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Why dispersive approach?

it is model independent, only analyticity and crossing
symmetry,

it can well determine amplitudes even where is no data,

allows to test the data on ππ scattering,

relates different ππ partial waves,

for each mππ various ππ amplitudes are combined and
integrated,

increases precision of output amplitudes
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main idea
Crossing symmetry:
ππ amplitudes should be invariant
under change of channel

So T (s) = CstT (t) where
Cst is crossing matrix.

General form of twice subtracted dispersion relations:

Ref I
ℓ(s) = Const1 + Const2(s − 4)+

∑

I′

∑

ℓ′

−

∞
∫

4

ds′K II′
ℓℓ′(s, s′)Im f I′

ℓ′ (s
′)

with kernels K II′
ℓℓ′(s, s′) ∼ 1/(s − s′)(s′ − 4)2
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historical review

1971→ S. M. Roy introduces crossing symmetry into ππ amplitudes and fixes
them at the ππ threshold (→ scattering lengths), Phys. Lett. B 36, 353 (1971)

1972, 1974→ Basdevant et al.,

1973→ Pennington,

2000→Wanders,

2003→ R. Kamiński, L. Leśniak, B. Loiseau: Roy’s equations used to eliminate
the "up-down" ambiguity in ππ amplitudes,

2001→ B. Ananthanarayan, G. Colangelo, J. Gasser, H. Leutwyler (Swiss
group),

2003→ F. Yndurain and J. R. Pelaez, R. Garcia-Martin, R. Kamiński (Madrid
group),

2003→ now: discussion between Swiss and Madrid groups, (27 papers)

number of papers on the Roy’s equations: 1971-2000: 12
after 2001-2009: 35
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Twice subtracted dispersion relations (Roy’s
equations)

Re f I
ℓ (s) = ST (s) + KT (s) + DT (s) where

“subtracting term” ST (s) = a0
0δI0δℓ0 + a2

0δI2δℓ0+
s − 4

12
(2a0

0 − 5a2
0)(δI0δℓ0 +

1
6

δI1δℓ1 −
1
2

δI2δℓ0) with

a0
0 and a2

0 - the ππ scattering lengths in the S0- and
S2-wave,

“kernel term” KT (s) =

2
∑

I′=0

1
∑

ℓ′=0

−

smax
∫

4

ds′K II′
ℓℓ′(s, s′)Im f I′

ℓ′ (s
′)

with kernels K II′
ℓℓ′(s, s′) ∼ 1/(s − s′)(s′ − 4)2 ←−!!! and

“driving term” DT (s) = d I
ℓ(s, smax )
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up-down ambiguity

well known “up-down”
ambiguity in the ππ S0 wave
below 1 GeV,

caused by ambiguity in sign of
θS − θP in PWA (e.g. works of
(CERN-Cracow-Munich Coll.
70’),

eliminated in 2003:
Phys. Lett. B551, 241 (2003),
R. Kamiński, L. Leśniak,
B. Loiseau
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“kernel term” KT (s) =

2
∑

I′=0

1
∑

ℓ′=0

−

smax
∫

4

ds′K II′
ℓℓ′(s, s′)Im f I′

ℓ′ (s
′)

with kernels K II′
ℓℓ′(s, s′) ∼ 1/(s − s′)(s′ − 4) and

“driving term” DT (s) = d I
ℓ(s, smax )
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Threshold behavior of output amplitudes

Threshold expansion:
Ref I

ℓ(s ≈ 4) = (s − 4)ℓ
[

aI
ℓ + bI

ℓ(s − 4) + ...
]

Let’s compare the Roy’s and GKPY equations:

Wave Thr. exp STRoy KT&DTRoy STGKPY KT&DTGKPY

S0 a0
0 a0

0 + CS0(s − 4) βS0(s − 4) a0
0 + 5a2

0 αS0 + βS0(s − 4)

P 0 CP(s − 4) βP1(s − 4) a0
0 −

5
2 a2

0 αP1 + βP1(s − 4)

S2 a2
0 a2

0 + CS2(s − 4) βS2(s − 4) a0
0 + 1

2 a2
0 αS2 + βS2(s − 4)

so, in GKPY equations necessary are mutual cancellations
of constant terms in the P-wave and partial cancellations in
the S-waves.

