Exploring Excited Hadrons in Lattice QCD

Colin Morningstar

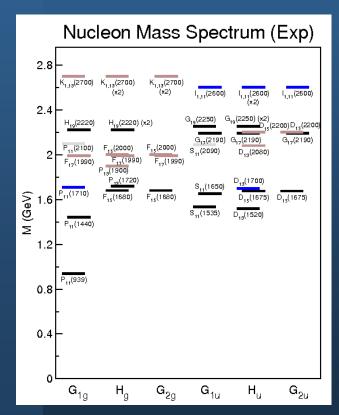
(Carnegie Mellon University)

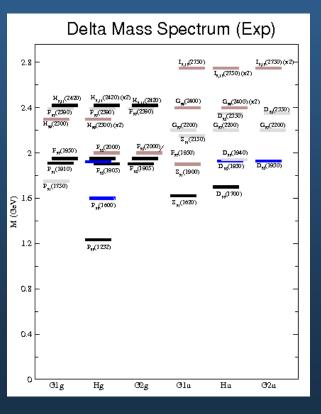
Excited QCD: Zakopane, Poland

Februrary 11, 2009

The frontier awaits

- experiments show many excited-state hadrons exist
- significant experimental efforts to map out QCD resonance
 spectrum → JLab Hall B, Hall D, ELSA, etc.
- \bullet great need for *ab initio* calculations \rightarrow lattice QCD





The challenge of exploration!

- most excited hadrons are unstable (resonances)
- excited states more difficult to extract in Monte Carlo calculations
 - correlation matrices needed
 - operators with very good overlaps onto states of interest
- must extract all states lying below a state of interest
 - as pion get lighter, more and more multi-hadron states
- best multi-hadron operators made from constituent hadron operators with well-defined relative momenta
 - need for all-to-all quark propagators
- disconnected diagrams

Hadron Spectrum Collaboration (HSC)

- J. Bulava, C. Morningstar, J. Foley, Ricky Wong (Carnegie Mellon U.)
- R. Edwards, B. Joo, H.W. Lin, D. Richards (Jefferson Lab.)
- E. Engelson, S. Wallace (U. Maryland)
- J. Dudek (Old Dominion)
- K.J. Juge (U. of Pacific)
- N. Mathur (Tata Institute)
- M. Peardon, S. Ryan (Trinity Coll. Dublin)

Overview of our spectrum project

- obtain stationary state energies of QCD in various boxes
 - □ Ist milestone: quenched excited states with heavy pion → done
 - \square 2nd milestone: N_f =2 excited states with heavy pion \rightarrow done
 - \circ 3rd milestone: N_f =2+1 excited states with light pion
 - unexplored territory in lattice QCD
 - multi-hadron operators needed \rightarrow many-to-many quark propagators
 - recent technology breakthrough \rightarrow new quark smearing
 - results during next year will tell the tale
- interpretation of finite-volume energies
 - spectrum matching to construct effective hadron theory?
 - Monte Carlo simulations using effective theory
 - infinite-volume, realistic pions in effective theory

Monte Carlo method

- hadron operators $\phi = \phi[\overline{\psi}, \psi, U]$ ψ = quark U = gluon field
- temporal correlations from path integrals

$$\left\langle \phi(t)\phi(0)\right\rangle = \frac{\int D[\overline{\psi}, \psi, U] \ \phi(t)\phi(0) \ e^{-\overline{\psi}M[U]\psi - S[U]}}{\int D[\overline{\psi}, \psi, U] \ e^{-\overline{\psi}M[U]\psi - S[U]}}$$

integrate exactly over quark Grassmann fields

$$\langle \phi(t)\phi(0)\rangle = \frac{\int DU \det M[U] \left(M^{-1}[U]\cdots\right) e^{-S[U]}}{\int DU \det M[U] e^{-S[U]}}$$

- resort to Monte Carlo method to integrate over gluon fields
- generate sequence of field configurations $U_1, U_2, U_3, \cdots, U_N$ using Markov chain procedure
 - use of parallel computations on supercomputers
 - especially intensive as quark mass (pion mass) gets small

Lattice regularization

- hypercubic space-time lattice regulator needed for Monte Carlo
- quarks reside on sites, gluons reside on links between sites
- lattice excludes short wavelengths from theory (regulator)

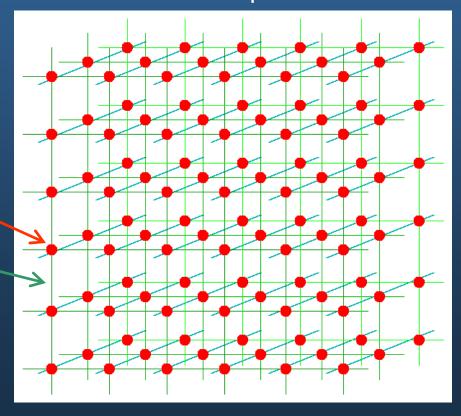
regulator removed using standard renormalization procedures

