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Dodecatoplet (t6t̄6)

Higgs exchange

−αH
exp(−µH r)

r
, with αH = g2

t /(4π) and gt ∼ 1.

Does it bind tn t̄m? (Frogatt, H.B. Nielsen)
Up to n ≤ 6 and m ≤ 6, behave as bosons.
Optimistic estimate by Nielsen and Frogatt, who neglected the
Debye factor!
Corrected by a Hartree (self consistent effective one-particle
potential) by Shuryak et al. → upper variational bound on ground
state energy
In fact, the calculation of the self-Yukawian boson system already
available in the literature (Pacheco et al.) and a lower bound is
also possible.
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Dodecatoplet (t6t̄6)

If Higgs exchange alone, by scaling, the only parameter is
G = mtαH/µH

for 2-body, no binding for G ≤ 1.68 (Blatt and Jackson, 1949),
i.e., µH ≤ 8.2 GeV for αH = 1/(4π).
For (t6 t̄6), estimate µH . 29 GeV By Shuriak, and µH . 31 GeV
from Pacheco et al.
Perhaps slightly heavier with a better variational calculation,
From the lower-bound on the ground-state energy, the critical
mass [again for αH = 1/(4π)], cannot exceed µ(c)

H = 49 GeV.

If αH bigger, µ(c)
H inversely proportional.
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The chromomagnetic scenario

In the 70s, it was realised that a model based on

HSS = −
∑
i<j

C
mimj

σi .σj λ̃i .λ̃j ,

inspired by the Breit–Fermi term in QED, reproduces the
observed patterns, N < ∆, ηc < J/Ψ, etc.
An astute treatment of the colour-spin algebra exhibits interesting
coherences, e.g., for the H, suggesting its stability

〈
[∑

σi .σj λ̃i .λ̃j

]
(uuddss)〉<〈[...](uds)〉+ 〈[...](uds)〉 ,

and its analogue for the 1987-vintage pentaquark P

〈
[∑

σi .σj λ̃i .λ̃j

]
(Qqqqq)〉<〈[...](Qq)〉+ 〈[...](qqq)〉

However no stability with SU(3)F breaking and an estimate of
short-range correlations in multiquarks, C ∝ 〈δ(3)(r ij )〉,
H not found (in many experiments), nor the P (in 1 exp.)
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Flavour independence & symmetry breaking

If chromomagnetism fails, why not chromo-electricity and its
properties under symmetry breaking ?
Consider

H = H0(even) + λH1(odd).

Then for the ground state, with ψ0(H0) as trial w.f, 〈ψ0|H1|ψ0〉 = 0

E(H) ≤ E(H0),

i.e., H benefits of symmetry breaking.
For instance E(p2 + x2 + λx) = 1− λ2/4.

This is very general.
Starting, e.g., from a symmetrical four-body system (a,a, ā, ā)
breaking particle identity or charge conjugation lowers the
ground state, but has different consequences on stability.
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Breaking particle identity

H(M,m,M,m), where V does not change if M or m is modified, can
be rewritten as

H =

(
1

4M
+

1
4m

)[
p2

1 + · · ·+ p2
4
]

+ V︸ ︷︷ ︸
H0

+

(
1

4M
− 1

4m

)[
p2

1 − p2
2 + p2

3 − p2
4
]

︸ ︷︷ ︸
H1

Thus E(H) ≤ E(H0). But in general, the threshold also benefits from
this symmetry breaking, and actually benefits more, so that four-body
binding deteriorates.
For instance, in atomic physics (e+,e+,e−,e−) and any equal-mass
(µ+, µ+, µ−, µ−) weakly bound below the atom–atom threshold, but
(M+,m+,M−,m−) unstable for M/m & 2.2, see Bressanini, Varga. . .
Then: breaking the symmetry of identical particles does not help
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Breaking charge conjugation

H(M,M,m,m) written as

H =

(
1

4M
+

1
4m

)[
p2

1 + · · ·+ p2
4
]

+ V︸ ︷︷ ︸
H0

+

(
1

4M
− 1

4m

)[
p2

1 + p2
2 − p2

3 − p2
4
]

︸ ︷︷ ︸
H1

still benefits to the four-body system, E(H) ≤ E(H0), but H and H0
have the same threshold (M+,m−) + (M+,m−). Hence binding
improves. Indeed, H2 more bound than Ps2 and has even a rich
spectrum of excitations.
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Quark model analogs

For a central, flavour-independent, confining interaction V ,

Equal mass case (q,q, q̄, q̄) hardly bound
Hidden-flavour case (Q,q,Q, q̄) even farther from binding,
(QQq̄q̄) with flavour = 2 bound if M/m large enough
See Ader et al. (then at CERN), Heller et al. (Los Alamos),
Zouzou et al. (Grenoble), D. Brink et al. (Oxford), Rosina et al.
(Slovenia), Lipkin, Nussinov, Semay et al., Vijande et al., etc.

