Institut für Theoretische Physik

Goethe-Universität Frankfurt am Main

A Linear Sigma Model with Vector Mesons and Global Chiral Invariance Denis Parganlija

In collaboration with

Francesco Giacosa, Dirk H. Rischke (Frankfurt University)

Motivation

- Sakurai: Vector Meson Dominance
 - EM processes mediated by vector mesons
- Linear Sigma Model: locally symmetric (up to vector mass terms)
- Local vs. Global Symmetry: Mesonic decay widths require global symmetry
- Nature of scalar mesons $f_0(600)$ and $a_0(980)$
- $q\overline{q}$ states under 1 GeV $\rightarrow \sigma \equiv f_0(600), a_0 \equiv a_0(980)$
- $q\overline{q}$ states above 1 GeV $\rightarrow \sigma \equiv f_0(1370)$,

 $a_0 = a_0(1450) - additional scalar states under 1 GeV required (tetraquarks?)$

Effective Theories of QCD and Linear Sigma Model

- Description of low-energy hadrons (mesons)
- Generalisation to T, μ ≠ 0
 LSM:
- Treats chiral partners on the same footing
- Parameters fixed in SU(2) and used in SU(3)
- Vacuum calculations \rightarrow calculations at T \neq 0
- Degeneration of chiral partners above T_c

Lagrangian of a Locally Invariant Linear Sigma Model with Vector Mesons (N,=2) (Gasiorowicz and Geffen, 1969) $\mathcal{L} = \operatorname{Tr}[(D^{\mu}\Phi)^{\dagger}(D^{\mu}\Phi)] + m_0^2 \operatorname{Tr}(\Phi^{\dagger}\Phi) - \lambda_1 [\operatorname{Tr}(\Phi^{\dagger}\Phi)]^2 - \lambda_2 \operatorname{Tr}(\Phi^{\dagger}\Phi)^2$ $-\frac{1}{4} \operatorname{Tr}[(L^{\mu\nu})^2 + (R^{\mu\nu})^2] + \frac{m_1^2}{2} \operatorname{Tr}[(L^{\mu})^2 + (R^{\mu})^2]$ $+ \operatorname{Tr}[H(\Phi + \Phi^{\dagger})] + c (\det \Phi + \det \Phi^{\dagger})$ scalars Φ $i\eta$) $t^0 + (\vec{a}_0 + i\vec{\pi}) \cdot \vec{t}$ $\rightarrow pseudoscalars$ vectors * L^{μ} $f^{\mu}_{1} t^{0} +$ $ec{a}_1^{\mu}$ $t^{0} +$ (\vec{a}_1^{μ})) $\cdot ec{t}$ R^{μ} = → axialvectors $D^{\mu}\Phi = \partial^{\mu}\Phi + ig(\Phi L^{\mu} - R^{\mu}\Phi)$ $L^{\mu
u} = \partial^{\mu}L^{
u} - \partial^{
u}L^{\mu} - ig[L^{\mu},L^{
u}]$ $R^{\mu
u} = \partial^{\mu}R^{
u} - \partial^{
u}R^{\mu} - ig[R^{\mu}, R^{
u}]$ $\operatorname{Tr} H(\Phi + \Phi^{\dagger}) \equiv h \sigma$: ESB "+": SSB $c (\det \Phi + \det \Phi^{\dagger})$ Denis Parganlija - ExcitedQCD Chiral Anomaly

Spontaneous Symmetry Breaking (SSB):

[S. Gasiorowicz and D. A. Geffen, *Rev. Mod. Phys.* 41, 531 (1969)] • Shift: $\sigma \longrightarrow \sigma + \phi$ $\Rightarrow -g \partial_{\mu} \eta \phi f_{1}^{\mu} - g \partial_{\mu} \vec{\pi} \phi \cdot \vec{a}_{1}^{\mu}$ non-diagonal! • Renormalise Pseudoscalar Wave Functions:

$$\begin{aligned} &\frac{1}{Z}\eta \longrightarrow \eta & \frac{1}{Z}\vec{\pi} \longrightarrow \vec{\pi} \\ Z &= \frac{m_{a_1}}{m_{\rho}} \begin{cases} = 1.59 \text{ if } m_{a_1} = 1230 \text{MeV}, m_{\rho} = 775.5 \text{MeV} \text{ (PDG)} \\ \stackrel{!}{=} \sqrt{2} \text{ KSFR} \text{ Rule} \Longrightarrow m_{a_1} = 1097 \text{MeV} \end{cases} \end{aligned}$$

Calculation of Scattering Lengths

• Feynman Diagrams At Tree Level:

Tree-Level Scattering Amplitude

$$\begin{split} \mathcal{M} &= i\,\delta^{ab}\delta^{cd}\,A(s,t,u) + i\,\delta^{ac}\delta^{bd}\,A(t,s,u) + i\,\delta^{ad}\delta^{bc}A(u,t,s) \\ &\quad A(t,s,u): s \longleftrightarrow t \\ &\quad A(u,t,s): s \longleftrightarrow u \\ \Rightarrow \text{ scattering lengths (on the threshold): amplitude} \\ &\quad \mathrm{Re}\left[t_l^I(s) = q^{2l}\left[a_l^I + q^2b_l^I + O(q^4)\right] \\ &\quad (l: \mathrm{angular momentum}; q: \mathrm{momentum}) \\ &\quad \mathrm{Denis Parganlija - ExcitedQCD} \\ \end{split}$$

Results I: a_0^0 as function of m_{σ}

Results II: Decay Widths

Results II: Decay Widths

• Rho(770) Decay ρ^0

$$\Gamma_{\rho \to \pi\pi} = \frac{g^2}{192\pi} m_{\rho} \left[1 - \left(\frac{2m_{\pi}}{m_{\rho}}\right)^2 \right]^{\frac{3}{2}} \left(1 + \frac{1}{Z^2} \right)^2$$

 $\Gamma_{\rho \to \pi\pi} = 86.5 \text{MeV} \qquad \text{PDG} : (149.4 \pm 1.0) \text{MeV}$ • $a_1(1260) \text{ Decay} \qquad a_1^0 \to \rho^{\pm} \pi^{\mp}$

PDG : (250 – 600)MeV

Results II: Decay Widths

- Decay Widths For Sigma And Rho(770) Do Not Match Experiments
- How To Improve Decay Widths?
- All Parameters Fixed Via Tree Level Masses and $f_{\pi} \rightarrow \text{No Free}$ Parameters
- Need At Least One Additional Parameter To Try Adjusting Rho Width (149.4 \pm 1.0) MeV

Improvements of the Lagrangian

 [S. Gasiorowicz and D. A. Geffen (1969), U. G. Meissner (1988), P. Ko and S. Rudaz (1994)]
 Strategy 1: Higher-dimension terms (local invariance)

Strategy 2:

Non-vanishing meson masses \Rightarrow

- $U(2)_R \times U(2)_L$ becomes global
- **QCD** chiral symmetry: global \rightarrow

LSM chiral symmetry global

[M. Urban, M. Buballa and J. Wambach, *Nucl. Phys. A* 697, 338 (2002)] [D. Parganlija, F. Giacosa and D. Rischke, AIP Conf. Proc. 1030, 160 (2008)] [D. Parganlija, F. Giacosa and D. Rischke, arXiv:0812.2183 [hep-ph]]

Globally Invariant Model

 $\mathcal{L} = \operatorname{Tr}[(D^{\mu}\Phi)^{\dagger}(D^{\mu}\Phi)] + (m_0^2 \operatorname{Tr}(\Phi^{\dagger}\Phi) - (\lambda_1 [\operatorname{Tr}(\Phi^{\dagger}\Phi)]^2 - (\lambda_2 \operatorname{Tr}(\Phi^{\dagger}\Phi))^2)]$ $-\frac{1}{4} \operatorname{Tr}[(L^{\mu\nu})^2 + (R^{\mu\nu})^2] + \frac{m_1^2}{2} \operatorname{Tr}[(L^{\mu})^2 + (R^{\mu})^2]$ + Tr $(H(\Phi + \Phi^{\dagger})]$ + $c(\det \Phi + \det \Phi^{\dagger})$ Z, m_{σ} $-2ig_2({
m Tr}\{L_{\mu
u}[L^{\mu},L^{
u}]\}+{
m Tr}\{R_{\mu
u}[R^{\mu},R^{
u}]\})$ $2g_{3}\{\mathrm{Tr}[(\partial_{\mu}L_{
u}+\partial_{
u}L_{\mu})\{L^{\mu},L^{
u}\}]+\mathrm{Tr}[(\partial_{\mu}R_{
u}+\partial_{
u}R_{\mu})\{R^{\mu},R^{
u}\}]\}$ $\underbrace{(h_1)}_{2} \operatorname{Tr}(\Phi^{\dagger}\Phi) \operatorname{Tr}[(L^{\mu})^2 + (R^{\mu})^2] + \underbrace{(h_2)}_{2} \operatorname{Tr}[(\Phi R^{\mu})^2 + (L^{\mu}\Phi)^2]$ $+2h_3 \operatorname{Ir}(\Phi R_{\mu} \Phi^{\dagger} L^{\mu}) + \mathcal{L}_4$ $L^{\mu
u} = \partial^{\mu}L^{
u} - \partial^{
u}L^{\mu} - (ieA^{\mu}[t^{3},R^{
u}] - ieA^{
u}[t^{3},R^{\mu}])$ $R^{\mu
u} = \partial^{\mu}R^{
u} - \partial^{
u}R^{\mu} - (ieA^{\mu}[t^3,L^{
u}] - ieA^{
u}[t^3,L^{\mu}])$ $D^{\mu}\Phi = \partial^{\mu}\Phi + i g_{\mu}\Phi L^{\mu} - R^{\mu}\Phi) - i e A^{\mu}t^{3}\Phi$ photon