R. Kamiński Zakopane, 12.02.2009, page 10



Introduction
Dispersion relations with imposed crossing symmetry condition

Numerical results in theory and in practice
Conclusions

main idea and short historical review
Twice subtracted dispersion relations
example of application
Once subtracted dispersion relations
Threshold behavior of output amplitudes

Threshold behavior of output amplitudes

Threshold expansion:
Ref I

ℓ(s ≈ 4) = (s − 4)ℓ
[

aI
ℓ + bI

ℓ(s − 4) + ...
]

Let’s compare the Roy’s and GKPY equations:

Wave Thr. exp STRoy KT&DTRoy STGKPY KT&DTGKPY

S0 a0
0 a0

0 + CS0(s − 4) βS0(s − 4) a0
0 + 5a2

0 αS0 + βS0(s − 4)

P 0 CP(s − 4) βP1(s − 4) a0
0 −

5
2 a2

0 αP1 + βP1(s − 4)

S2 a2
0 a2

0 + CS2(s − 4) βS2(s − 4) a0
0 + 1

2 a2
0 αS2 + βS2(s − 4)

so, in GKPY equations necessary are mutual cancellations
of constant terms in the P-wave and partial cancellations in
the S-waves.
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R. Kamiński Zakopane, 12.02.2009, page 10



Introduction
Dispersion relations with imposed crossing symmetry condition

Numerical results in theory and in practice
Conclusions

Numerical results in theory
Numerical results for S, P, D G and F ππ amplitudes
σ pole (resonance)

Decomposition of Roy’s and GKPY eqs: S0-wave

f I
ℓ(s) =

√
s

2i
√

s−4

h

ηI
ℓ(s)e2iδI

ℓ
(s)
− 1

i

−→ Ref I
ℓ(s) should be smaller than ≈ 0.6

the Roy’s equations need strong cancellations between ST and KT
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Fit to partial waves amplitudes
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phase shifts for the S0-wave
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Low energy phase shifts for the S0-wave
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output from Roy and GKPY equations, S0-wave
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f0(600) (σ) resonance (IGJPC = 0+0++)

PDG Tables (since 1996): M = 400− 1200 MeV,
Γ = 600− 1000 MeV

why so famous:
- important in NN interactions,
- plays role in determination of chiral parameters,
- it can be: qq̄, 2q2q̄, glueball or mixture of these states,
- crucial in scalar meson spectroscopy

why so enigmatic?
- very wide and interferes with other resonances
(with f0(980) for example)
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Cross sections for the ππ S0 wave

σ11 : ππ → ππ

σ12 : ππ → K K̄

σ13 : ππ → σσ

disappeared from
PDG Tables in 1976,
back in 1996
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Figure 5: Energy dependence of cross sections σij for the solution BR. Kamiński Zakopane, 12.02.2009, page 23
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f0(600) (σ) resonance (IGJPC = 0+0++)

Moreover:

very often are used not appropriate models e. g. isobar
model (Belle and BaBar),

σ is put into a background,

Breit-Wigner approximation ABSOLUTELY not useful (for
example can change Γ by 300 MeV),

large spread in mass and width is due to use of different,
old, scattering data with large systematic uncertainties