(continuum limit)

systematic errors

- discretization
- finite volume

quarks



Excited-state energies from Monte Carlo

- extracting excited-state energies requires matrix of correlators
- for a given $N \times N$ correlator matrix $C_{\alpha\beta}(t) = \langle 0 | O_{\alpha}(t) O_{\beta}^{+}(0) | 0 \rangle$ one defines the N principal correlators $\lambda_{\alpha}(t,t_{0})$ as the eigenvalues of

$$C(t_0)^{-1/2}C(t) C(t_0)^{-1/2}$$

where t_0 (the time defining the "metric") is small

- can show that $\lim_{t\to\infty} \lambda_{\alpha}(t,t_0) = e^{-(t-t_0)E_{\alpha}}(1+e^{-t\Delta E_{\alpha}})$
- N principal effective masses defined by $m_{\alpha}^{\text{eff}}(t) = \ln \left(\frac{\lambda_{\alpha}(t, t_0)}{\lambda_{\alpha}(t+1, t_0)} \right)$ now tend (plateau) to the N lowest-lying stationary-state energies
- analysis:
 - fit each principal correlator to single exponential
 - optimize on earlier time slice, matrix fit to optimized matrix
 - both methods as consistency check

Operator design issues

- ullet statistical noise increases with temporal separation t
- use of very good operators is <u>crucial</u> or noise swamps signal
- recipe for making better operators
 - crucial to construct operators using smeared fields
 - link variable smearing
 - quark field smearing
 - spatially extended operators
 - □ use large set of operators (variational coefficients)

Three stage approach (PRD72:094506,2005)

- concentrate on baryons at rest (zero momentum)
- ullet operators classified according to the irreps of $O_{_h}$

$$G_{1g}, G_{1u}, G_{2g}, G_{2u}, H_{g}, H_{u}$$

(1) basic building blocks: smeared, covariant-displaced quark fields

$$(\widetilde{D}_{j}^{(p)}\widetilde{\psi}(x))_{Aa\alpha}$$
 p - link displacement $(j = 0,\pm 1,\pm 2,\pm 3)$

(2) construct elemental operators (translationally invariant)

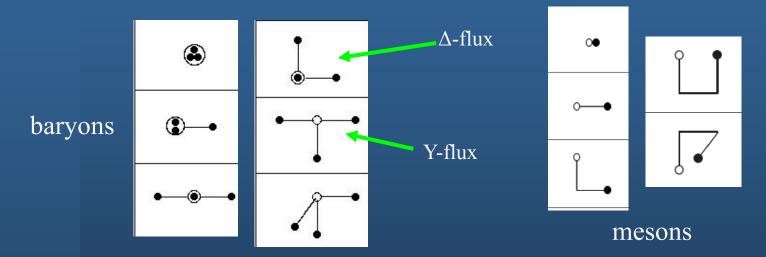
$$B^{F}(x) = \phi_{ABC}^{F} \varepsilon_{abc} (\tilde{D}_{i}^{(p)} \tilde{\psi}(x))_{Aa\alpha} (\tilde{D}_{j}^{(p)} \tilde{\psi}(x))_{Bb\beta} (\tilde{D}_{k}^{(p)} \tilde{\psi}(x))_{Cc\gamma}$$

- flavor structure from isospin
- color structure from gauge invariance
- ullet (3) group-theoretical projections onto irreps of $\,O_{\hskip-.7pt_h}$

$$B_i^{\Lambda\lambda F}(t) = \frac{d_{\Lambda}}{g_{O_h^D}} \sum_{R \in O_h^D} D_{\lambda\lambda}^{(\Lambda)}(R)^* U_R B_i^F(t) U_R^+$$

Incorporating orbital and radial structure

- displacements of different lengths build up radial structure
- displacements in different directions build up orbital structure



- operator design minimizes number of sources for quark propagators
- useful for mesons, tetraquarks, pentaquarks even!
- can even incorporate hybrid meson operators

Spin identification and other remarks

spin identification possible by pattern matching

J	$n_{G_1}^J$	$n_{G_2}^J$	n_H^J
$\frac{1}{2}$	1	0	0
$\frac{3}{2}$	0	0	1
$\frac{5}{2}$	0	1	1 1 2
$\frac{7}{2}$	1	1	
$\frac{9}{2}$	1	0	
$\frac{11}{2}$	1	1	2
$ \begin{array}{c} \frac{1}{2} \\ \frac{3}{2} \\ \frac{5}{2} \\ \frac{7}{2} \\ \frac{9}{2} \\ \frac{11}{2} \\ \frac{13}{2} \\ \frac{15}{2} \\ \frac{17}{2} \end{array} $	1	2	2 2 2 3
$\frac{15}{2}$	1	1	3
$\frac{17}{2}$	2	1	3

total numbers of operators assuming two different displacement lengths

Irrep	Δ,Ω	N	Σ,Ξ	Λ
G_{1g}	221	443	664	656
G_{1u}	221	443	664	656
G_{2g}	188	376	564	556
G_{2u}	188	376	564	556
H_g	418	809	1227	1209
H_u	418	809	1227	1209

- \bullet total numbers of operators is huge \rightarrow uncharted territory
- ultimately must face two-hadron scattering states

Quark- and gauge-field smearing

- smeared quark and gluon fields fields dramatically reduced
 coupling with short wavelength modes
- link-variable smearing (stout links PRD69, 054501 (2004))

define
$$C_{\mu}(x) = \sum_{\pm (\nu \neq \mu)} \rho_{\mu\nu} U_{\nu}(x) U_{\mu}(x+\hat{\nu}) U_{\nu}^{+}(x+\hat{\mu})$$
spatially isotropic $\rho_{jk} = \rho$, $\rho_{4k} = \rho_{k4} = 0$

exponentiate traceless Hermitian matrix

$$\Omega_{\mu} = C_{\mu} U_{\mu}^{+} \qquad Q_{\mu} = \frac{i}{2} \left(\Omega_{\mu}^{+} - \Omega_{\mu} \right) - \frac{i}{2N} \operatorname{Tr} \left(\Omega_{\mu}^{+} - \Omega_{\mu} \right)$$

$$U_{\mu}^{(n+1)} = \exp \left(i Q_{\mu}^{(n)} \right) U_{\mu}^{(n)}$$

$$U_{\mu} \to U_{\mu}^{(1)} \to \cdots \to U_{\mu}^{(n)} \equiv \widetilde{U}_{\mu}$$

quark-field smearing (covariant Laplacian uses smeared gauge field)

