Low-x QCD at the LHC with the ALICE detector

Magdalena Malek on behalf of the ALICE collaboration

13/02/09

2

SQA

2 / 27

Э

э

13/02/09

Evolution of the heavy ion collision

- $\circledast \tau < 0 \text{ fm/c} \Rightarrow \text{initial conditions: gluon saturation}$
- ${}_{\circledast}$ $\tau \sim 0 \text{ fm/c} \Rightarrow$ hard particles production: heavy quarks, jets, direct photons
- * $\tau \sim 0.2 \text{ fm/c} \Rightarrow$ semi-hard particles production: bulk of the reaction, $p_t \leq 2 - 3 \text{ GeV}$
- * $\tau \sim 1$ 2 fm/c \Rightarrow thermalization
- * $2 \le \tau \le 10 \text{ fm/c} \Rightarrow \text{Quark Gluon Plasma}$
- * $10 \le \tau \le 20 \text{ fm/c} \Rightarrow \text{Hadron gas}$
- * $\tau > 20 \text{ fm/c} \Rightarrow \text{Freeze-out}$

Parton picture

The lifetime of the gluon of the momentum fraction x=k/P in the:

 \circledast proton rest frame P \sim M

 \circledast infinite momentum frame P \gg M

Timescale dilation in the propagation direction:

 $\Delta t_{IMF} \approx \gamma \Delta t_{RF}; \qquad \gamma \gg 1$ Magdalena Malek () Excited QCD 09 4 13/02/09 4 / 27

Interaction with an external probe

virtual photon with the virtuality Q^2

The probe sees the parton if:

What is the high energy proton made of ?

QPM

- a static object composed of 3 valence quarks, no interaction between constituents
- Bjorken scaling: for $Q^2 \to \infty$ and x fixed the proton structure functions are independent of Q^2

QCD improved QPM

- a dynamic object with a very complicated structure, it contains fluctuations smaller than its own size, only the fluctuations that are longer lived than the external probe participate in the interaction process
- new partons (gluons) are emitted with the probability $\sim \alpha_s \ln(1/x)$
- a photon interacting with a quark at Q² probes the proton with a resolution ~1/Q². When Q² increases, the probability to probe small x partons is bigger !
- GCC
 - lifetime of soft gluons is much larger than the typical timescales for interaction processes
 - the proton seen by a probe becomes more and more crowded, as long as the density of partons is small the evolution is linear

6

Introductory material

High energy evolution: BFKL equation

- * the gluon emission is strongly ordered in x: $x \ll x_n \ll x_{n-1} \ll ... \ll x_2 \ll x_1 \ll 1$
- \circledast the transverse momentum of emitted gluons are of the same order: $k_t \sim k_t^n \sim k_t^{n-1} \sim ... \sim k_t^2 \sim k_t^1$
- \circledast the lifetime of the gluon is \propto to its longitudinal momentum: x \searrow thus $\Delta t_{gluon} \searrow$
- \circledast the gluon density increases linearly
- the gluons with large x act as a frozen color sources for the emission
 of the gluons with small x

7

13/02/09 7 / 27

Towards the Color Glass Condensate

Production versus Recombination: JIMWLK equation

 $rac{\partial n(k_t,y)}{\partial y} \propto c_1 n(k_t,y) - lpha_s c_2 n^2(k_t,y) \qquad ext{with } y \equiv \log rac{1}{x}$

13/02/09 8 / 27

What is the Color Glass Condensate

The CGC is a new form of nuclear matter which controls the hadronic interactions at asymptotically large energies

- * Color: made of gluons which carry the color charge
- Glass: the system has degrees of freedom whose timescale is much larger than the typical timescales of interaction processes
- Condensate: the soft degrees of freedom are as densely packed as they can

