The chiral partner of the nucleon in the mirror assignment

Susanna Gallas

in collaboration with:
Francesco Giacosa and Dirk Rischke

Excited QCD
8-14 February 2009- Zakopane (Poland)

> Johann wolfgang ${ }^{\text {GOEtHE }}$ UNIVERSITÄT FRANKFURT AM MAIN

Talk 09.02 .09 by D. Parganlija:
$L_{\text {mes }}=\operatorname{Tr}\left[\left(D^{\mu} \Phi\right)\left(D_{\mu} \Phi\right)\right]-m^{2} \operatorname{Tr}\left[\Phi^{+} \Phi\right]-\lambda_{1}\left[\operatorname{Tr}\left(\Phi^{+} \Phi\right)\right]^{2}-\lambda_{2} \operatorname{Tr}\left(\Phi^{+} \Phi\right)^{2}+$ $c\left[\operatorname{det}\left(\Phi^{+}\right)+\operatorname{det}(\Phi)\right]+\operatorname{Tr}\left[H\left(\Phi^{+}+\Phi\right)\right]-$
$\frac{1}{4} \operatorname{Tr}\left[\left(L^{\mu \nu}\right)^{2}+\left(R^{\mu \nu}\right)^{2}\right]+\frac{m_{1}{ }^{2}}{2} \operatorname{Tr}\left[\left(L^{\mu}\right)^{2}+\left(R^{\mu}\right)^{2}\right]$

+ Baryons:

$$
\begin{aligned}
& \bar{\Psi}_{L} i \gamma_{\mu} \partial^{\mu} \Psi_{L}+{\bar{g} \Psi_{L}}^{\mu} L^{\mu} \Psi_{L}+\bar{\Psi}_{R} i \gamma_{\mu} \partial^{\mu} \Psi_{R}+g \bar{\Psi}_{R} \gamma_{\mu} R^{\mu} \Psi_{R} \\
& -\hat{g}\left(\bar{\Psi}_{L} \Phi \Psi_{R}+\bar{\Psi}_{R} \Phi^{+} \Psi_{L}\right)
\end{aligned}
$$

Motivation

Introduction of N^{*} for chiral realization of the nucleonic Lagrangian
\rightarrow chiral invariant mass term / mo
Generation of the nucleonic mass:
how is m_{N} generated?
Quark condensate vs. mo
Correct description of the axial coupling constant

$$
\begin{aligned}
& \mathrm{gA}(\mathrm{~N})=1.26 \\
& \mathrm{gA}\left(\mathrm{~N}^{*}\right)=?
\end{aligned}
$$

Study of pion-nucleon scattering

The chiral partner:

what is N^{*} ?

The chiral partner of the nucleon in the mirror assignment

Mirror assignment vs naive assignment: chiral transformation

Naive

$$
\begin{gathered}
\Psi_{1 L} \rightarrow U_{L} \Psi_{1 L} \\
\Psi_{2 L} \rightarrow U_{L} \Psi_{2 L} \\
\\
\Psi_{1 R} \rightarrow U_{R} \Psi_{1 R} \\
\Psi_{2 R} \rightarrow U_{R} \Psi_{2 R} \\
\quad \Downarrow
\end{gathered}
$$

No chiral invariant mass term
2 independent Linear Sigma models

$$
\begin{aligned}
& \Psi_{1}=N \\
& \Psi_{2}=N^{*} \\
& \hat{M}=1_{2 \times 2}
\end{aligned}
$$

$$
U_{L} \times U_{R} \in S U(2)_{L} \times S U(2)_{R}
$$

$$
\begin{aligned}
& \Psi_{1 L} \rightarrow U_{L} \Psi_{1 L} \\
& \Psi_{2 L} \rightarrow U_{R} \Psi_{2 L} \\
& \\
& \Psi_{1 R} \rightarrow U_{R} \Psi_{1 R} \\
& \Psi_{2 R} \rightarrow U_{L} \Psi_{2 R} \\
& \Downarrow
\end{aligned}
$$

$$
-m_{0}\left(\bar{\Psi}_{1 L} \Psi_{2 R}-\bar{\Psi}_{1 R} \Psi_{2 L}-\bar{\Psi}_{2 R} \Psi_{1 L}+\bar{\Psi}_{2 L} \Psi_{1 R}\right)
$$

Nucleon mass not only dynamically generated

$$
\hat{M} \neq 1_{2 \times 2}
$$

The chiral partner of the nucleon in the mirror assignment

Candidates with the correct quantum numbers from PDG:
N*(1535) lowest nucleonic resonance
N* (1650)

Other possibility (speculative):

$$
J^{P}=\frac{1}{2}^{-}
$$

N*(1200) (D. Zschiesche, L. Tolos, J. Schaffner-Bielich, R. Pisarski, Phys.Rev.C75:055202,2007)

Very broad resonance? Not yet measured?