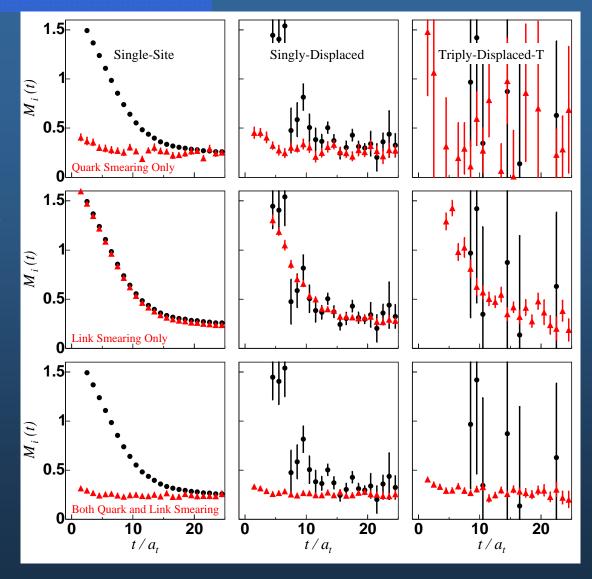
$$\tilde{\psi}(x) = \left(1 + \frac{\sigma_s}{4n_\sigma}\tilde{\Delta}\right)^{n_\sigma}\psi(x)$$

Importance of smearing

- Nucleon G_{1g} channel
- •effective masses of 3 selected operators
- •noise reduction from link variable smearing, especially for displaced operators
- quark-field smearing reduces couplings to high-lying states

$$\sigma_s = 4.0, \quad n_{\sigma} = 32$$
 $n_{\rho} \rho = 2.5, \quad n_{\rho} = 16$

•less noise in excited states using $\sigma_s = 3.0$

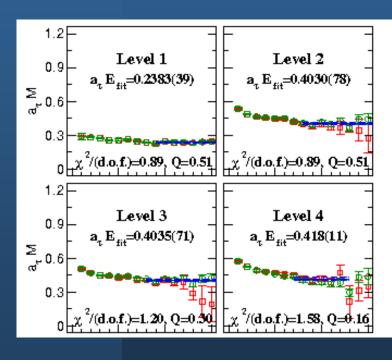


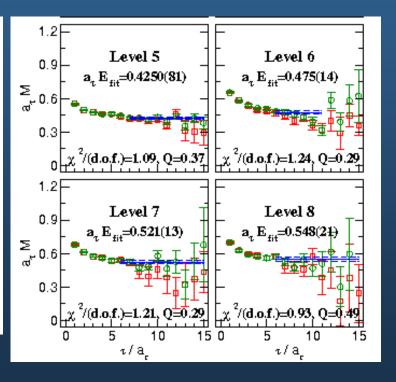
Operator selection

- rules of thumb for "pruning" operator sets
 - noise is the enemy!
 - prune first using intrinsic noise (diagonal correlators)
 - prune next within operator types (single-site, singly-displaced, etc.) based on condition number of
 - prune across all operators based on condition number
- best to keep a variety of different types of operators, as long as condition numbers maintained $\hat{C}_{ij}(t) = \frac{C_{ij}(t)}{\sqrt{C_{ii}(t)C_{ii}(t)}}, \qquad t = 1$
- typically use 16 operators to get 8 lowest lying levels

Nucleon G_{1g} effective masses

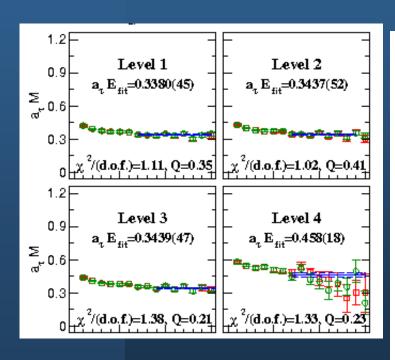
- 200 quenched configs, 12^3 48 anisotropic Wilson lattice, a_s ~0.1 fm, a_s/a_t ~3, $m_π$ ~700 MeV
- nucleon G_{lg} channel
- green=fixed coefficients, red=principal

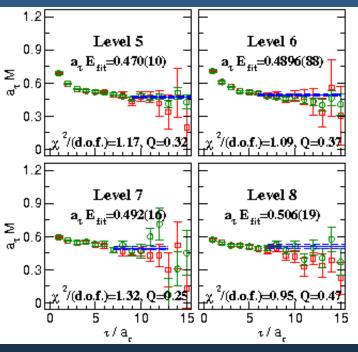




Nucleon H_u effective masses

- 200 quenched configs, 12^3 48 anisotropic Wilson lattice, a_s ~0.1 fm, a_s/a_t ~3, $m_π$ ~700 MeV
- nucleon H_u channel
- green=fixed coefficients, red=principal