(QQq̄q̄) expected at least in the limit of large or very large M/m.
As compared to the “colour-chemistry” (late 70’s and early 80’s), the
(QQq̄q̄) with very large M/m seems on safe grounds

no exotic colour configuration
for large M/m, almost pure 3→ 3̄ for (QQ) as in every baryon,
and then 3̄× 3̄× 3̄→ 1 for [(QQ)− q̄q̄] as in every antibaryon:
well probed colour structure.
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Early phenomenology of (QQq̄q̄)

Very difficult 4-body problem

Strong competition between the collective mode (QQq̄q̄) and the
splitting into two mesons, (Qq̄) + (Qq̄)

Usually (ccn̄n̄) (n = u, d) found marginally unbound or bound,
see Rosina (FBS, 2001)
(bbn̄n̄), or perhaps (bcn̄n̄) usually stable
However, questionable assumptions about confinement
Hence: effect of a better treatment of confinement?
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The additive model of tetraquark confinement-1

Questions:
What is V for tetraquarks?
Even earlier: what is the link from mesons to baryons?

The additive model
By analogy with QED,

V (1,2, . . .) = − 3
16

∑
i<j

λ̃
(c)
i .λ̃

(c)
j v(rij ) ,

λ(c) is the non-abelian colour operator
v(r) is the quarkonium potential fitted to mesons,
For baryons, this ansatz gives the “1/2 rule”

V = [v(r12) + v(r23 + v(r31)]/2
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The Steiner-tree model of baryons

Y -shape potential:
Artru, Dosch, Merkuriev, etc., proposed a better ansatz, often
verified and rediscovered (strong coupling, adiabatic bag model
(Kuti et al.), flux tube (Kogut et al.), lattice QCD, etc.)

The linear q − q̄ potential of mesons
interpreted as minimising the gluon energy in the flux tube limit

The q − q − q potential of baryons is
with the junction optimised, i.e., fulfilling the conditions of the
well-known Fermat-Torricelli problem.

This potential was used for baryons (Taxil et al., Semay et al., Carlson
et al.), but it does not make much difference as compared with the
additive ansatz V = (r12 + r23 + r31)/2.
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The Steiner tree model of tetraquarks

Generalisation to tetraquarks [e.g., Sugunama et al., Lattice QCD]

V4 = min(Vf ,VS)

combination of
flip-flop Vf (already used in its quadratic version by Lenz et al.)

Vf = λmin(r13 + r24, r23 + r14)

and Steiner-tree VS

VS = λmink,`(r1k + r2k + rk` + r`3 + r`4) .

This QCD-inspired potential is more favourable
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The Steiner tree model of tetraquarks-2

As an illustration, we consider two variants of a purely linear
potential

1 the additive model

H1 =
X

i

p2

2mi
− 3

16

X
i<j

λ̃
(c)
i .λ̃

(c)
j rij

2 The Steiner-tree model

H2 =
X

i

p2

2mi
+ V4

H1 does not bind for masses (m,m,m,m) but for masses
(M,M,m,m), if M/m & 5
J. Carlson and V.R. Pandharipande concluded that H2 does not
bind, but

they used too simple trial wave functions for the 4-body problem,
and did not consider unequal masses.
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Tetraquarks in the minimal-path model-1

Vijande, Valcarce and R. revisited the calculation of Carlson at al.
with a basis of correlated Gaussians (matrix elements painfully
calculated numerically), and obtained stability for (QQq̄q̄) even for
M/m = 1, but better stability for M/m� 1.

u = (Eth − E4)/Eth
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Tetraquarks in the minimal-path model-2

More recently, Cafer Ay, Hyam
Rubinstein (Melbourne) and R.:
rigorous proof of stability within the
minimal-path model if M � m.
Obviously,
V4 ≤ VS ≤ |x |+ |y |+ |z|

where x =
−→
AB , y =

−→
CD ,

and z links the middles.

A

B

C

D

I

J

x y
z

Figure 4: First inequality.
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J

P

Q

H
K

Figure 5: Construction of the minimal string in the planar case.

4 The spatial tetraquark problem
In general, the four constituents do not belong to the same plane. The minimum is achieved for
A, B, I, J coplanar, and C, D, I, J also coplanar, but in a different plane. The point E belongs
to a circle of axisAB and similarly for F . The straight line EF has to intersect these two circles
as well as the lines AB and CD. The problem consists of constructing such straight line.