A little bit of scattering theory

A little bit of scattering theory

General form of the Lorentz-invariant scattering amplitude: $\bar{u}\left(p_{2}\right) T_{b a} u\left(p_{1}\right)$

$$
T_{b a}=\left[A^{(+)}+\frac{1}{2}\left(q_{1}^{\mu}+q_{2}^{\mu}\right) \gamma_{\mu} B^{(+)}\right] \delta_{a b}+\left[A^{(-)}+\frac{1}{2}\left(q_{1}^{\mu}+q_{2}^{\mu}\right) \gamma_{\mu} B^{(-)}\right] i \varepsilon_{b a c} \tau_{c}
$$

s-wave scattering lengths: $\quad a_{0}{ }^{(\pm)}=\eta\left(A_{0}{ }^{(\pm)}+m_{\pi} B_{0}{ }^{(\pm)}\right)$

$$
t=0, s=\left(m_{N}+m_{\pi}\right)^{2}, u=\left(m_{N}-m_{\pi}\right)^{2}
$$

$$
\eta=\frac{1}{4 \pi\left(1+\frac{m_{\pi}}{m_{N}}\right)}
$$

Some important data

H. Schroder: Measured pion nucleon scattering lengths from pionic hydrogen and deuterium at PSI (Eur.Phys.J.C21:473-488,2001)

$$
\begin{aligned}
& a_{0}^{(+)}=(-8.85783 \pm 7.165) 10^{-6} \mathrm{MeV}^{-1} \\
& a_{0}^{(-)}=(6.41256 \pm 0.1146) 10^{-4} \mathrm{MeV}^{-1}
\end{aligned}
$$

T. Takahashi and T. Kunihiro: Axial charge of $N(1535)$ in lattice QCD (e-Print: arXiv:0801.4707)

$$
g_{A}^{N^{*}}=0.2 \pm 0.3
$$

L. Ya. Glozman: Phys.Rept.444:1-49,2007
$g_{A}^{N^{*}} \approx 0 \rightarrow N^{*}$ is not the partner
if N^{*} is the partner $\rightarrow g_{A}^{N^{*}} \approx-1$
we shall present a different result

The model

Linear sigma model with vector and axial vector mesons, as well as the nucleonic fields
 in the mirror assignment local symmetric case

Spontaneus symmetry breaking

$$
\sigma \rightarrow \sigma+\varphi
$$

leads to mixing terms in the Lagrangian: $\quad-g \partial_{\mu} \eta \varphi f_{1}^{\mu}-g \partial_{\mu} \vec{\pi} \varphi \cdot \vec{a}_{1}^{\mu}$
we need to perform the shifts of the axial fields:

$$
\begin{aligned}
& \vec{a}_{1}^{\mu} \rightarrow \vec{a}_{1}^{\mu}+w \partial^{\mu} \vec{\pi} \\
& f_{1}^{\mu} \rightarrow f_{1}^{\mu}+w \partial^{\mu} \eta
\end{aligned}
$$

$$
w=\frac{g \varphi}{m_{a_{1}}+(g \varphi)^{2}}
$$

and to renormalize the pseudoscalar fields:

$$
\frac{1}{Z} \eta \rightarrow \eta \quad \frac{1}{Z} \vec{\pi} \rightarrow \vec{\pi}
$$

$$
\begin{aligned}
& Z=\sqrt{2} \text { as predictedby KSFR }- \text { relation } \\
& \mathrm{Z}=\frac{\mathrm{m}_{\mathrm{a}}}{\mathrm{~m}_{\rho}}
\end{aligned}
$$