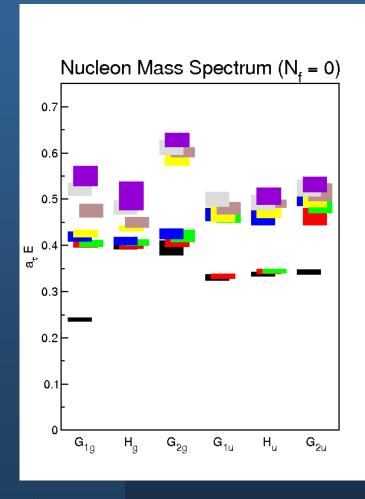


MILESTONE I

Single-hadron excitations in quenched approximation

Nucleon spectrum: first results

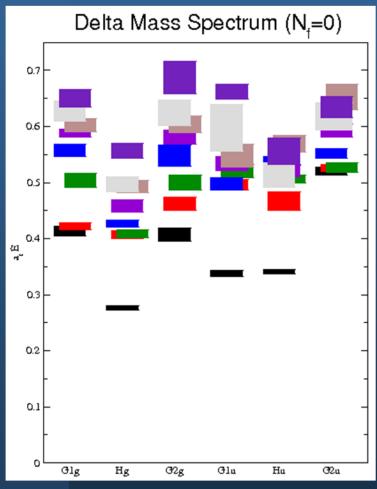
200 quenched configs, 12^3 48 anisotropic Wilson lattice, $a_s \sim 0.1$ fm, $a_s/a_t \sim 3$, $m_π \sim 700$ MeV (A. Lichtl thesis)

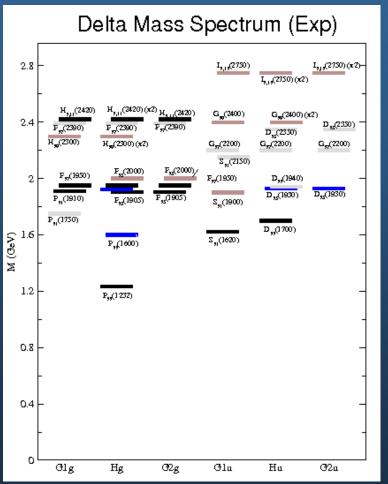




Delta spectrum: first results

200 quenched configs, I2³ 48 anisotropic Wilson lattice, a_s ~0. I fm, a_s/a_t ~3, m_π~700 MeV (J. Bulava)



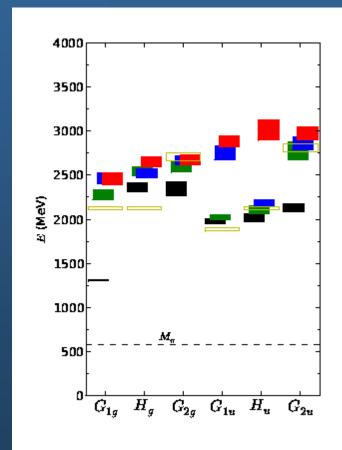


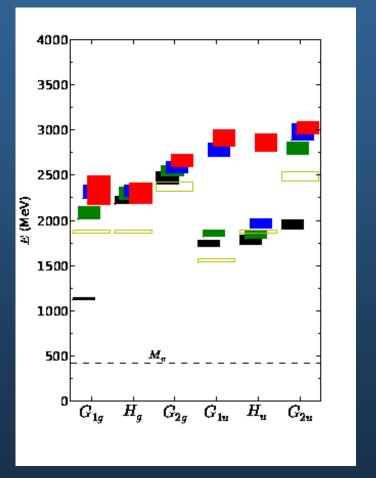
MILESTONE 2

Single-hadron excitations for $N_f=2$

Inclusion of quark loops

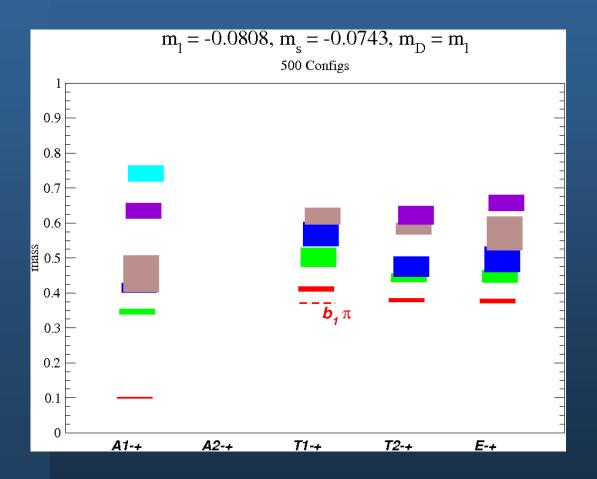
- $N_f=2$ on 24³ 64 anisotropic clover lattice, $a_s\sim 0.11$ fm, $a_s/a_t\sim 3$
- Left: m_{π} =578 MeV Right: m_{π} =416 MeV (PRD 2009, to appear)





Mesons

- $N_f=2+1$ on 16³ 128 anisotropic clover lattice, $a_s\sim0.1$ fm, $a_s/a_t\sim3.5$
- m_{π} =578 MeV (preliminary... operators not optimized)



MILESTONE 3

Multi-hadron states for N_f =2+1 (in progress)