5

Then

H ≤
[

p2
x

M
+ |x |

]
+

[
p2

y

m
+ |y |

]
+

[
p2

z

2µ
+ |z|

]
exactly solvable, but not does not demonstrate binding of (QQq̄q̄)
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Better bound

A better bound demonstrates stability for large M/m:

H ≤

[
p2

x

M
+

√
3

2
|x |

]
+

[
p2

y

m
+

√
3

2
|y |

]
+

[
p2

z

2µ
+ |z|

]
p2 + |x | =⇒ e0 = 2.3381... (Airy function)
by scaling p2/m + λ|x | =⇒ e0 λ

2/3 m−1/3.
Threshold 2(Qq̄)Qq̄) at Eth = 2e0µ

−1/3, µ = Mm/(M + m).
The tetraquark energy has a upper bound

E4 ≤ Eup
4 = e0

{(
3
4

)1/3 [
M−1/3 + m−1/3

]
+ (2µ)−1/3

}

Straightforward to check that Eup
4 < Eth for M/m < 6403

Thus E4 < Eth at large M/m demonstrated rigorously
Actually ∀M/m from solving numerically the 4-body pb.
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Proof-1

A flavour of the proof. In the
3-body case, Steiner tree
linked to Napoleon’s
theorem.
JA + JB + JC = CC′ where
C′ makes an external
equilateral triangle
associated to the side AB.

Well-known property of the
Fermat-Torricelli problem.
(C′ belongs to the torroı̈dal
domain associated to AB)

A

B

C

J

B

A C

D

I J

Figure 1: Generalisation of the linear quark–antiquark potential of mesons to baryons (left) and
tetraquarks (right).

J
A

B

C

J
A

B

C

A′

B′

C ′

JA + JB + JC = CC ′

Figure 2: Left: the junction is at the intersection of the arcs from which each side is seen under
120◦. Right: the junction as a side product of Napoleon’s theorem
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Figure 3: First inequality.
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Figure 4: Construction of the minimal string in the planar case.
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Proof-2

The analogue for the planar tetraquark is

A

B

E

E ′

C

D

F

F ′

I

J

P

Q

H
K

Figure 5: Construction of the minimal string in the planar case.

3

VS = JA + JB + JK + KC + KD = EF

The minimal network linking (A,B,C,D) is the maximal distance
beween {E ,E ′} and {F ,F ′}, which are the torroı̈dal domains
associated to (A,B) and (C,D) (= points completing an equilateral tr.)
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Proof-3

In space, still

VS = JA + JB + JK + KC + KD = EF

where
E ∈ CAB= torroı̈dal domain of
quarks AB, (equilateral circle)
F ∈ CCD= torroı̈dal domain of
antiquarks CD,
VS is the maximal distance
between the circles CAB and
CCD, which is less than the
distance between the centres
and the sum of radii.

A
B

CAB

C
D

CCD

I

J

E

F

Figure 5: The confining potential for the tetraquark sys-
tem (ABCD) is the minimal length of the tree IA+IB+
IJ+JB+JC when I and J are varied. It is also the max-
imal distances between the circles CAB and CCD, i.e., the
distance EF . The circle CAB is centered at the middle of
A and B, has AB as axis and a radius |AB|

√
3/2, and

CCD has analogous properties in the antiquark sector.

hadrons does not require the mass of baryons to be computed within less than 1MeV of accuracy.
What matter are the pattern of ordering and the properties beyond the mass spectrum. On the
other hand, it is crucial to treat the four-body problem very precisely, even in simple models,
to compare within the same dynamical scheme, the mass of the tetraquark states to that of two
mesons, i.e., to indicate whether the model predicts he existence of stable multiquarks. In other
words, it is required to solved the four-body problem much beyond he simplest approximation.
This means that the potential has to be estimated a very large number of times.We are convinced
that the geometric properties of the Steiner tree will be of great help, to reduce considerably the
amount of numerical minimisation when estimating the value of the potential.

It is our intend to extend this investigation to the case the pentaquark (one antiquark and
four quarks) and hexaquark configurations (six quarks), which have been much debated in recent
years.

7
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Conclusions : the four-body problem

Drastic revision of the four-body
spectrum within this model
Analogous to the Wheeler (1945) –
Ore (1946) – Hyllerras & Ore (1947)
views on the Ps2 molecule.
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Conclusions : exotic hadrons

(t6 t̄6) probably unbound,
Better models of confinement
beyond naive additive models,
Steiner-tree model,⇒ (QQq̄q̄)
bound ∀ M/m (numerical)
Stability rigorously proved for large
M/m
One should further study short-range
corrections, and other refinements,
States with large M/m, e.g., (ccq̄q̄)
likely to survive,
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Conclusions : exotic hadrons

(t6 t̄6) probably unbound,
Better models of confinement
beyond naive additive models,
Steiner-tree model,⇒ (QQq̄q̄)
bound ∀ M/m (numerical)
Stability rigorously proved for large
M/m
One should further study short-range
corrections, and other refinements,
States with large M/m, e.g., (ccq̄q̄)
likely to survive,
The hadron family already rich, but
likely to welcome new members,
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Conclusions : exotic hadrons

(t6 t̄6) probably unbound,
Better models of confinement
beyond naive additive models,
Steiner-tree model,⇒ (QQq̄q̄)
bound ∀ M/m (numerical)
Stability rigorously proved for large
M/m
One should further study short-range
corrections, and other refinements,
States with large M/m, e.g., (ccq̄q̄)
likely to survive,

One should perhaps
wait
The positronium
molecule predicted in
1945-47
Found in 2007,
(QQq̄q̄) predicted in
1982
Found in ???
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