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The QCD Phase Diagram
-what we really know-



The Critical Point
location

lattice QCD at finite µB

(Z. Fodor and S.D. Katz, JHEP 0404:050,2004)



The Critical Point
location

lQCD calculations generally agree on µc
b

T c(µb=0) & 2

(M. Stephanov, hep-lat/0701002)



The Critical Point
lattice QCD

conventionally, first-order region
expands with µ.

exotic scenario: first-order re-
gion shrinks!

(de Forcrand, Philipsen, hep-lat/0607017)



The Critical Point
thermodynamically

singularity of thermodynamic functions
⇒ diverging correlation length ξ
⇒ fluctuations increase/decrease non-monotonically vs beam energy
including finite size and critical slowing down⇒ ξ ≈ 2− 3fm
(M.Stephanov, K.Rajagopal, E.Shuryak, Phys. Rev D60,114028,1999), (B.Berdnikov, K.Rajagopal, Phys. Rev. D61,105017,2000)

experimental signatures:

(NA49 collaboration J.Phys.G35:104091,2008)



The Phase Transition
density inhomogeneities

• inhomogeneous freeze-out
surface of hadrons

• superposition of
grand-canonical ensembles
with different T and µb

• fitting ratios of particle
multiplicities

(A. Dumitru, L. Portugal, D.Zschiesche, Phys. Rev.

C73,024902,2006)



The Phase Transition
chemical freeze-out

at chemical freeze-out there are significant fluctuations around the
mean T and µB

(A. Dumitru, L. Portugal, D.Zschiesche, Phys. Rev. C73,024902,2006)



Hydrodynamics - Nonaka
trajectories

• construct an equation of state
with a critical point form the
universality class (3d Ising)

• isentropic expansion
trajectories s/nB = const.

• focussing effect near the
critical point

• correlation length ξ stays
finite

• no dynamic fluctuations

(M.Asakawa, C.Nonaka, Nucl. Phys. A774,753-756,2006)



Motivation

usually considered:
• thermodynamics in a grand-canonical scenario OR
• dynamics

experimental situation:
• finite system
• finite life time
• no global equilibrium
• dynamics
• observables in a finite phase space
⇒ use hydrodynamics with fluctuations dynamically driven through a
critical point:
couple a hydrodynamic quark fluid to field equations!



The Linear Sigma-Model
chiral symmetry

L = q
[
iγµ∂µ − g (σ + γ5τ~π)

]
q + 1/2

(
∂µσ

)2 + 1/2
(
∂µ~π

)2 −U (σ, ~π)

U (σ, ~π) =
λ2

4

(
σ2 + ~π2 − ν2

)2
− hqσ−U0

(M.Gell-Mann, M.Levy, Nuovo Cim. 16, 705,1960)

SUL(2)⊗ SUR(2) chiral symmetry
spontaneously broken in vacuum
〈σ〉 = fπ = 93MeV
〈~π〉 = 0
explicit symmetry breaking by
hq = fπm2

π



The Linear Sigma-Model
thermodynamics

grand canonical partition function at µb = 0

Z =
∫
DqDqDσD~π exp

[∫ 1/T

0
d(it)

] ∫
V

d3xL

grand canonical potential

Veff =Ω = −T/V logZ

=− dqT
∫ d3p

(2π)3 log(1 + e−E/T )

+ U (σ, ~π)

with E =
√

p2 + g2φ2



The Linear Sigma-Model
a first order phase transition

• for Tsp < T < Tc the σ-field
can be in a metastable
minimum of restored
symmetry

• transition via nucleation of
thermally activated bubbles
of the broken symmetry
phase

(O. Scavenius, A. Dumitru, E.S. Fraga, J.T. Lenaghan, A.D. Jackson, Phys.Rev. D63 (2001) 116003)



The Linear Sigma-Model
equations of motion

classical equation of motion for the fields: φ = (σ, ~π)

∂µ∂µφ +
δU
δφ

= −g2φdq

∫ d3p
(2π)3

1
E

fFD(p) = −gρφ

with the (pseudo-)scalar density

ρφ = gφdq

∫ d3p
(2π)3

1
E

fFD(p)

solved by a staggered leap-frog algorithm



Chiral Hydrodynamics
coupled equation

equations of relativistic hydrodynamics:

∂µ(T µν
fluid + T µν

field) = 0 ⇒ ∂µT µν
fluid = gρφ∂νφ

with the stress-energy tensor for an ideal fluid

T µν
fluid = (e + p)uµuν − pgµν

equation of state from self-consistency conditions

e(φ, T ) = T
∂p(φ, T )

∂T
− p(φ, T ) ,

p(φ, T ) = −Veff(φ, T ) + U(φ)

(K.Paech, A.Dumitru,H.Stöcker, Phys.Rev.C68:044907,2003)



Initial Conditions
energy density

ellipsoidal initial conditions for the quark fluid



Initial Conditions
chiral fields

Wood-Saxon like initial distribution for the sigma field



Energy Density
first order phase transition

e
e0

along a trajectory through a first order phase transition (g=5.5)



Energy Density
critical point

e
e0

along a trajectory near a critical point (g=3.7)



Chiral Field
first order phase transition

|σ|

for a first order phase transition (g=5.5), (mq = g|σ|)



Chiral Field
Critical Point

|σ|

near a critical point (g=3.7), (mq = g|σ|)



Field Distributions
critical point

at t = 0fm: Gaussian distribution with v = 4.2MeV
at t = 8.4fm: Gaussian distribution with v = 25.5MeV
at t = 18.4fm: not Gaussian anymore



Dynamic Effective Potential
critical point

V dyn
eff = a0 + a1σ̃ + a2σ̃2 + ... + anσ̃n with σ̃ = σ− σeq



Correlation Length
critical point

1
ξ2 =

∂2Veff

∂σ̃2 |σ̃=0

• ξ stays finite
• at t = 0fm:

ξ = 0.31fm⇒
mσ = 636.5MeV

• at t = 8.4fm:
ξ = 1.4fm⇒
mσ = 142.9MeV



Conclusions

The critical point of QCD is an interesting target to shoot at, both
theoretically and experimentally!

• formation of high energy density droplets due to a first order
phase transition

• long-range fluctuations of the sigma field for trajectories near a
critical end point

• the dynamical and non-equilibrium effects of a chiral phase
transition can be investigated within a hydrodynamic model

upcoming experiments:

• low energy run @RHIC (2011)
• CBM@FAIR (2012)