Spatial summations

baryon at rest is operator of form

$$B(\vec{p}=0,t) = \frac{1}{V} \sum_{\vec{x}} \varphi_B(\vec{x},t)$$

baryon correlator has a double spatial sum

$$\left\langle 0 \left| \overline{B}(\vec{p} = 0, t) B(\vec{p} = 0, 0) \right| 0 \right\rangle = \frac{1}{V^2} \sum_{\vec{x}, \vec{y}} \left\langle 0 \left| \overline{\varphi}_B(\vec{x}, t) \varphi_B(\vec{y}, 0) \right| 0 \right\rangle$$

- computing all elements of propagators exactly not feasible
- translational invariance can limit summation over source site to a single site for local operators

$$\left\langle 0 \left| \overline{B}(\vec{p} = 0, t) B(\vec{p} = 0, 0) \right| 0 \right\rangle = \frac{1}{V} \sum_{\vec{x}} \left\langle 0 \left| \overline{\varphi}_B(\vec{x}, t) \varphi_B(0, 0) \right| 0 \right\rangle$$

Slice-to-slice quark propagators

good baryon-meson operator of total zero momentum has form

$$B(\vec{p},t)M(-\vec{p},t) = \frac{1}{V^2} \sum_{\vec{x},\vec{y}} \varphi_B(\vec{x},t) \varphi_M(\vec{y},t) e^{i\vec{p} \cdot (\vec{x} - \vec{y})}$$

- cannot limit source to single site for multi-hadron operators
- disconnected diagrams (scalar mesons) will also need many-to-many quark propagators
- quark propagator elements from all spatial sites to all spatial sites are needed!
 - □ new territory → exploration

Initial stochastic estimation

- quark propagator is just inverse of Dirac matrix M
- noise vectors η satisfying $E(\eta_i)=0$ and $E(\eta_i\eta_j^*)=\delta_{ij}$ are useful for stochastic estimates of inverse of a matrix M
- Z_4 noise is used $\{1, i, -1, -i\}$
- define $X(\eta)=M^{-1}\eta$ then

$$E(X_{i}\eta_{j}^{*}) = E\left(\sum_{k} M_{ik}^{-1}\eta_{k}\eta_{j}^{*}\right) = \sum_{k} M_{ik}^{-1}E\left(\eta_{k}\eta_{j}^{*}\right) = \sum_{k} M_{ik}^{-1}\delta_{kj} = M_{ij}^{-1}$$

if can solve $M X^{(r)} = \eta^{(r)}$ for each of N_R noise vectors $\eta^{(r)}$ then we have a Monte Carlo estimate of all elements of M^{-1} :

$$M_{ij}^{-1} \approx \frac{1}{N_R} \sum_{r=1}^{N_R} X_i^{(r)} \eta_j^{(r)*}$$

- variances in above estimates usually unacceptably large
- introduce variance reduction using source dilution

Source dilution for single matrix inverse

dilution introduces a complete set of projections:

$$P^{(a)}P^{(b)} = \delta^{ab}P^{(a)}, \qquad \sum P^{(a)} = 1, \qquad P^{(a)\dagger} = P^{(a)}$$

observe that

$$\begin{split} M_{ij}^{-1} &= M_{ik}^{-1} \delta_{kj} = \sum_{a} M_{ik}^{-1} P_{kj}^{(a)} = \sum_{a} M_{ik}^{-1} P_{kk'}^{(a)} \delta_{k'j'} P_{j'j}^{(a)} \\ &= \sum_{a} M_{ik}^{-1} P_{kk'}^{(a)} E\left(\eta_{k'} \eta_{j'}^*\right) P_{j'j}^{(a)} = \sum_{a} M_{ik}^{-1} E\left(P_{kk'}^{(a)} \eta_{k'} \eta_{j'}^* P_{j'j}^{(a)}\right) \end{split}$$

• define $\eta_k^{[a]} = P_{kk'}^{(a)} \eta_{k'}, \qquad \eta_i^{[a]*} = \eta_{i'}^* P_{i'i}^{(a)}, \qquad X_k^{[a]} = M_{ki}^{-1} \eta_i^{[a]}$

so that
$$M_{ij}^{-1} = \sum_{a} E\left(X_i^{[a]} \eta_j^{[a]*}\right)$$

Monte Carlo estimate is now

$$M_{ij}^{-1} \approx \frac{1}{N_R} \sum_{r=1}^{N_R} \sum_a X_i^{(r)[a]} \eta_j^{(r)[a]*}$$

 $\sum_{a} \eta_i^{[a]} \eta_j^{[a]*}$ has same expected value as $\eta_i \eta_j^*$, but reduced variance (statistical zeros \rightarrow exact)

Dilution schemes for spectroscopy

Time dilution (particularly effective)

$$P_{a\alpha;b\beta}^{(B)}(\vec{x},t;\vec{y},t') = \delta_{ab}\delta_{\alpha\beta}\delta(\vec{x},\vec{y})\delta_{Bt}\delta_{Bt'}, \qquad B = 0,1,...,N_t - 1$$

Spin dilution

$$P_{a\alpha;b\beta}^{(B)}(\vec{x},t;\vec{y},t') = \delta_{ab}\delta_{B\alpha}\delta_{B\beta}\delta(\vec{x},\vec{y})\delta_{tt'}, \qquad B = 0,1,2,3$$