Universal approach: in this limit all hadrons behave in the same way

QCD diagram

Saturation criterion

- number of partons per unit area $\rho \sim \frac{\times {\cal G}(x,Q^2)}{\pi R^2}$
- recombination cross-section $\sigma_{gg \rightarrow g} \sim \frac{\alpha_s}{Q^2}$
- recombination if $\rho\sigma_{gg\rightarrow g}\geq 1$ thus $Q^2\leq Q_s^2$
- saturation scale $Q_s^2 \sim rac{lpha_s imes G(x,Q_s^2)}{\pi R^2}$

we increasing Q² (Q² > Q_s²) ⇒ evolution towards the dilute system
 we increasing y (Q² < Q_s²) ⇒ evolution towards the high density system
 ve increasing y (Q² < Q_s²) ⇒ evolution towards the high density system
 ve increasing y (Q² < Q_s²) ⇒ evolution towards the high density system
 ve increasing y (Q² < Q_s²) ⇒ evolution towards the high density system
 ve increasing y (Q² < Q_s²) ⇒ evolution towards the high density system
 ve increasing y (Q² < Q_s²) ⇒ evolution towards the high density system
 ve increasing y (Q² < Q_s²) ⇒ evolution towards the high density system
 ve increasing y (Q² < Q_s²) ⇒ evolution towards the high density system
 ve increasing y (Q² < Q_s²) ⇒ evolution towards the high density system
 ve increasing y (Q² < Q_s²) ⇒ evolution towards the high density system
 ve increasing y (Q² < Q_s²) ⇒ evolution towards the high density system
 ve increasing y (Q² < Q_s²) ⇒ evolution towards the high density system
 ve increasing y (Q² < Q_s²) ⇒ evolution towards the high density system
 ve increasing y (Q² < Q_s²) ⇒ evolution towards the high density system
 ve increasing y (Q² < Q_s²) ⇒ evolution towards the high density system
 ve increasing y (Q² < Q² < Q²

Gluon distribution at HERA

The gluon density rises **very** fast for decreasing x ($\sim 1/x^{\lambda}$, $\lambda \sim 0.3$)

The ZEUS Collaboration Phys.Lett. B487, 53, 2000

Magdalena Malek ()

Excited QCD 09

11

13/02/09

→ ∃ > < ∃ >

ッへで 11 / 27

3

Geometric scaling at HERA

At small x (x < 0.01) the total cross section in $\gamma^* p$ collisions is a function of τ instead of being a function of x and Q² separately

 $\sigma^{\gamma^{\star}p}(x,Q^2) \; pprox \; \sigma^{\gamma^{\star}p}(au) ext{ with } au = Q^2/Q_s^2(x), Q_s^2(x) = Q_0(x/x_0)^{\lambda}, \lambda \sim 0.3$

K. Golec-Biernat and M. Wüsthoff, Phys. Rev. D59, 014017, 1999

Magdalena Malek ()

Excited QCD 09

12

13/02/09

Particle production at RHIC

ALICE

A Large Ion Collider Experiment: the LHC detector dedicated to the study of heavy ion collisions

colliding systems: p+p @14 TeV, Pb+Pb @5.5 TeV, p+Pb @8.8 TeV

Magdalena	Malek (
-----------	---------

13/02/09 14 / 27

How?

- ❀ at LHC heavy quarks are produced in the early stage of the collision mainly through gluon-gluon fusion processes
- \circledast the Bjorken-x variable: $x_{\pm} = \frac{m_t}{\sqrt{s}}e^{\pm y}$ for central rapidity

machine	SPS	RHIC	LHC	LHC
system	Pb+Pb	Au+Au	Pb+Pb	p+p
energy (GeV)	17	200	5500	14000
cc	$ m x\simeq 10^{-1}$	$x \simeq 10^{-2}$	$ m x\simeq 4 imes 10^{-4}$	$x\simeq 2 imes10^{-4}$
b \overline{b}	-	-	$x\simeq 2 imes10^{-3}$	$x\simeq 6\times10^{-4}$

Charm and beauty production cross sections at the LHC are significantly affected by parton dynamics in the small x region !

Cross section of heavy quark production in H₁-H₂ collision

$$\sigma^{H_1,H_2} = \sum_{i,j} \int dx_1 dx_2 f_j(x_2)^{H_2} f_i(x_1)^{H_1} \sigma_{ij}(x_1,x_2,s)$$

13/02/09

Simulations: CGC vs MNR

1 MNR: reference simulations for the ALICE experiment

❀ PDF:

• p+p described with CTEQ5L

• p+Pb extrapolation from p+p collisions based on the Glauber model. Shadowing effects are included via nuclear modification factor (EKS98 parametrisation)

 $\circledast \ \widehat{\sigma}_{ij}(x_1, x_2, s)$: calculated to the NLO with HVQMR program

