Glueballs and statistical mechanics of the gluon plasma

F. Brau, F. Buisseret *

8th-14th February 2009

1/29

J. C. Collins and M. J. Perry, Phys. Rev. Lett. 34, 1353 (1975);

E. V. Shuryak, Phys. Rep. **61**, 71 (1980).

Perturbative QCD

Lattice QCD (I)

- Finite T QCD can be implemented on the lattice
- Various results
 - Equation of state
 - Quenched and unquenched
 - Zero chemical potential or not
 - Static potentials
- In particular: Gluon plasma
 - Unquenched pure gauge simulations at zero chemical potential

Quasiparticle models (I)

- How to understand the lattice results?
 First step towards the full QGP
- Idea: Gluon plasma is an ideal gas of free transverse bosons (16 d.o.f.)
 - Well-known in statistical physics
 - o m = 0 excluded, only Stefan-Boltzmann
 - o $m = m_0 \neq 0$ in qualitative disagreement

Need for a temperature-dependent gluon mass m(T) and corresponding statistical mechanics

7/29

Quasiparticle models (II)

• What is expected for m(T) ?

o $T \gg T_c$, perturbative results

K. Kajantie *et al.*, Phys. Rev. Lett. **79**, 3130 (1997); P. Lévai and U. Heinz, Phys. Rev. C **57**, 1879 (1998)

$$m(T) \propto m_D(T) \propto \sqrt{\alpha_s(T)} T \sim T$$

o $T \simeq T_c, m(T)$ phenomenological

Color interactions

 $\sqrt{p^2 + m(T)^2}$ instead of $\sqrt{p^2 + \overline{m}(T)^2} + V(r,T)$

 \rightarrow m(T) stands for $\langle V \rangle$

First principles (I)

Classical systems at equilibrium
 Probability density

$$E = \overline{H} = \int H\rho \, d\lambda \qquad S = \overline{-\ln\rho} = -\int \rho \ln\rho \, d\lambda$$

• H may depend on T

Energy and entropy

First principles (II)

- Thermodynamical consistency
 - First and second laws of thermodynamics
 - Constraints

$$\partial_{\beta}S = \frac{1}{T}\partial_{\beta}E$$
 and $p = \frac{TS-E}{V}$

A priori, in these relations,

$$T = \frac{1}{f(\beta)}$$

How to satisfy the constraints?

General solution

• $\beta(T)$ is found through $f(\beta) = \frac{1}{T}$ where $f(\beta) = \beta \left[1 + \frac{\partial_{\beta} H(T=1/f(\beta))}{\partial_{\beta} E(\beta,T=1/f(\beta))} \right]$

- Unambiguous if H(T) is known
- Physical quantities formally unchanged
 - β has no physical meaning a priori Standard case: $\partial_{\beta}H = 0 \Rightarrow \beta = \frac{1}{T}$
- Difficult for numerical computations

Alternative solutions

- Modified formulas with $\beta = 1/T$ and
 - Energy preserved

V. M. Bannur, Phys. Lett. B **647**, 271 (2007) $\tilde{S} - S + B^{(1)}$ $\tilde{n} - n + \frac{B^{(1)}}{2}$ $B^{(1)} - \int_{-\infty}^{\beta} u \, \overline{\partial}$

- $\tilde{S} = S + B^{(1)}, \ \tilde{p} = p + \frac{B^{(1)}}{\beta}, \ B^{(1)} = \int_{\beta_{\star}^{(1)}}^{\beta} \nu \ \overline{\partial_{\beta} H}|_{\beta = \nu} d\nu$
- Entropy preserved P. Lévai and U. Heinz, Phys. Rev. C 57, 1879 (1998)

$$\tilde{E} = E - B^{(2)}, \ \tilde{p} = p + B^{(2)}, \ B^{(2)} = \int_{\beta_{\star}^{(2)}}^{\beta} \overline{\partial_{\beta} H}|_{\beta = \nu} d\nu$$

- Pressure preserved V. Goloviznin and H. Satz, Z. Phys. C57, 671 (1993).
- Inequivalent solutions but convenient for phenomenology if H(T) can be fitted

Ideal gas of bosons

Same formalism with:

- Probability density $\rho(H) = [e^{\beta H} 1]^{-1}$
- Hamiltonian $H = \epsilon(k,T) = \sqrt{k^2 + m(T)^2}$

Basic formulas

$$\begin{cases} e = \frac{8}{\pi^2} \int_0^\infty dk \, k^2 q(\epsilon/T) \,\epsilon \\ s = \frac{8}{3\pi^2 T} \int_0^\infty dk \, k^2 q(\epsilon/T) [k \partial_k \epsilon + 3\epsilon] \\ p = \frac{8}{3\pi^2} \int_0^\infty dk \, k^3 q(\epsilon/T) \,\partial_k \epsilon \end{cases}$$

• m(T) unknown

Use of alternative solutions

Thermal gluon mass (I)

- Model 1: energy preserved, fit on lattice energy
- Model 2: entropy preserved, fit on lattice entropy

Thermal gluon mass (II)

Qualitatively $m(T) \simeq \frac{m_1}{(T/T_c-1)^{m_3}} + m_0 T$

- Singular near T_c
 - Region I
 - Needed to reproduce the strong increase of *e*, *p*, *s*
 - Strong color interactions

- Linear at large T
 - Region III
 - Needed to reproduce the saturation below Stefan-Boltzmann
 - Perturbative QCD

Comparison with lattice (II)

Excellent agreement

19/29

Constituent model (I)

- Lightest glueballs
 - Two transverse gluons
 - Color singlet: most attractive $8 \otimes 8 = 1 \oplus 8 \oplus 8 \oplus 10 \oplus \overline{10} \oplus 27$
 - $\circ~0^{\pm+}$ channels: formally $\langle L^2\rangle=2$ V. Mathieu, F. Buisseret and C. Semay, Phys. Rev. D 77, 114022 (2008)
- Hamiltonian $H = 2\sqrt{p^2 + \bar{m}(T)^2} + V_{gg}(r,T)$
 - Free gluon mass $\bar{m}(T) \simeq T$
 - Input: potential term $V_{gg} = (9/4) V_{q\bar{q}}$

Constituent model (II)

Potential: internal energy of the gluons Lattice data for quark-antiquark

Gluon plasma as a mixture (I)

 Idea: Gluon plasma is an ideal mixture of free gluons and glueballs

Energy preserved

Glueball abundance

Free transverse gluons

Scalar and pseudoscalar glueballs

Gluon plasma as a mixture (II)

Glueball abundance fitted on lattice

Gluon plasma as a mixture (III)

Agreement with lattice data

• Different physical picture

26/29

Summary

- Quasiparticle models of gluon plasma
 - o Thermal gluon mass
 - Reconsider statistical mechanics
- Strong color interactions near T_c
 - Glueballs up to 1.6 T_c
 - Mixture of gluons and glueballs
 - Experimental observation of glueballs?
- Soon on the arXiv

Outlook

- Inclusion of quarks in the model
 - Comparison with lattice QCD
 - Many bound states
 - Experimental predictions
- Nonzero chemical potential
- Something I hope
 - Lattice computation of the static energy between two color octet sources at finite T