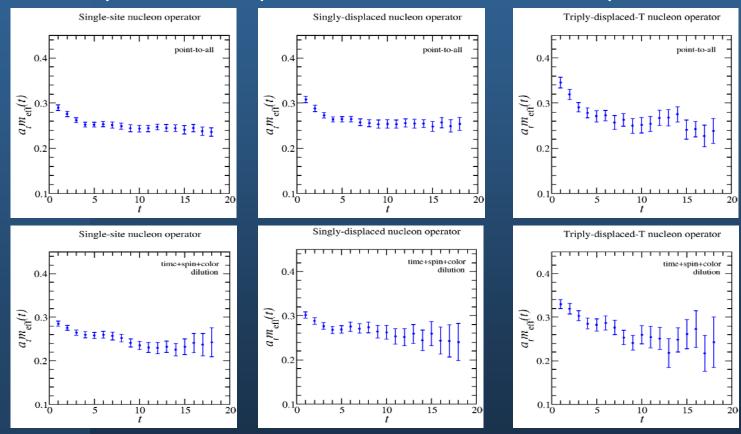
Color dilution

$$P_{a\alpha'b\beta}^{(B)}(\vec{x},t;\vec{y},t') = \delta_{Ba}\delta_{Bb}\delta_{\alpha\beta}\delta(\vec{x},\vec{y})\delta_{tt'}, \qquad B = 0,1,2$$

- Spatial dilutions?
 - even-odd

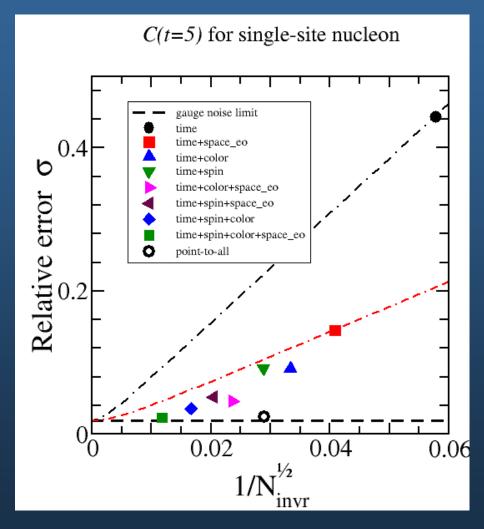
Dilution tests

- 100 quenched configs, 12^3 48 anisotropic Wilson lattice, a_s ~0.1 fm, a_s/a_t ~3, $m_π$ ~700 MeV
- three representative operators: SS,SD,TDT nucleon operators



Dilution tests (continued)

100 quenched configs, 12³ 48 anisotropic Wilson lattice



Source-sink factorization

baryon correlator has form

$$C_{l\bar{l}} = c_{ijk}^{(l)} c_{\bar{i}\bar{j}\bar{k}}^{(\bar{l})*} Q_{i\bar{i}}^A Q_{j\bar{j}}^B Q_{k\bar{k}}^C$$

stochastic estimates with dilution

$$\begin{split} C_{l\bar{l}} \approx & \frac{1}{N_R} \sum_{r} \sum_{d_A d_B d_C} c_{ijk}^{(l)} c_{\bar{i}\bar{j}\bar{k}}^{(\bar{l})*} \left(\varphi_i^{(Ar)[d_A]} \eta_{\bar{i}}^{(Ar)[d_A]*} \right) \\ & \times \left(\varphi_j^{(Br)[d_B]} \eta_{\bar{j}}^{(Br)[d_B]*} \right) \left(\varphi_k^{(Cr)[d_C]} \eta_{\bar{k}}^{(Cr)[d_C]*} \right) \end{split}$$

define

$$\Gamma_{l}^{(r)[d_{A}d_{B}d_{C}]} = c_{ijk}^{(l)} \, \varphi_{i}^{(Ar)[d_{A}]} \varphi_{j}^{(Br)[d_{B}]} \varphi_{k}^{(Cr)[d_{C}]}$$

$$\Omega_{l}^{(r)[d_{A}d_{B}d_{C}]} = c_{ijk}^{(l)} \, \eta_{i}^{(Ar)[d_{A}]} \eta_{j}^{(Br)[d_{B}]} \eta_{k}^{(Cr)[d_{C}]}$$

correlator becomes dot product of source vector with sink vector

$$C_{l\bar{l}} \approx \frac{1}{N_R} \sum_{r} \sum_{d_A d_R d_C} \Gamma_l^{(r)[d_A d_B d_C]} \Omega_{\bar{l}}^{(r)[d_A d_B d_C]*}$$

store ABC permutations to handle Wick orderings

Laplacian Heaviside quark-field smearing

- new quark-field smearing method (summer 2008)
- clever choice of quark-field smearing makes exact computations with all-to-all quark propagators possible!!
 - will work for disconnected diagrams
 - preserves source-sink factorization
- to date, quark field smeared using covariant Laplacian

$$\tilde{\psi}(x) = \left(1 + \frac{\sigma_s}{4n_\sigma} \tilde{\Delta}\right)^{n_\sigma} \psi(x)$$

express in term of eigenvectors/eigenvalues of Laplacian

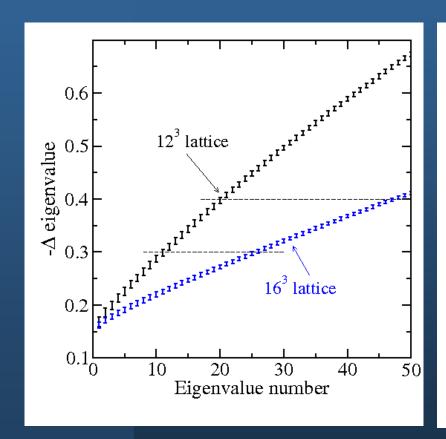
$$\widetilde{\psi}(x) = \left(1 + \frac{\sigma_s}{4n_\sigma} \widetilde{\Delta}\right)^{n_\sigma} \sum_{k} |\varphi_k\rangle \langle \varphi_k | \psi(x)$$