② CGC: simulations made in collaboration with **F.Gelis** and **A.Charpy**

- * PDF: proton/lead described using the CGC formalism with $Q_s^2(x=x_0=10^{-2})=0.33/1.93 \text{ GeV}^2$. For $x < x_0$ using JIMWLK equation with the initial condition for fixed $x = x_0$ with McLerran-Venugopalan model.
- * $d\sigma_{gg \to Q\overline{Q}}^{sat}$: the cross section for gluon fusion into a pair of heavy quarks takes into account the rescattering effects that are important in the saturation regime

Results for charm yield

Charm: $m_c = 1.20 \text{ GeV}$

Э 13/02/09 18 / 27

Sac

Study of the CGC with the ALICE experiment

Results for beauty yield

Beauty: $m_b = 4.75$ GeV

19

Э 13/02/09 19 / 27

Sac

Nuclear modification factor on the quark level

$$R_{pA} = rac{dN^{pA}/dp_t y}{N_{coll}dN^{pp}/dp_t y}$$

⊛ R_{pA} = 1 ⇒ absence of nuclear and medium effects, a p-nucleus collision is the superposition of independent nucleon-nucleon collisions
 ⊛ R_{pA} ≠ 1 ⇒ presence of initial state effects !

Nuclear modification factor on the quark level

different rapidity windows

more forward rapidity \hookrightarrow smaller $x \hookrightarrow R_{pA}$ decreases

3

Sac

21 / 27

Comparison between two formalisms: numbers

 \circledast yield ratio for p+p collisions

N_b/N_c	MNR	CGC
5.5 TeV	0.03	0.09
8.8 TeV	0.03	0.10
14 TeV	0.04	0.11

❀ nuclear modification factor (p+Pb/p+p) @ 8.8 TeV

R _{Pb-p}	charm	beauty
MNR	0.77	0.85
CGC	0.60	0.80

Remarks about the p_t and y distributions

quarks kinematical distributions

- \circledast significantly harder p_t distributions for the CGC model compared to the MNR one
- \circledast the multiple scattering processes present in the CGC populate the mid-p_t range of the spectra
- (*) depletion in the forward region of the rapidity distributions (for charm)
- It the cross section ratios for beauty over charm production for different collision energies is smaller than 5% for the MNR model, the CGC model gives a ratio larger than 10%

Inuclear modification factor

- $\circledast\,$ the values of shadowing factors for beauty production are very close in both models
- I for charm production the shadowing factor shows a large influence of gluon recombination effects in the CGC model, larger than the shadowing in the EKS98 parametrisation used in the MNR model
- because of a smaller mass, charm is more sensitive to the
 recombination effect

Sac

Study of the CGC with the ALICE experiment

Fragmentation and decay

- Fragmentation function (Peterson): gives the probability to transform the quark q into the hadron H
- ❀ Decay of hadrons via semi-muonic channel

13/02/09

Saturation observation via muons?

Dimuon Forward Spectrometer of ALICE is composed of:

- the front absorber: absorbs all particles except muons coming from the vertex
- the inner beam shield: protects against particles produced at small angles
- ${f \bullet}\,$ the tracking system: 5 stations of two Cathode Pad Chambers \sim 100 m^2
- the passive muon filter: an iron wall of 1.2 m thickness
- the trigger chambers: 4 planes of Resistive Plate Chambers
- the large dipole magnet

Main characteristics:

- the pseudorapidity range is -4 $\leq \eta \leq$ -2.5
- the mass resolution \sim 70 (100) ${\rm MeV/c^2}$ for ${\rm J/\psi}~(\Upsilon)$
- the spatial resolution < 100 μm in the bending plane
- tracking: 1.1 millions channels, occupancy < 5%</p>
- up to 500 hits on the first station
- trigger for muons: "low" and "high" pt cut are 1 and 2 GeV/c respectively

Single muons spectra

13/02/09 26 / 27

Conclusions and perspectives

Conclusions

- ⊛ for charm: big difference between CGC and MNR formalism
- $\circledast\,$ for beauty: good agreement between the two models

In CGC case, charm is more sensitive than beauty to the effect of the gluon recombination and multiple scattering

2 Perspectives

- $\circledast\,$ multiplicity of the charged particles at forward rapidity region $\Rightarrow\,$ under study
- * J/ ψ production in the CGC formalism \Rightarrow work in progress

13/02/09