Mesonic sector of the lagrangian

$$
\begin{aligned}
& L_{\text {mes }}=\operatorname{Tr}\left[\left(D^{\mu} \Phi\right)\left(D_{\mu} \Phi\right)\right]-m^{2} \operatorname{Tr}\left[\Phi^{+} \Phi\right]-\lambda_{1}\left[\operatorname{Tr}\left(\Phi^{+} \Phi\right)\right]^{2}-\lambda_{2} \operatorname{Tr}\left(\Phi^{+} \Phi\right)^{2}+ \\
& c\left[\operatorname{det}\left(\Phi^{+}\right)+\operatorname{det}(\Phi)\right]+\operatorname{Tr}\left[H\left(\Phi^{+}+\Phi\right)\right]- \\
& \frac{1}{4} \operatorname{Tr}\left[\left(L^{\mu \nu}\right)^{2}+\left(R^{\mu \nu}\right)^{2}\right]+\frac{m_{1}^{2}}{2} \operatorname{Tr}\left[\left(L^{\mu}\right)^{2}+\left(R^{\mu}\right)^{2}\right]
\end{aligned}
$$

Fields

Field strength tensor

$$
\begin{array}{ll}
\Phi=(\sigma+i \eta) t_{0}+\left(\vec{a}_{0}+i \vec{\pi}\right) \vec{t} & L^{\mu v}=\partial^{\mu} L^{v}-\partial^{v} L^{\mu}-i g\left[L^{\mu}, L^{\nu}\right] \\
L^{\mu}=\left(\omega^{\mu}+f_{1}^{\mu}\right) t_{0}+\left(\vec{\rho}^{\mu}+\vec{a}_{1}^{\mu}\right) \vec{t} & R^{\mu v}=\partial^{\mu} R^{v}-\partial^{v} R^{\mu}-i g\left[R^{\mu}, R^{v}\right] \\
R^{\mu}=\left(\omega^{\mu}-f_{1}^{\mu}\right) t_{0}+\left(\vec{\rho}^{\mu}-\vec{a}_{1}^{\mu}\right) \vec{t} & \\
& D^{\mu} \Phi=\partial^{\mu} \Phi+i g\left(\Phi R^{\mu}-L^{\mu} \Phi\right)
\end{array}
$$

Introducing the chiral partner

$$
\begin{aligned}
& L_{\text {nucl }}=\bar{\Psi}_{1 L i} \gamma_{\mu} \partial^{\mu} \Psi_{1 L}+\overline{g \Psi}_{1 L} \gamma_{\mu} L^{\mu} \Psi_{1 L}+\bar{\Psi}_{1 R} i \gamma_{\mu} \partial^{\mu} \Psi_{1 R}+g \bar{\Psi}_{1 R} \gamma_{\mu} R^{\mu} \Psi_{1 R} \\
& +\bar{\Psi}_{2 L i} \gamma_{\mu} \partial^{\mu} \Psi_{2 L}+g \bar{\Psi}_{2 L} \gamma_{\mu} R^{\mu} \Psi_{2 L}+\bar{\Psi}_{2 R i} \gamma_{\mu} \partial^{\mu} \Psi_{2 R}+g \bar{\Psi}_{2 R} \gamma_{\mu} L^{\mu} \Psi_{2 R} \\
& -\hat{g}_{1}\left(\bar{\Psi}_{1 L} \Phi \Psi_{1 R}+\bar{\Psi}_{1 R} \Phi^{+} \Psi_{1 L}\right)-\hat{g}_{2}\left(\bar{\Psi}_{2 L} \Phi^{+} \Psi_{2 R}+\bar{\Psi}_{2 R} \Phi \Psi_{2 L}\right) \\
& -m_{0}\left(\bar{\Psi}_{1 L} \Psi_{2 R}-\bar{\Psi}_{1 R} \Psi_{2 L}-\bar{\Psi}_{2 R} \Psi_{1 L}+\bar{\Psi}_{2 L} \Psi_{1 R}\right.
\end{aligned}
$$

$$
m_{N} \sim\langle\bar{q} q\rangle+m_{0}
$$

Mixing angle and mass mo

$$
\binom{N}{N^{*}}=\hat{M}\binom{\Psi_{1}}{\Psi_{2}} \quad \text { with } \quad \hat{M}=\frac{1}{\sqrt{2 \cosh \delta}}\left(\begin{array}{cc}
e^{\delta / 2} & \gamma_{5} e^{-\delta / 2} \\
\gamma_{5} e^{-\delta / 2} & -e^{\delta / 2}
\end{array}\right)
$$

diagonaliz $\hat{M} \Rightarrow$ nucleonmasses:

$$
m_{N, N^{*}}=\frac{1}{2}\left(\sqrt{\left(\widehat{g}_{1}+\widehat{g}_{2}\right)^{2} \varphi^{2}+4 m_{0}^{2}} \pm\left(\widehat{g}_{1}-\widehat{g}_{2}\right) \frac{\varphi}{2}\right)
$$