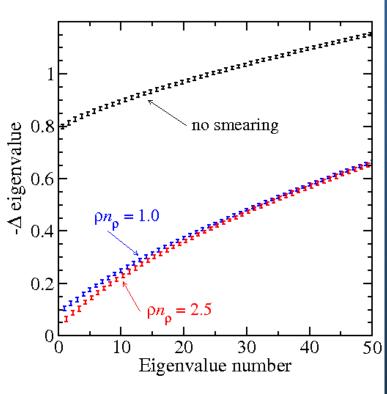
$$= \sum_{k} \left(1 + \frac{\sigma_s \lambda_k}{4n_\sigma}\right)^{n_\sigma} |\varphi_k\rangle \langle \varphi_k | \psi(x)$$

truncate sum and set weights to unity -> Laplacian Heaviside

Getting to know the Laplacian

- spectrum of the covariant Laplacian
- left: dependence on lattice size; right: dependence on link smearing





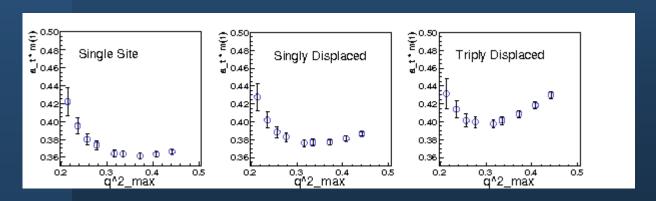
Choosing the smearing cut-off

Laplacian Heaviside (LAPH) quark smearing

$$\tilde{\psi}(x) = \Theta\left(Q_{\text{max}}^2 + \tilde{\Delta}\right)\psi(x)$$

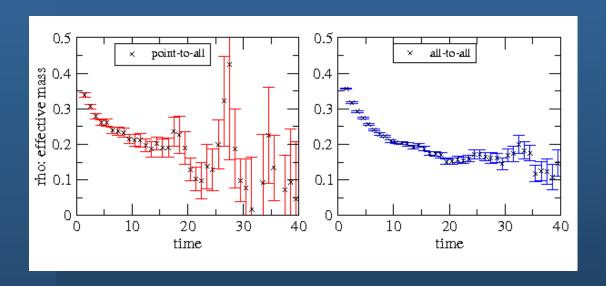
$$\approx \sum_{k=1}^{N_{\text{max}}} |\varphi_k\rangle\langle\varphi_k|\psi(x)$$

- choose smearing cut-off based on minimizing excited-state contamination, keep noise small
 - behavior of nucleon t=1 effective masses



Tests of Laplacian Heaviside smearing

comparison of ρ -meson effective masses using same number of gauge-field configurations



- typically need < 30 modes on 16³ lattice
- about 100 modes on 24³ lattice

Advantages of new smearing

- source-sink factorization
- simpler expressions than stochastic method
- improved statistics
- \bullet slice-to-slice quark propagators \rightarrow multi-hadron operators

Configuration generation

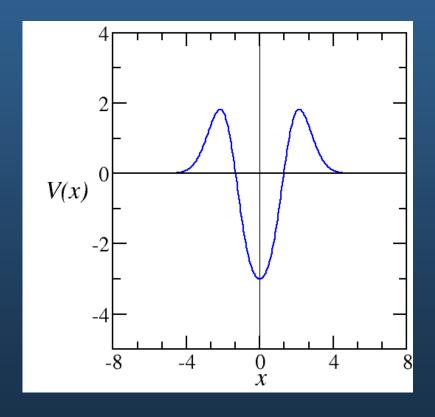
- significant time on USQCD (DOE) and NSF computing resources
- anisotropic clover fermion action (with stout links) and anisotropic improved gauge action
 - unings of couplings, aspect ratio, lattice spacing done
- anisotropic Wilson configurations generated during clover tuning
- current goal:
 - \Box three lattice spacings: a = 0.125 fm, 0.10 fm, 0.08 fm
 - \Box three volumes: $V = (3.2 \text{ fm})^4$, $(4.0 \text{ fm})^4$, $(5.0 \text{ fm})^4$
 - □ 2+1 flavors, m_{π} ~ 350 MeV, 220 MeV, 180 MeV
- USQCD Chroma software suite

Resonances in a box

Resonances in a box: an example

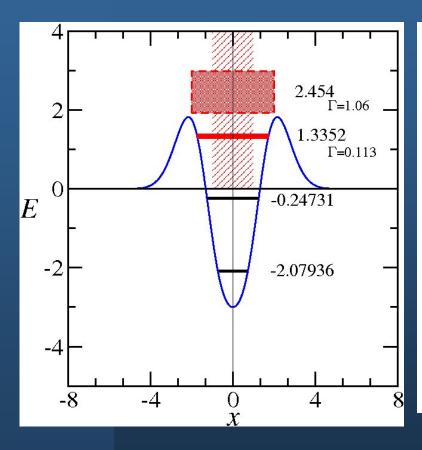
- Consider simple ID quantum mechanics example
- Hamiltonian

