Comparative analysis of Large N _c QCD and Quark model approaches to baryons	
Fabien Buisseret Collaboration: FI. Stancu, C. Semay	
N. Matagne 8 th -14 th February 2009	1/24

Introduction

- Description of baryons
 - Large $\rm N_c~QCD:~N_c\rightarrow\infty~$, model-independent Group theory

G. 't Hooft, Nucl. Phys. 72, 461 (1974); E. Witten, Nucl. Phys. B 160, 57 (1979)
R. Dashen and A.V. Manohar, Phys. Lett. B 315, 425 (1993); 315, 438 (1993)
E. E. Jenkins, Phys. Rev. D 54, 4515 (1996)

• Quark Model: model-dependent

Hamiltonian dynamics

- Compatibility of both approaches
- Light and heavy baryons

Light baryons

C. Semay, F. Buisseret, N. Matagne and Fl. Stancu, Phys. Rev. D **75**, 096001 (2007) [hep-ph/0702075].

C. Semay, F. Buisseret and FI. Stancu, Phys. Rev. D **76**, 116005 (2007) [arxiv:0708.3291].

Large N_c expansion (I)

- When $N_c \to \infty$, exact $SU(2N_f)$ symmetry
 - Baryons: N_c quarks
- Large but finite N_c
 - $SU(2N_f)$ broken, $1/N_c$ expansion
- Mass formula $M = \sum_{i} c_i \hat{O}_i$
 - Some operators $\hat{O}_1 = N_c \mathbf{1}$ $\hat{O}_2 = \frac{1}{N_c} \ell^i S^i$ $\hat{O}_4 = \frac{1}{N_c} S^i S^i$ • $1/N_c^2$ neglected Quark model?

• c_i to be fitted. Contain the QCD dynamics.

Large N_c expansion (II)

- Excited baryons
 - Labelled by an integer *K*, quantum of excitation

Harmonic oscillator picture

K = 0 for ground state baryons $P = (-1)^{K}$

 $c_i = c_i(K)$

• Ground state baryons (N and Δ)

$$M = c_1 N_c 1 + c_4 \frac{S^2}{N_c} + O(N_c^{-3})$$

Quark model for baryons (I)

- Dominant order: $H = \sum_i \sqrt{\vec{p}_i^2 + m_i^2} + a|\vec{x}_i \vec{x}_Y|$
 - Spinless Salpeter Hamiltonian
 - Y-junction as long-range potential

Lattice QCD

F. Bissey et al., Phys. Rev. D 76, 114512 (2007) [hep-lat/0606016]

Quark model for baryons (II)

- Light quarks $H = \sum_i \sqrt{\vec{p}_i^2} + a|\vec{x}_i \vec{R}|$
 - Toricelli point \approx Center of mass

B. Silvestre-Brac et al., Eur. Phys. J. C 32, 385 (2003) [hep-ph/0309247]

- How to get analytical relations ?
 - Auxiliary field technique $H \rightarrow H(\mu_j, \nu_j) = \sum_j \frac{\vec{p}_j^2}{2\mu_j} + \frac{a^2(\vec{x}_j - \vec{R})^2}{2\nu_j} + \frac{\mu_j}{2} + \frac{\nu_j}{2}$
 - Elimination

$$\begin{split} \delta_{\mu_k} H(\mu_j,\nu_j) &= 0, \quad \mu_k = \sqrt{\vec{p}_k^2} & \text{Kinetic energy} \\ \delta_{\nu_k} H(\mu_j,\nu_j) &= 0, \quad \nu_k = a |\vec{x}_k - \vec{R}| & \text{String energy} \end{split}$$

If seen as numbers... Just a harmonic oscillator

Mass formula (I)

• Y-junction
$$\begin{cases} M_0 = 6\mu_0 = \sqrt{2\pi a(K+3)} \\ K = 2(n_1 + n_2) + (\ell_1 + \ell_2) \end{cases}$$

Short distances: One gluon exchange

$$i \longrightarrow V_{ij}(r_{ij}) = -\frac{2}{3}\frac{\alpha_s}{r_{ij}} + \text{ corrections}$$

• $\alpha_s \approx 0.2 - 0.4~$ remains small once confinement is separated

• In perturbation,
$$\Delta M_{oge} = -\frac{2\alpha_s}{3} \sum_{i < j} \left\langle \frac{1}{|\vec{x}_i - \vec{x}_j|} \right\rangle$$

