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@ Crossing symmetry:
7 amplitudes should be invariant \Tm/
under change of channel T(s)
® S0 T(s)=CgT(t) where / \
Cst is crossing matrix.
@ General form of twice subtracted dispersion relations:

Ref)(s) = Const; + Constz(s —4)+

ZZ ][ ds’K (s, s')im £l (s")
0

with kernels K}, (s,s’) ~ 1/(s — s')(s' — 4)?
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@ Threshold expansion:
Ref/(s~4) = (s —4) [, +b)(s —4) +..]
@ Let's compare the Roy’'s and GKPY equations:

Wave | Thr. exp | STroy | KT&DTrey | STekey | KT&DTgkpy
SO a) ad+Cso(s—4) | Bso(s—4) | aJ+5a3 | aso+ Bso(s —4)
P 0 Cp(s—4) | Bpr(s—4) | a—3a2 | ap1+ Bpi(s —4)
S2 a3 a3+ Cga(s —4) | Bsa(s—4) | aJ+ %aé agy + Bsa(s — 4)

R. Kaminski Zakopane 2009, page 10
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Dispersion relations with imposed crossing symmetry conditit

@ Threshold expansion:
Ref/(s~4) = (s —4) [, +b)(s —4) +..]
@ Let's compare the Roy’'s and GKPY equations:

Wave | Thr. exp | STroy | KT&DTrey | STekey | KT&DTgkpy
SO a) ad+Cso(s—4) | Bso(s—4) | aJ+5a3 | aso+ Bso(s —4)
P 0 Cp(s—4) | Bpr(s—4) | a—3a2 | ap1+ Bpi(s —4)
S2 a3 a3+ Cga(s —4) | Bsa(s—4) | aJ+ %aé agy + Bsa(s — 4)

@ so, in GKPY equations necessary are mutual cancellations
of constant terms in the P-wave and partial cancellations in
the S-waves.

2009, page 10
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Decomposition of Roy’s and GKPY eqgs: SO-wave

s¥?nSins /2k

S0-wave, Roy equation

ST

1.0

S0—-wave, GKPY equation

2009, page 11

60




Numerical results in theory
Numerical results for S, P, D G and F w7 amplitudes
o pole (resonance)

Numerical results in theory and in practice

Decomposition of Roy’s and GKPY eqgs: SO-wave

O I LA e e 10 777
: S0-wave, Roy equation : : S0—-wave, GKPY equation :
L ST ] L ]
g2 r 1 05 b
i~ [ ] [ ]
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g0 4 00 .
wn L ] L ]
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-2 4-05 .
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@ fi(s) =5 \/55_4 [ni,(s)ez“slz(s) - 1] — Ref}(s) should be smaller than ~ 0.6

@ the Roy’s equations need strong cancellations between ST and KT
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Numerical results in theory and in practice

Decomposition of Roy’'s and GKPY equations: P wave

4 T 1.0 e
| Pi-wave, Roy equation i | Pil-wave, GKPY equation
2 b 1 05 | .
A I
N .
k [ ST [
80— DT 4 0.0
:g I N\ KT I
> L
R i
-2 4-05 .
—4 7\\\\\\\\\\\\\\\\\\\\\\\\\\\\\7_1.0 7\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
0 10 20 30 40 50 60 0 10 20 30 40 50 60
s (m ?) s (m ?)

R. Kaminski Zakopane 2009, page 12
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Numerical results in theory and in practice

Decomposition of Roy’s and GKPY equations: S2-
wave

4 T e 1.0 77
S2-wave, Roy equation | | S2-wave, GKPY equation

s'2nSind /2k
(]
e

_4 \\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\7_1.07
0 10 20 30 40 50 60 0 10 20 30 40 50 60
s (m ?) s (m ?)