Parameter Determination

Masses:

 $m_{\pi}, m_{\eta}, m_{\sigma}, m_{a_0}, m_{\rho}, m_{a_1}$ Decays: $\rho \rightarrow \pi \pi [Z, g_2] f_1 \rightarrow a_0 \pi [Z, h_2] a_1 \rightarrow \pi \gamma [Z]$ $a_0 \rightarrow \eta_N \pi[Z, h_2] \sigma \rightarrow \pi \pi [Z, h_1, h_2]$ $a_1 \rightarrow \sigma \pi [Z, h_1, h_2] a_1 \rightarrow \rho \pi [Z, g_2]$ • Scattering Lengths: $Z, h_1, h_2, g_2, m_{\sigma}$ $a_0^0(Z, m_{\sigma}, h_1, h_2), a_0^2(Z, m_{\sigma}, h_1, h_2)$

Parameter Determination

Results III $\chi^2 = 0.7525$ per D.O.F.

Parameter / Observable	Our Value	Experiment
Z	1.5217	-
g ₂	0.3365	-
h ₁	- 100.7	-
h ₂	106.0	-
m _σ	(330 ± 220) MeV	(400 – 1200) MeV
$\Gamma_{ ho o \pi\pi}$	149.4 MeV	(149.4 ± 1.0) MeV
$\Gamma_{a_1 \to \pi \gamma}$	0.473 MeV	(0.640 ± 0.246) MeV
$a_0^0[m_{\pi}^{-1}]$	0.233	0.233 ± 0.023
$a_0^2[m_{\pi}^{-1}]$	- 0.0454	- 0.0471 ± 0.015
$\Gamma_{f_1 \to a_0 \pi}$	9.356 MeV	(8.748 ± 2.097) MeV
$A_{a_0 \to \eta \pi}$	4389 MeV	(4116 ± 185) MeV
$\Gamma_{\sigma \to \pi\pi}$	<10 MeV ± 84 MeV	(500 – 1200) MeV
$\Gamma_{a_1 \to \sigma \pi}$	90 MeV	(250 – 600) MeV (total)
$\Gamma_{a_1 \to \rho \pi}$	1413 MeV	(250 – 600) MeV (total)
(m ₁)	758 MeV	-
$m_{\rho}^{2} = m_{1}^{2} + \frac{\phi^{2}}{2}(h_{1} + h_{2} + h_{2})$	Denis Parganlija - ExcitedQCD h_3) = 775.49 MeV	$m_1 = 0$

Results III: $m_1 = 0$ Limit $\chi^2 = 0.7499$ per D.O.F.

Parameter / Observable	Our Value	Experiment
Z	1.5217	-
g ₂	0.3365	-
h ₁	- 45.2	-
h ₂	106	-
m _o	390 MeV	(400 – 1200) MeV
$\Gamma_{ ho o \pi\pi}$	149.4 MeV	(149.4 ± 1.0) MeV
$\Gamma_{a_1 \to \pi \gamma}$	0.473 MeV	(0.640 ± 0.246) MeV
$a_0^0[m_{\pi}^{-1}]$	0.233	0.233 ± 0.023
$a_0^2[m_{\pi}^{-1}]$	- 0.0470	- 0.0471 ± 0.015
$\Gamma_{f_1 \to a_0 \pi}$	9.336 MeV	(8.748 ± 2.097) MeV
$A_{a_0 \to \eta \pi}$	4388 MeV	(4116 ± 185) MeV
$\Gamma_{\sigma \to \pi\pi}$	(45.7 ± 69.5) MeV	(500 – 1200) MeV
$\Gamma_{a_1 \to \sigma \pi}$	≈ 0 MeV	(250 – 600) MeV (total)
$\Gamma_{a_1 \to \rho \pi}$	1413 MeV	(250 – 600) MeV (total)

Summary

- LSM with global U(2)_R x U(2)_L invariance: scattering lengths, low-energy meson decay widths
- General phenomenology in agreement with experiment ($\rho \rightarrow \pi \pi$, $a_1 \rightarrow \pi \gamma$, $f_1 \rightarrow a_0 \pi$, $a_0 \rightarrow \eta \pi$ decay, $\pi \pi$ scattering lengths)
- Two-pion sigma decay width fails to match experiment \rightarrow quarkonium assignment for $\sigma \equiv f_0(600)$, $a_0 \equiv a_0(980)$ excluded
- Possible solution: interpret f₀(1370) and a₀(1450) as (dominantly) quarkonia
- Scalar states under 1 GeV required for correct description of pion-pion scattering lengths