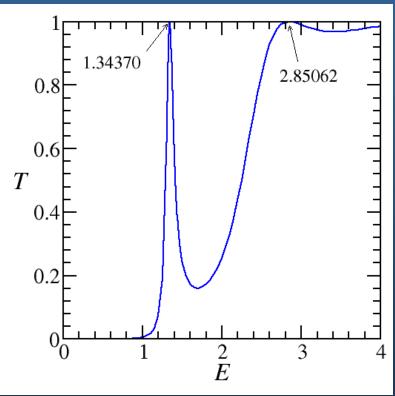
$$H = \frac{1}{2}p^2 + V(x)$$
 $V(x) = (x^4 - 3)e^{-x^2/2}$



1D example spectrum

Spectrum has two bound states, two resonances for E<4

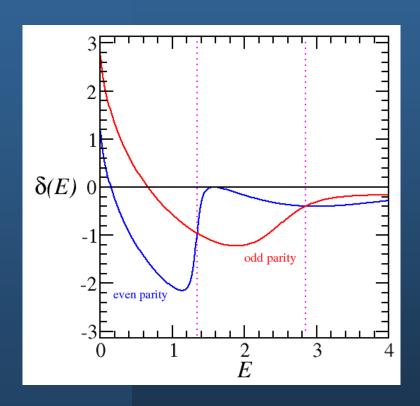


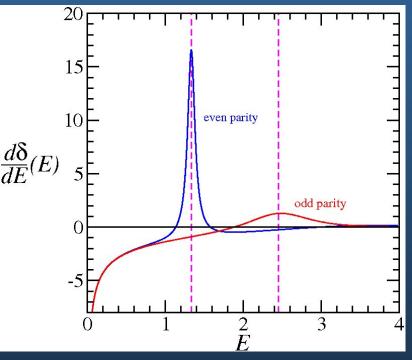


transmission coefficient

Scattering phase shifts

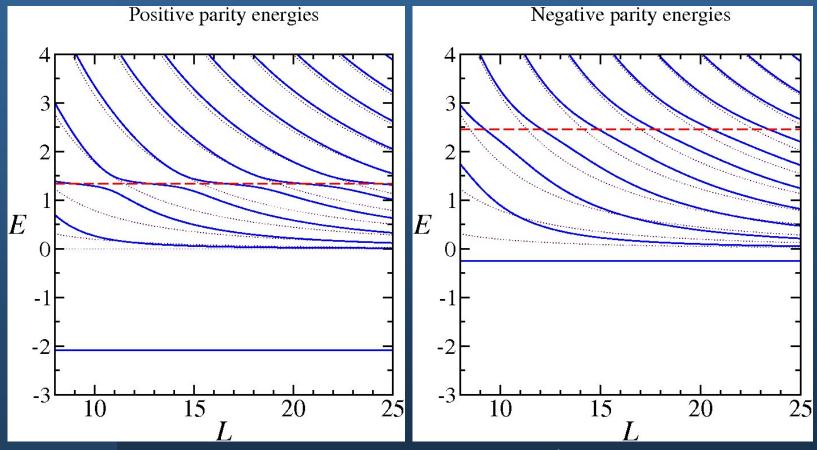
- ullet define even- and odd-parity phase shifts δ_{\pm}
 - phase between transmitted and incident wave





Spectrum in box (periodic b.c.)

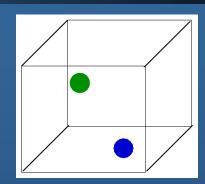
- spectrum is discrete in box (momentum quantized)
- narrow resonance is avoided level crossing, broad resonance?



Dotted curves are V=0 spectrum

Unstable particles (resonances)

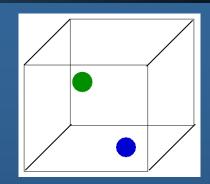
- our computations done in a periodic box
 - momenta quantized
 - □ discrete energy spectrum of stationary states → single hadron, 2 hadron, ...



- how to extract resonance info from box info?
- approach I: crude scan
 - \Box if goal is exploration only \rightarrow "ferret" out resonances
 - spectrum in a few volumes
 - placement, pattern of multi-particle states known
 - □ resonances → level distortion near energy with little volume dependence
 - □ short-cut tricks of McNeile/Michael, Phys Lett B556, 177 (2003)

Unstable particles (resonances)

- approach 2: phase-shift method
 - \Box if goal is high precision \rightarrow work much harder!
 - relate finite-box energy of multi-particle
 model to infinite-volume phase shifts



- evaluate energy spectrum in several volumes to compute phase shifts using formula from previous step
- deduce resonance parameters from phase shifts
- early references
 - B. DeWitt, PR 103, 1565 (1956) (sphere)
 - M. Luscher, NPB**364**, 237 (1991) (ρ- $\pi\pi$ in cube)
- approach 3: histogram method
 - recent work for pion-nucleon system:
 - V. Bernard et al, arXiv:0806.4495 [hep-lat]
- new approach: construct effective theory of hadrons?

Summary

- goal: to wring out hadron spectrum from QCD Lagrangian using
 Monte Carlo methods on a space-time lattice
 - baryons, mesons (and glueballs, hybrids, tetraquarks, ...)
- discussed extraction of excited states in Monte Carlo calculations
 - correlation matrices needed
 - operators with very good overlaps onto states of interest
- must extract all states lying below a state of interest
 - as pion get lighter, more and more multi-hadron states
- multi-hadron operators > relative momenta
 - need for slice-to-slice quark propagators
- nearing final milestone!
- interpretation of finite-box energies