R. Kaminski Zakopane 2009, page 13
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Numerical results in theory and in practice
o pole (resonance)

Parameterization of amplitudes

We START by parametrizing the data

To avoid model dependences we only require analyticity and unitarity

For the integrals any data parametrization could do.
We use something SIMPLE at low energies (usually <932 Mey)

We use an
effective range formalism:
+a conformal expansion

(just two or three terms enough )

We use for input in the REAL axis I |
If needed we explicitly factorize a

value where f(s) is imaginary
or has a zero:

Sometimes another coefficient added
to remove spurious poles near left cuts

t higher energies phenomenological fits (polynomials of relevant momenta)
pecial care for continuous matching between low-high energy fits

R. Kaminski Zakopane, 12.02.2009, page 14
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Numerical results in theory and in practice

Fit to partial waves amplitudes

Similar Initial UNconstrained Flts for all other waves and High energies

5,6

150,

100

60§00 1000 1200 1400
2 (Mev)

R. Kaminski, JRP, F.J. Yndurain. Phys. Rev. D77:054015,2008.
Eur.Phys.|. A31:479-484,2007,
PRD74:014001,2006

JRP, F.J. Yndurain. PRD71, 074016 (2005),
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phase shifts for the SO-wave

300

270
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8 8 8

©
60

v Kaminski et a.

= Hyamseta. (--)
— Constrained Fit to Data (CFD)

<« Grayeretd. Sol.B (Hyamset al) {
— Unconstrained Fit to Data (UFD) }
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Low energy phase shifts for the SO-wave

0
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Low energy phase shifts for the SO-wave
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Low energy phase shifts for the SO-wave

120 39 E
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wl- |V Byoaien
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. o K, decay | S = mw/2
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@ average 7N — wxN data with enlarged errors at 870 - 970 MeV where they are

consistent within 10° — 15°
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inelasticity for the SO-wave
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output from Roy and GKPY equations, SO-wave
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output from Roy and GKPY equations, SO-wave
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@ Roy's equations have smaller errors below s!/2 ~ 400 MeV

@ GPKY equations have significantly smaller errors above s1/2 ~ 400 MeV

R. Kamifski
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Numerical results in theory and in practice

output from Roy and GKPY equations, P-wave
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Numerical results in theory and in practice

output from Roy and GKPY equations, S2-wave
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- plays role in determination of chiral parameters,
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- crucial in scalar meson spectroscopy

R. Kaminski Zakopane, 12.02.2009, page 22



Numerical results in theory
Numerical results for S, P, D G and F w7 amplitudes

Numerical results in theory and in practice
o pole (resonance)

fo(600) (o) resonance (I°JP¢ = 070*")

@ PDG Tables (since 1996): M = 400 — 1200 MeV,
=600 — 1000 MeV

@ why so famous:
- important in NN interactions,
- plays role in determination of chiral parameters,
- it can be: qQ, 2924, glueball or mixture of these states,
- crucial in scalar meson spectroscopy

@ why so enigmatic?
- very wide and interferes with other resonances
(with f5(980) for example)

R. Kaminski Zakopane, 12.02.2009, page 22
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sults in theory
cal results for S, P, D G and F w7 amplitudes
o pole (resonance)

Cross sections for the == SO wave
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Numerical results in theory and in practice
o pole (resonance)

fo(600) (o) resonance (I°JP¢ = 070*")

Moreover:

@ very often are used not appropriate models e. g. isobar
model (Belle and BaBar),

@ o is putinto a background,

@ Breit-Wigner approximation ABSOLUTELY not useful (for
example can change I' by 300 MeV),

@ large spread in mass and width is due to use of different,
old, scattering data with large systematic uncertainties

R. Kaminski Zakopane, 12.02.2009, page 24
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S0 wave below 1 GeV

e fits to different sets follow two behaviors compared with that to KI4 data only
hose close to the pure K4 fit display a "shoulder" in the 500 to 800 MeV region
These are:

pure Kl4, SolutionC —  Only K4 fit
and the global fits t PY from data

—  Kl4+SolutionC fit
Other fits do not 90 —  Kl4+SolutionB fit .
—  KI4+EMs fit
have the shoulder L oe suaionmn |

and are separated Kl4+Kaminski fit
from pure Kl4 L Kl4+Solution E

Note size of
A I % uncertaint:
Kaminski et al. 2 in data Y
lies in between at 800 MeV!!
with huge errors
Solution E |
deviates strongly
from the rest but had [ T R N
huge error bars

minski
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S0 wave below 1 GeV

e fits to different sets follow two behaviors compared with that to KI4 data only

hose close to the pure K4 fit display a "shoulder" in the 500 to 800 MeV region

These are:
pure Kl4, SolutionC Only K14 fit
and the global fits t PY from data

—  Kl4+SolutionC fit
Other fits do not 90 —  Kl4+SolutionB fit .
—  KI4+EMs fit
have the shoulder L oe suaionmn |

and are separated Kl4-+Kaminski fit
from pure Kl4 Kl4+Solution E

Note size of
1 I % uncertaint
Kaminski et al. 2 in data Y

lies in between at 800 MeV!!
with huge errors -
Solution E
deviates strongly il
from the rest but had [ I I