Mixing angle:

$$
\delta=\operatorname{ar} \cosh \left[\frac{m_{N}+m_{N^{*}}}{2 m_{0}}\right]
$$

$$
\begin{aligned}
& \delta \rightarrow \infty \Rightarrow \Psi_{1}=N, \Psi_{2}=N^{*} \\
& \delta \rightarrow-\infty \Rightarrow \Psi_{1}=N^{*}, \Psi_{2}=N \quad \text { no mixing } \\
& \delta \rightarrow 0 \Rightarrow \Psi_{1,2}=\frac{N \pm N^{*}}{\sqrt{2}} \quad \text { maximal mixing }
\end{aligned}
$$

Mixing angle and mass mo

$$
m_{0}=\frac{\hat{g}_{1}\left(m_{N}, m_{N^{*}}, \boldsymbol{\delta}\right)+\hat{g}_{2}\left(m_{N}, m_{N^{*}}, \boldsymbol{\delta}\right)}{4 \sinh \boldsymbol{\delta}}
$$

Linear sigma model with vector and axial vector mesons, as well as the nucleonic fields
 in the mirror assignment local symmetric case:

Results

Results: locally symmetric model

The s-wave scattering lengths

$$
a_{0, \text { exp }}^{(+)}=(-8.85783 \pm 7.165) 10^{-6} \mathrm{MeV}^{-1}
$$

$$
Z=\sqrt{2}
$$

Axial coupling constant of N^{*} (1535)

$$
\begin{aligned}
& g_{A, \text { Lattice }}^{N^{*}}=0.2 \pm 0.3 \\
& g_{A, \text { Glozman }}^{N^{*}}=-1.26
\end{aligned}
$$

Conclusions: locally symmetric model

- Scattering length $\mathrm{a}_{0}^{(+)}$in agreement with experimental values for $\delta>1.5$
- Scattering length $\mathrm{a}_{0}^{(-)}$is not in agreement with experimental values
- $g_{A}^{N}=\frac{\tanh (\delta)}{Z^{2}}<1$ but experimental value is 1.26
- $g_{A}^{N^{*}}=0.2 \pm 0.3 \rightarrow \delta<0$ or very small (not compatible with $\mathrm{a}_{0}^{(+)}$)
\Rightarrow Results are not consistent
\Rightarrow we need to improve our model
Excited QCD 8-14 February 2009- Zakopane (Poland) Susanna Gallas

Global chiral symmetry in agreement with mesonic decays

Model with global symmetry

$$
\begin{aligned}
& L=L_{\text {mes }}+\frac{h_{1}}{2} \operatorname{Tr}\left[\Phi^{+} \Phi\right] \operatorname{Tr}\left[\left(L^{\mu}\right)^{2}+\left(R^{\mu}\right)^{2}\right] \\
& +h_{2} \operatorname{Tr}\left[\Phi^{+} L_{\mu} L^{\mu} \Phi+\Phi R_{\mu} R^{\mu} \Phi^{+}\right]+2 h_{3} \operatorname{Tr}\left[\Phi R_{\mu} \Phi^{+} L^{\mu}\right]+ \\
& \bar{\Psi}_{1 L} i \gamma_{\mu} \partial^{\mu} \Psi_{1 L}+c_{1} \bar{\Psi}_{1 L} \gamma_{\mu} L^{\mu} \Psi_{1 L}+\bar{\Psi}_{1 R} i \gamma_{\mu} \partial^{\mu} \Psi_{1 R}+\bar{c}_{1} \bar{\Psi}_{1 R} \gamma_{\mu} R^{\mu} \Psi_{1 R} \\
& +\bar{\Psi}_{2 L} i \gamma_{\mu} \partial^{\mu} \Psi_{2 L}+c_{2} \bar{\Psi}_{2 L} \gamma_{\mu} R^{\mu} \Psi_{2 L}+\bar{\Psi}_{2 R} i \gamma_{\mu} \partial^{\mu} \Psi_{2 R}+c_{2} \bar{\Psi}_{2 R} \gamma_{\mu} L^{\mu} \Psi_{2 R} \\
& -\hat{g}_{1}\left(\bar{\Psi}_{1 L} \Phi \Psi_{1 R}+\bar{\Psi}_{1 R} \Phi^{+} \Psi_{1 L}\right)-\hat{g}_{2}\left(\bar{\Psi}_{2 L} \Phi^{+} \Psi_{2 R}+\bar{\Psi}_{2 R} \Phi \Psi_{2 L}\right) \\
& -m_{0}\left(\bar{\Psi}_{1 L} \Psi_{2 R}-\bar{\Psi}_{1 R} \Psi_{2 L}-\bar{\Psi}_{2 R} \Psi_{1 L}+\bar{\Psi}_{2 L} \Psi_{1 R}\right)
\end{aligned}
$$

