.D. Roberts, Int.J.Mod.Phys. E12 (2003) 297-365,
+1000 of other papers

Minkowski space by spectral representations: V.
Sauli. Few-Body Systems, 39, 45 (2006)

Temporal Euclidean space: V. Sauli and Z. Batiz,
arXiv:0901.0110, Confinement and Chiral Symmetry Breaking in
QED2+1

Sauli,Batiz, J.Phys.G36 (2009)

Sauli, arXiv: last week ...



Standard Euclidean space formulation

Wick Rotations in 4dim:
t — 1T ,po — —1P4

The Wick rotation is a calculational trick in quantum theory in
which we assume that the energy or the time are pure imaginary.
We do the calculations given these assumptions, which are often
more well-defined, and then analytically continue the results back
the usual real values of time and/or energy. It works usually in
perturbation theory

iIn momentum space, quark gap:

S~ (p) =p —m — (p)

Y(p) = —i / %Tu(p, q)S(q)v.G" (p — q)

singularity structure S ~ 1/(p* — m?)

2:

P’ =P, — Py — Py P:



E. GFs are regular and smooth in E space

SDE in E space after WR qg, po — —1q4, —1p4

S(pe) = [ BT pE a8)Sa£)CH (0 — ar)

feasible since no sing. tree level: S ~ 1/(p* + m?)
pE = —p* =PI+ D3+ 35+ pi

E GF.s are real functions note- Euclidean means
Minkowskian spacelike (assuming validity of assumptions)

Advantages:
e no singularities
e convenient usage of spherical coordinates

Disadvantages:

e unknown physics at timelike domain if back WR is not
performed



SDE in Temporal Euclidean space

The idea: deforming contour for space components
of fourmomentum P to arrive to the Euclidean space
again

multidimensional analogue of WR

Im k

« Rek,

Figure 1: Deformation of the contour of space component of P in
complex plane

Assumptions: the GFs are holomorphic in the fourth
and the second quadrants of complex plane of P, .

4
p2ET = Zi:1 pzz

P = (p17p27p37p4)[ET] — (p07 _ipla _ip27 _Zp?))[M]

Y



measure d*pys = id3 with real 00 boundaries in a
momentum loop integrals.

Results:

Equations and loop expressions simplify, perturbative
singularity persist.

tree level propag.:

~ 1

2

ambiguity free assumptions for confining theory-

e There are no poles at real axis of p? for Greens func-
tions describing permanently confined object (quarks,
gluons)

because of "selfenergy property"-> becomes com-
plex dynamically bellow naive perturbative

threshold

Advantages of Fy:

e (technical) SDEs for confined objects are smooth func-
tions even for any p?



e (technical) convenient usage of spherical coordinates

The hyperbolic angle of Minkowskian "spherical" co-
ordinates:

ko = kcoshf,0 € (0,00)
turns to be standard angle

ki =kcosf,0 € (—7m/2,7/2)

e (physical) knowledge about timelike behaviour of GFs
Disadvantage (or perhaps warning):

e some "weak" singularities persist

Example: Propagators of SM W, Z, H fields have
predominantly poles close to the real axis (we must
define how to work with) and their GFs are convoluted
with GFs of confined quarks. However their contribution
to X is substantial. —> no problem

E; SDE are formulated

Suited for study of confinement



QED2-+1 and QED3

Minkowski metric g, = diag(1,—1,—1), four di-
mensional Dirac matrices {7y,,v} = 2g,,, Minkowski
formulation:

5710) =pmic” [ %Guxk—p)r%p)s%w

Ladder approximation of SDE=bare vertex+ free pho-
ton propagator

kuky
o _g/u/_|' (1 —f) /Z2

k2

G

Standard Euclidean treatment:
T. Appelquist,PRL. 60,(1988).

N.E. Mavromatos, J. Papavassiliou, cond-mat/0311421.

A. Bashir, A. Raya, |I. C. Cloet, C. D. Roberts, arXiv:0806.3305.



Temporal Euclidean space for 2+1
dimensional Quantum Electrodynamics

V. Sauli and Z. Batiz, arXiv:0901.0110,

2dim WR leaves i in measure

kx,y — ik2,3

i / A’k — —i / &Pk,

Integrating SDE over the angels gives

21 ko |k
B(p):m—|—i(2—|—§)4€—7r2/0 dk]—)ln‘k—i_]]j,ss(k)

& - gauge parameter



complexification:

_ B(k)

- A2(k)k? — B2(k)

Rp |(R%} —T%)k?* — R —T%] + 2RAT gl 4 k7

Ss(x)

D
T |[(Ry —T%)k*+ R +1%| —2RpRAT 4 k7
+
D
Ak
S,(k) o

~ A2(k)k2 — B2(k)
Ra [(Ry +T%)k? — R5 + T3] —2RpTAl'p
D
La|—(R% +T2%)k* — R5 +T'E| + 2RARpIp
D

+

where Ra, Rp (I'a,T'p) are real (imaginary) parts
of the functions A, B and the denominator D reads

D = ([R3-T34]k*—[RL-T%))>+4(T4uRA—TsB)?.