700 800 900 1000

huge error bars
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Numerical results in theory and in practice

constrains for data sets

-THE PION-PION SCATTERING AMPLITUDE-

Bg B 1o (MeV) %(n =1) %(ﬁ“x“)
PY, Eq. (2.14) 21.04 @ 782 +24 03
K decay only 185+ 1.7 766 + 95 02 18
ﬁglf“., B 207416 | 123437 | 858415 1.0 27 J R Pelaez and
If;z‘“» - 168085 —0.34£2.34| 7879 04 1.0 d .
K dpea datn 2536 | 125476 | 10844110 2.1 05 F.¥Yn urain,
Kaecay datn | 975480 | 215474 | 780218 0.3 5.0 PhyS Rev. D71,
K decay data WA+ 11 | 264428 | 86646 20 79 074016' (2005)
Hf:‘:\f‘"" NN 208+13 | 251+£33 | 811%7 1.0 9.1
. {_:‘\‘Il”'i‘c;"::;el 203414 | 269+34 | 820%6 12 10.1
+PIr‘0;‘L‘"‘:ﬂ“]‘w‘!:|‘l“ V1| 270£17 | 220441 | 855£10 1.2 58
+Pf:“'r!;“n}:n;':|:“\n +17 | 185+4.1 | 866+ 14 12 6.3
+Y‘r2;rtl1§’rl1;¥sr!:(,a\'lll 271423 | 238450 | 913+18 18 42

() Errors as in Eq. (2.14b)

PY, Eq. (2.14): our global fit of Subsect. 2.2.2. The next rows show the fits to K decay!'™ alone or combined with 7
scattering data. Grayer A, B, C, E: the solutions in the paper of Grayer et al.**’ EM: the salutions of Estabroaks and
Martin.!"**! Kaminski refers to the papers of Kamiriski et al.”"**! Protopopescu VI, XII and VIII: the corresponding
solutions in ref. 10

2009, page 26
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o pole

Continuation to the
complex s plane:

Im(Spole ):

Numerical results in theory
Numerical results for S, P, D G and F amplitudes
o pole (resonance)

The results from the GKPY Eqs. with the CONSTRAINED Data Fit input
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o pole (resonance)

o pole

The results from the GKPY Eqs. with the CONSTRAINED Data Fit input
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Numerical results in theory and in practice

o pole

Continuation to the
complex s plane:

@ ROY:
—255+ 14 MeV

@ GKPY:
—251+12 MeV

Numerical results in theory

Numerical results for S, P, D G and F w7 amplitudes
o pole (resonance)

The results from the GKPY Eqs. with the CONSTRAINED Data Fit input

¥
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@ ROY: 459 + 31 MeV

@ GKPY: 467 +11 MeV
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Conclusions

Conclusions

using dispersion relation one can constrain the data fits,

the Roy’s and GPKY equations constrain our fitted
amplitudes

these constrains allow for precise determination of the o
pole

we do not use any ChPT predictions but

we get from our fits a = 0.222 4+ 0.009 and
a2 = —0.045 £ 0.008

we use complete set of data for waves S-G

constraints given by GKPY equations lead to smaller errors
of amplitudes — observables

R. Kaminski Zakopane, 12.02.2009, page 28
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Conclusions

Fit to SO wave

See R. Garcia Martin talk]

EVW:S0 wave above 932 MeV with improved matcing
CERN-Munich phases with and Inelasticity from several Tt -
without polarized beams T, ot —» KK experiments

matrix fit.; Tiny errors. Strong correlation of phase and inelasticity

800 1000 1200 1400
' (Mevy

R. Kaminski Zakopane, 12.02.2009, page 30
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Fit to SO wave
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