Changes in $L_{\text {mes }}$:
$\left.D^{\mu} \Phi=\partial^{\mu} \Phi+\overparen{g_{1}} \Phi R^{\mu}-L^{\mu} \Phi\right)$

$$
\begin{aligned}
& \left.L^{\mu \nu}=\partial^{\mu} L^{\nu}-\partial^{\nu} L^{\mu}-L_{2}^{\mu}, L^{v}\right] \\
& R^{\mu \nu}=\partial^{\mu} R^{\nu}-\partial^{\nu} R^{\mu}
\end{aligned}
$$

Model with global symmetry

We determine the free parameters of the model

 $\mathrm{m}_{0}, \mathrm{C}_{1}$, and c_{2} from $g_{A}^{N}, g_{A}^{N^{*}}, \Gamma_{N^{*} \rightarrow \pi N}$$\mathrm{N}^{*}$ (1200): speculative candidate, decay width $\Gamma_{N}{ }^{*} \rightarrow \pi \mathrm{~N}>800 \mathrm{MeV}$
$\mathrm{N}^{*}(1500)$: PDG , decay width $\Gamma^{*} \gtrdot \pi \mathrm{~N}=67.5 \mathrm{MeV}$
$\mathrm{N}^{*}(1650)$: PDG, decay width $\Gamma_{{ }^{*} \rightarrow \pi \mathrm{~N}}=92.5+/-37.5 \mathrm{MeV}$

Global chiral symmetry in agreement with mesonic decays

Results

Results: globally symmetric model

m_{0} vs. the axial coupling constant of $\mathrm{N}^{*}(1535)$

$350 \mathrm{MeV}<\mathrm{m}_{0}<600 \mathrm{MeV}$
S.G., F. Giacosa, D.Rischke,e-Print: hep-ph/0901.4043

Results: globally symmetric model

Results: globally symmetric model

s-wave scattering lengths

$$
m_{N^{*}}=1535 \mathrm{MeV}
$$

Results: globally symmetric model

s-wave scattering lengths

$N^{*}(1535)$
$N^{*}(1650)$
N^{*} (1650)
$\mathrm{N}^{*}(1200)$ is off by over a factor 1000 !

Introducing
 a
 scalar tetraquark

(preliminary)

Introducing the tetraquark

(almost) as before:

$$
\begin{aligned}
& L=L_{\text {mes }}+h_{2} \operatorname{Tr}\left[\Phi^{+} L_{\mu} L^{\mu} \Phi+\Phi R_{\mu} R^{\mu} \Phi^{+}\right] \\
& +2 h_{3} \operatorname{Tr}\left[\Phi R_{\mu} \Phi^{+} L^{\mu}\right]+ \\
& \bar{\Psi}_{1 L i} i \gamma_{\mu} \partial^{\mu} \Psi_{1 L}+c_{1} \bar{\Psi}_{1 L} \gamma_{\mu} L^{\mu} \Psi_{1 L}+\bar{\Psi}_{1 R} i \gamma_{\mu} \partial^{\mu} \Psi_{1 R}+c_{1} \bar{\Psi}_{1 R} \gamma_{\mu} R^{\mu} \Psi_{1 R} \\
& +\bar{\Psi}_{2 L} i \gamma_{\mu} \partial^{\mu} \Psi_{2 L}+c_{2} \bar{\Psi}_{2 L} \gamma_{\mu} R^{\mu} \Psi_{2 L}+\bar{\Psi}_{2 R} i \gamma_{\mu} \partial^{\mu} \Psi_{2 R}+c_{2} \bar{\Psi}_{2 R} \gamma_{\mu} L^{\mu} \Psi_{2 R} \\
& -\hat{g}_{1}\left(\bar{\Psi}_{1 L} \Phi \Psi_{1 R}+\bar{\Psi}_{1 R} \Phi^{+} \Psi_{1 L}\right)-\hat{g}_{2}\left(\bar{\Psi}_{2 L} \Phi^{+} \Psi_{2 R}+\bar{\Psi}_{2 R} \Phi \Psi_{2 L}\right) \\
& -m_{0}\left(\frac{\chi}{\chi_{0}}\left(\bar{\Psi}_{1 L} \Psi_{2 R}-\bar{\Psi}_{1 R} \Psi_{2 L}-\bar{\Psi}_{2 R} \Psi_{1 L}+\bar{\Psi}_{2 L} \Psi_{1 R}\right)\right.
\end{aligned}
$$

and add:

$$
L_{\chi}=\frac{1}{2}\left(\partial_{\mu} \chi\right)^{2}-\frac{1}{2} m_{\chi}^{2} \chi^{2}+g \chi\left(\sigma^{2}+\pi^{2}\right)+b \chi\left(R_{\mu}^{2}+L_{\mu}^{2}\right)
$$

Introducing the tetraquark

$$
\begin{aligned}
& \chi=\frac{1}{2}[u, d][\bar{u}, \bar{d}] \\
& \binom{H}{S}=\left(\begin{array}{cc}
\cos \vartheta & \sin \vartheta \\
-\sin \vartheta & \cos \vartheta
\end{array}\right)\binom{\chi}{\sigma}
\end{aligned}
$$

H predominantly $f_{0}(600)$
S predominantly $f_{0}(1370)$

$$
\vartheta=\frac{1}{2} \arctan \frac{4 g \varphi}{m_{\sigma}^{2}-m_{\gamma}^{2}} \quad L_{\chi \sigma}=g \chi\left(\sigma^{2}+\pi^{2}\right)
$$

Results: the tetraquark

The isospin even scattering length as a function of g

$$
+g \chi\left(\sigma^{2}+\pi^{2}\right)+b \chi\left(R_{\mu}^{2}+L_{\mu}^{2}\right)
$$

Results: the tetraquark

The isospin even scattering length as a function of the axial charge of the chiral partner of the nucleon for $\mathrm{g}=2500 \mathrm{MeV}$ and different values of b .
$g \approx 2.5 \mathrm{GeV}$ by A. Heinz et. al in finite temperature studies (hep-ph 08051134)

$$
g=2500 \mathrm{MeV}, h_{1}=h_{2}=0
$$

$$
\frac{h_{1}}{2} \operatorname{Tr}\left[\Phi^{+} \Phi\right] \operatorname{Tr}\left[\left(L^{\mu}\right)^{2}+\left(R^{\mu}\right)^{2}\right]+h_{2} \operatorname{Tr}\left[\Phi^{+} L_{\mu} L^{\mu} \Phi+\Phi R_{\mu} R^{\mu} \Phi^{+}\right]
$$

Conclusions and outlook

- $N^{*}(1535)$ is a good candidate to be the chiral partner of the nucleon in the mirror assignment, although the theoretic al decay into nucleon - eta and one scattering length are too small.
- The result points to $m_{0} \approx 500 \mathrm{MeV}$: half of the nucleon mass survives in the chiral limit (relevant also at finite temperature and densities studies)
- The hypothesis of speculative, very broad partner with mass 1200 MeV is not favored by our study
- The scattering length $a_{0}^{(+)}$depends on the scalars \Rightarrow a scalar tetraquark is included.

The scalar tetraquark field shifts the isospin even scattering length in the "right direction". It has no influence on isospin odd scattering length.

A large value of the coupling constant g is favoured. i.e. a strong mixing between the quarkonium and tetraquark fields.

- The delta resonance should be included also in the future.

Thank you!