Confinement in QED2+4-1

Dynamical mass phase of QED2+1 electron
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Figure 2:  Phase

M = |Mle”
ferent C, m =

parameter :C =
moving electrons.

of

1
e
m

p/m

¢ of mass a dynamical mass function
electron living in 241 dimensions with dif-
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. For C > 0.0191 4 001 there are no free



Magnitude of dynamical massin QED2+1, m=1
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Figure 3: Magnitude of the running mass M = | M |e"® of electron
living in 241 dimensions with different C



Direct Minkowski space calculation. Proof
of equivalence between M2+1 and Er3 QED

00 2m 00
/d3kK(k,p) :/ drr2/ d@/ daK(k,p)
0 0 0

ko, = —rch«a
{sha k, = —rsha sinf |+ shal| k,
k, = —r sha cos 0 k,

ko = —rsha
+ cha| k, = —rcha sinf |+ cha| k,
k, = —rcha cos 6 ky

For ladder QED, for timelike momenta

P, = (p,0,0)

_ e [ Kk

Discovery:

k+p
k—p

ko, = rcha
— r sha sin 6
= rshoa cos 6

k, = rsh«
= rcha sin 0
= rcha cos 6

| S.(h)




e spacelike part of Minkowski subspace= 0

e QED2+1 = QED3 in E73

for spacelike external

P, = (0,p,0)

B(ps) = FB(pr)

It is not a gap equation but twodim integrals

but QED2+1 is inequivalent with standard QED3
"WR si wrong".




The Simple Models for QCD CSB in ET
space

Model 0

Ladder Rainbow Landau gauge quark gap equation
with "analyticized" gluon form factor

Sauli,Batiz, J.Phys.G36 (2009)

s I
L2 ] G(k )_€(k2)2

GH (k) = [—g’“’ +

2 o0
g 5 pg(v, Agcp)
-G A = d
47T (q Y QCD) \/O v q2_y_|_i€

Thus, contrary to studied quark propagator, the stan-
dard analyticity for gluon propagator is still assumed.
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Figure 4: The s-quark propagator function A, B. The upper
(down) curves represent the real (imaginary) parts. The dimen-
sionfull quantities are rescaled by QCD scale Agcp. Parameters
m,(0.2A ~ 0) ~ A
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Figure 5. The absolute value of quark mass function
M = |M|e*M and the inverse of renormalization function-

the function || Al| is displayed.



Confinement of light quarks,

sauli arXiV 09

Rainbow, ladder gap quark SDE with two different
modeled kernel

Renormalization at timelike ultraviolet, for explicit
CSB renormalized value M (250 — 350GeV) ~ 2 —
3MeV

Model |.:

Model [1.:

=Model 0 , with softened gluon form factor by factor
1/2 Feynman epsilon € is dropped out.

for the first time we get CSB and confinement for
light and massless quarks in ET space
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Figure 6: Magnitude |M| of the running quark mass function
M = |]\4\eiqb for modeled QCD I 11, its chiral limit CI,Cll. The
SU(3) "Walking Technicolor" T solution is added for for the
comparison, scale is Agecp = 1 (and Agecn, = 1 is set up in
this case as well)
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Figure 7: | infrared behaviour of the functions M as they are in
the Fig. 1, but in with linear axis. The solution for large Ny is
omitted here.
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Figure 8. Phase ¢ of the running quark mass function
M = |M|e"? for the models | and Il respectively, axis momentum
is in the units of Agcp.
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Figure 9: Renormalization wave functions for the model | and II.
The same is shown for the chiral limit (which are indistinguishable
in one case). The "Technicolor" T solution is added for for
the comparison, the momentum axis is scaled in Agcp and Ar
respectively.



Alternative derivation , relation between E
spaces

Do | have time?

Another possibility to arrive to the same equation
Is to start with standard E formulation and make the
continuation to E} at level of SDE

Assumption of analyticity :

Figure 10: Domain of analyticity of SDE solution for complex norm
of Euclidean momentum



Alternative derivation, 4-dim QCD example

S™h=p—m—3(p)
X =X4 p+2; S=5Sv p+Ss

dk?

Sap) = [ SoSvRLa(b

Ss) = [ G S5 s,

14, 1R are kernels obtained from E by k — ik,

| orentz invariance

Ia(p, k) = Ii*(p* — —p* k* — —k?)

B A, B(z)
- 2A2(2) — B%(2)

Ssjv(af)



Conclusion

First analysis of the quark gap equation in the tempo-
ral Euclidean space has been presented. Using 2d and 3d
Wick rotated kernel the analysis of the QED2+1 electron
and QCD quark gap equation in the temporal Euclidean
space has been presented.

For ladder QED2+1 in A = 1 the exact equivalence
between ET and M space is proved.

The mass function of light quarks is predominantly
iImaginary, providing the confining solution for the quark
propagator; such quark propagator has no pole nor branch
point at real p? axis.

At last but not at least the dynamical CSB has been
studied near the critical coupling. The observed numerical
solutions obtained do not suggests separation of the
dynamical CSB from confinement. These phenomena
go hand by hand in hypothetical Walking Technicolors
models.

Future study:

1. gluon propagator and confinement of gluons.



2. Clarification and further justification of of ET
space ( the best way is through the study of M)

3. Hadron phenomenology- BSE, form factors.



