Search for Exotic Matter at COSY

Paweł Moskal

Jagiellonian University, Cracow, Poland

Zakopane, 12th of February 2009

ETA-MESIC HELIUM ???

GLUONIC MATTER IN ETA-PRIME ???

KAON-ANTIKAON MOLECULES ???

COSY

WASA-at-COSY

COSY-11

ETA-MESIC NUCLEUS

It is not an atom or mesonic atom

ETA-MESIC NUCLEUS: eta meson bound with nucleus via STRONG INTERACTION

Measurement of the excitation function $d+d \rightarrow (^{4}He-n)_{bound} \rightarrow p + \pi^{-} + ^{3}He$ search for a resonance structure with center below the eta threshold

T. Inoue, E. Oset, Nucl. Phys. A 710 (2002) 354.

Unique possibility for the study of η -N interaction. Study of properties of N*(1535) resonance in nuclear matter. Some information about η meson structure

	m (MeV)	Rea~(fm)
η_8	547.75	0.43
η (-10°)	547.75	0.64
η (-20°)	547.75	0.85
η_0	958	0.99
η' (-10°)	958	0.74
η' (-20°)	958	0.47

S. D. Bass, A. W. Thomas, Phys. Lett. B 634 (2006) 368.

Attractive interaction between n and N (R. Bhalerao and L. C. Liu, Phys. Lett. B54 (1985) 685) possible existence of bound states of the n meson with nuclei for A>10 (Q. Haider and L. C. Liu, Phys. Lett. B172 (1986) 257)

Optical potential η nucleus calculated in the frame of unitarized chiral perturbative approach

(C.Garcia-Recio, T. Inoue, J.Nieves, E. Oset, Phys. Lett. B550 (2002) 47).

Supported by model calculations of:

- S. Wycech et al., Phys. Rev. C52(1995)544

(the multiple scattering theory)

- N. N. Scoccola and D. O. Riska, Phys. Lett. **B444**(1998)21 (the Skyrme model)

and by observations of:

- near threshold enhancements of the amplitudes for the $dd \rightarrow {}^{4}\text{He} \eta$ and $pd \rightarrow {}^{3}\text{He} \eta$ reactions (N. Willis et al.., Phys. Lett. B406(1997)14)

ANKE: T. Mersmann et al., Phys. Rev. Lett. **98** 242301 (2007) COSY-11: J. Smyrski et al., Phys. Lett **B 649** 258-262 (2007)

ANKE: T. Mersmann et al., Phys. Rev. Lett. 98 242301 (2007)COSY-11: J. Smyrski et al., Phys. Lett B 649 258-262 (2007)

 γ **3He** $\rightarrow p\pi^{0}$ X TAPS at MAMI

(M. Pfeiffer et al., Phys. Rev. Lett. 92 (2004) 252001)

signal: $\sigma \approx 0.8 \ \mu b$ (3σ above background) background 3 μb

Peter Grünberg, Nobel Prize 2007

COoler SYnchrotron COSY

- polarised and unpolarised proton and deuteron beams
- stochastic and electron cooling
- momentum range: 600 3700 MeV/c
- meson production up to $\phi(1020)$

WASA at COSY — Pellet Target Operation

The Pellet Target

Typical Target Values:

llet diameter	20 - 30µm
llet frequency	5 - 12kHz
llet velocity	60 - 80m/s
fective thickness	>10 ¹⁵ atoms/cm ²

vacuum injection

skimmer

droplet formation chamber

exit vacuum injection

WASA-at-COSY

$d+d \rightarrow (^{4}He-n)_{bound} \rightarrow p + \pi^{-} + ^{3}He$

Helium in FD

Monte Carlo

Data

only helium

 $dp \rightarrow {}^{3}\text{He}\pi^{o}$

To what extent the eta-prime meson is build out of gluons?

$$\eta' = \alpha |u\bar{u} + d\bar{d} + s\bar{s} + \beta |g|uons \rangle$$

$$\eta' \rightarrow 2\pi$$
 (P); $\eta' \rightarrow 3\pi$ (G); $\eta' \rightarrow \pi^0(2\pi, 3\pi...)\gamma$ (C);

First order strong and electromagnetic decays are also forbidden for eta-prime and additionally:

meson	calculated mass	empirical mass
π	140	138
Κ	484	496
η	559	549
η'	349	958
ρ	780	776
ω	780	783
K*	896	892
φ	1032	1020

$$m_{qq} = m_{q_1} + m_{q_2} + A \frac{\vec{S}_1 \vec{S}_2}{m_{q_1} m_{q_2}}$$

A, m_u, m_d, m_s

$\sigma = \frac{1}{F} \int dV_{\rm ps} \mathbf{M} ^2$
$ M ^2 \sim M_0 ^2 M_{FSI} ^2$
$ M_{FSI} ^2 \sim M_{pp} ^2 M_{p1\eta} ^2 M_{p2\eta} ^2$
dynamics $\rightarrow M_0 ^2$
interaction $\rightarrow \sigma(Q)$

CELSIUS

WASA/CELSIUS: H. Calen et al., Phys. Lett. **B 366** (1996) 39. WASA/CELSIUS: H. Calen et al., Phys. Rev. Lett. **79** (1997) 2642.

COSY

COSY-11: A. Khoukaz et al., Eur. Phys. J. **A 20** (2004) 345. COSY-11: P. M. et al., Phys. Rev. **C 69** (2004) 025203. COSY-11: P. M. et al., Phys. Lett. **B 482** (2000) 356. COSY-11: P. M. et al., Phys. Lett. **B 474** (2000) 416. COSY-11: J. Smyrski et al., Phys. Lett. **B 474** (2000) 182. COSY-11: P. M. et al., Phys. Rev. Lett. **80** (1998) 3202.

SATURNE

DISTO/SATURNE: F. Balestra et al., Phys. Lett. **B 491** (2000) 29. SPES/SATURNE: F. Hibou et al., Phys Lett. **B 438** (1998) 41. PINOT/SATURNE: E. Chiavassa et al., Phys. Lett. **B 322** (1994) 270. SPES/SATURNE: A. M. Bergdold et al., Phys. Rev. **D 48** (1993) R2969. SPES/SATURNE: R. Wurzinger et al., Phys. Lett. **B 374** (1996) 283.

Results

stochastic cooling S. van der Meer Nobel Prize 1984

electron cooling

proposed by G. Budker in 1966 first tested in 1974 in Novosibirsk

Direct measurement of the mass distribution of the eta-prime meson with a unique precision

Γ ~ 0.2 MeV,typical accuracyis in the order of few MeV

\leftarrow COSY + COSY 11

COSY-11: P. Winter et al., Phys. Lett. B 635 (2006) 23.
COSY-11: C. Quentmeier et al., Phys. Lett. B 515 (2001) 276.
ANKE: Y. Maeda et al., Phys. Rev. C 77 (2008) 01524.
DISTO: F. Balestra et al., Phys. Rev. C 63 (2001) 024004.

arXiv:0709.0286v1 [nucl-ex] 3 Sep 2007

Multiplicity of kaon and anti-kaon production per participating nucleon for C+C, Ni+Ni, and proton-proton collisions

Thank You