R. Kamiński Zakopane, 12.02.2009, page 24
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more "flat" data sets give Γ ≈ 1000 MeV, those with shoulder ≈ 500 MeV
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constrains for data sets-the pion-pion sattering amplitude-B0 B1 �0 (MeV) �2d:o:f: (It = 1) �2d:o:f: (�0�0)PY, Eq. (2.14) 21:04 (a) 6:62 (a) 782 � 24 0:3 3:5K deay only 18:5� 1:7 � 0 766 � 95 0:2 1:8K deay data+Grayer; B 22:7� 1:6 12:3 � 3:7 858 � 15 1:0 2:7K deay data+Grayer; C 16:8� 0:85 �0:34� 2:34 787� 9 0:4 1:0K deay data+Grayer; E 21:5� 3:6 12:5 � 7:6 1084 � 110 2:1 0:5K deay data+Kaminski 27:5� 3:0 21:5 � 7:4 789 � 18 0:3 5:0K deay data+Grayer; A 28:1� 1:1 26:4 � 2:8 866� 6 2:0 7:9K deay data+EM; s�hannel 29:8� 1:3 25:1 � 3:3 811� 7 1:0 9:1K deay data+EM; t�hannel 29:3� 1:4 26:9 � 3:4 829� 6 1:2 10:1K deay data+Protopopesu; VI 27:0� 1:7 22:0 � 4:1 855 � 10 1:2 5:8K deay data+Protopopesu; XII 25:5� 1:7 18:5 � 4:1 866 � 14 1:2 6:3K deay data+Protopopesu; VIII 27:1� 2:3 23:8 � 5:0 913 � 18 1:8 4:2(a) Errors as in Eq. (2.14b).PY, Eq. (2.14): our global �t of Subset. 2.2.2. The next rows show the �ts to K deay[13℄ alone or ombined with ��sattering data. Grayer A, B, C, E: the solutions in the paper of Grayer et al.[11a℄ EM: the solutions of Estabrooks andMartin.[11a℄ Kaminski refers to the papers of Kami�nski et al.[11℄ Protopopesu VI, XII and VIII: the orrespondingsolutions in ref. 10. Table 2relation at intervals of 25 MeV in s1=2, from threshold up to s1=2 = 0:925 MeV, dividing this by the totalnumber of points. For the dispersion relations for �0�+ and �0�0 sattering, we also inlude in the �t therelations (3.1b) and (3.3b), whih are important in �xing the loation of the Adler zeros for the S0, S2 waves.Aording to this, we allow variation of the parameters of the S0 wave up to �KK threshold (inludingthe loation of the Adler zero, z0); the parameters of the P wave up to s1=2 = 1:0 GeV; and the parametersof S2, D0, D2 and F waves for all s1=2 � 1:42 GeV. For S2 we also leave free z2. We �nd that the totalvariation of the parameters has an average �2 of 0:38, showing the remarkable stability of our �ts. The onlyparameters that have varied by � 1� or a bit more are some of the parameters for the S0 and D2 waves.For both, this hardly a�ets the low energy shape, but alters them a little at medium and higher energies(for D2, see Fig. 7). Given the low quality of experimental data in the two ases, this feature should not besurprising.As stated above, in the present Subsetion we take as starting point the S0 wave we obtained withour global �t in Subset. 2.2.2. The new entral values of the parameters, and the sattering length ande�etive range parameters (both in units of M�) are listed below.
{ 23 {

J. R. Pelaez and
F. Yndurain,
Phys. Rev. D71,
074016, (2005)
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σ pole

Continuation to the
complex s plane:

Im(spole):

ROY:
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R. Kamiński Zakopane, 12.02.2009, page 27



Introduction
Dispersion relations with imposed crossing symmetry condition

Numerical results in theory and in practice
Conclusions

Conclusions

using dispersion relation one can constrain the data fits,

the Roy’s and GPKY equations constrain our fitted
amplitudes

these constrains allow for precise determination of the σ
pole

we do not use any ChPT predictions but

we get from our fits a0
0 = 0.222± 0.009 and

a2
0 = −0.045± 0.008

we use complete set of data for waves S-G

constraints given by GKPY equations lead to smaller errors
of amplitudes→ observables
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Fit to S0 wave
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