Outlook

- Parameters Errors and Consequences of Global Invariance up to 4th Order
- Low Energy Constants of QCD
- *p, d* Wave Scattering Lengths
- Chiral Models With Three Flavours
- Include Tensor, Pseudotensor Mesons, Baryons (*Nucleons*)
- Extension to Non-Zero Temperature: Study Chiral Symmetry Restoration

Spare Slides

Relevant Vertices for Pion-Pion Scattering

$$\begin{split} \mathcal{L}_{\pi/\pi} &= -\frac{1}{4} \left(\lambda_1 + \frac{\lambda}{2}\right) Z^4 \vec{\pi}^4 + \frac{1}{2} g^2 w^2 Z^4 \left(\partial^{\mu} \vec{\pi} \cdot \vec{\pi}\right)^2 \\ &- \frac{1}{4} g^2 w^4 Z^4 \left[\left(\partial^{\mu} \vec{\pi}\right) \times \left(\partial^{\nu} \vec{\pi}\right) \right]^2 \\ \mathcal{L}_{\pi/\sigma} &= -g w Z^2 \sigma \Box \vec{\pi} \cdot \vec{\pi} - g \left(1 + Z^2\right) w \sigma \left(\partial^{\mu} \vec{\pi}\right)^2 \\ &- \left(\lambda_1 + \frac{\lambda}{2}\right) \phi Z^2 \sigma \vec{\pi}^2 \\ \mathcal{L}_{\pi/\rho} &= -g w^2 Z^2 \partial_{\mu} \vec{\rho_{\nu}} \cdot \left[\left(\partial^{\mu} \vec{\pi}\right) \times \left(\partial^{\nu} \vec{\pi}\right) \right] \\ &+ g \partial_{\mu} \vec{\pi} \cdot \left(\vec{\rho^{\mu}} \times \vec{\pi} \right) \end{split}$$

• Feynman Diagrams At Tree Level:

Tree-Level Scattering Amplitude

 $\mathcal{M}=i\,\delta^{ab}\delta^{cd}\,A(s,t,u)+i\,\delta^{ac}\delta^{bd}\,A(t,s,u)+i\,\delta^{ad}\delta^{bc}A(u,t,s)$

 $A(t,s,u): \ s { \longleftrightarrow t }$

$$A(u,t,s): s \longleftrightarrow u$$

⇒ s-channel isospin / components of the scattering amplitude:

$$T^{0}(s,t) = 3A(s,t,u) + A(t,s,u) + A(u,t,s)$$

 $T^{1}(s,t) = A(t,s,u) - A(u,t,s)$
 $T^{2}(s,t) = A(t,s,u) + A(u,t,s)$

B. Ananthanarayan, G. Colangelo, J. Gasser and H. Leutwyler, arXiv:hepph/9005297 v1, 2000

⇒ scattering lengths (on the threshold): amplitude

Re
$$\binom{I}{l}(s) = q^{2l} \left[a_l^I + q^2 b_l^I + O(q^4) \right]$$

(l: angular momentum; q: momentum)

Results I

Tree-level scattering lengths on the threshold $(s = 4m_{\pi}^2)$:

$$egin{aligned} &a_0^0 = rac{m_\pi^2}{32\pi f_\pi^2} \left[7 + rac{2}{Z^2} rac{m_\pi^2}{m_\sigma^2} \left(1 - rac{2}{Z^2}
ight)^2 + rac{3}{Z^2} rac{m_\pi^2}{m_\sigma^2 - 4m_\pi^2} \left(1 + rac{2}{Z^2}
ight)^2
ight]; \quad Z = rac{m_{a_1}}{m_
ho} \ & ext{Weinberg Limit} \quad m_\sigma o \infty \ : \ a_0^0 = rac{7m_\pi^2}{32\pi f_\pi^2} \quad ext{Chiral Limit} \quad m_\pi o 0 \ : \ a_0^0 = 0 \end{aligned}$$

 $a_0^1\equiv 0$

$$a_0^2 = -rac{m_\pi^2}{16\pi f_\pi^2} \left[1 - rac{1}{Z^2} rac{m_\pi^2}{m_\sigma^2} \left(1 - rac{2}{Z^2}
ight)^2
ight]$$

Weinberg Limit $m_\sigma o \infty \ : \ a_0^2 = -rac{m_\pi^2}{16\pi f_\pi^2}$ Chiral Limit $m_\pi o 0 \ : \ a_0^2 = 0$

Results I: a_0^2 as function of m_{σ}

Renormalisation Constant Z

$\Gamma_{\sigma \to \pi \pi}$ as Function of m_{σ} – globally invariant model [f₀(600): quarkonium]