 $\approx -\frac{\pi \alpha_s a}{3\sqrt{3}\mu_0}$

Mass formula (II)

• Self-energy Yu. A. Simonov, Phys. Lett. B 515, 137 (2001) $\Delta M_{qse} = -rac{f\,a}{\pi}\,\sum_i rac{\eta(m_i/\delta)}{2\mu_i} \qquad f\in[3,4], \quad \deltapprox 1~{
m GeV}$

$$\mu_i = \langle \sqrt{\vec{p_i^2} + m_i^2} \rangle$$

• Light quarks

$$\Delta M_{qse} = -\frac{fa}{4\mu_0}$$

Squared mass

$$M^2 \approx 2\pi a (K+3) - \frac{4}{\sqrt{3}} \alpha_s - \frac{12}{(2+\sqrt{3})} fa$$

 \rightarrow Excitation number

First comparison

Spin-dependent terms

• Corrections in $1/\mu_0^2$ Yu. A. Simonov, hep-ph/9911237

$$c_2 = rac{c_2^0}{K+3}, \quad c_4 = rac{c_4^0}{K+3}$$
Expected:

Large $\rm N_{c}$ and strangeness

- $SU(2N_f)$ symmetry with three flavors (u, d, s)• Mass formula $M = \sum_i c_i \hat{O}_i + \sum_j d_j \hat{B}_j$ \downarrow SU(3) breaking
 - Strange quarks contribution $n_s \Delta M_s = \sum_j d_j \hat{B}_j$
- Classification number K assumed

Quark model with strangeness

Charm and bottom baryons

C. Semay, F. Buisseret, and Fl. Stancu, Phys. Rev. D **78**, 076003 (2008) [arXiv:0808.3349].

Experimental data

• In 2007-2008: New heavy baryons

$\Lambda_c = 2286.46 \pm 0.14 \text{ MeV},$	$\Lambda_b = 5620.2 \pm 1.6 \text{ MeV},$	
$\Sigma_c = 2453.56 \pm 0.16$ MeV,	$\Sigma_b = 5811.5 \pm 1.7 \text{ MeV},$	Nonstrange
$\Sigma_c^* = 2518.0 \pm 0.8 \text{ MeV},$	$\Sigma_b^* = 5832.7 \pm 1.8 \text{ MeV},$	
$\Xi_c = 2469.5 \pm 0.3 \text{ MeV},$	$\Xi_b = 5792.9 \pm 3.0$ MeV.	
$\Xi_c' = 2576.9 \pm 2.1 \text{ MeV},$		$n_{s} = 1$
$\Xi_c^* = 2646.4 \pm 0.9 \text{ MeV},$		
$\Omega_c = 2697.5 \pm 2.6 \text{ MeV},$	$\Omega_b = 6165 \pm 23 \text{ MeV}$	n = 2
$\Omega_c^* = 2768.3 \pm 3.0$ MeV.		$n_s - 2$
One c quark	One <i>b</i> quark	
	1	

Large N_c and heavy quarks

- Heavy baryon
 - $N_c 1$ light quarks, $1/N_c$ expansion
 - One heavy quark: $1/m_0$ expansion
- Mass formula $M = m_Q + \Lambda_{qq} + \lambda_q + \lambda_Q$

$$\left\{ \begin{array}{l} \Lambda_{qq} = c_0 \, N_c \, + \frac{c_2}{N_c} \, J_{qq}^2 \\ \lambda_q = \frac{c'_0}{2m_Q} \, + \frac{c'_2}{2N_c^2 m_Q} J_{qq}^2 \end{array} \right\} \text{Light quarks} \\ m_Q \text{ and } \lambda_Q = 2 \frac{c''_2}{N_c m_Q} \vec{J}_{qq} \cdot \vec{J}_Q \quad \text{Heavy quark} \end{array}$$

Quark model

 Mass formula with Y-junction *K*₂ *K*₁ • Auxiliary fields + $1/m_o$ expansion $M_{qqQ} = m_Q + 4\mu_1 + \frac{\pi a}{12m_Q}G(K_1, K_2),$ \boldsymbol{q} $\mu_1 = \sqrt{\frac{\pi a (K_1 + K_2 + 3)}{12}},$ $G(K_1, K_2) = \sqrt{2K_2 + 3} \left(\sqrt{2(K_1 + K_2 + 3)} - \sqrt{2K_2 + 3} \right)$ Minimal mass for $K_2 = 0$, $K_1 = K$ K Heavy quark – diquark picture for excited states Explanation of K introduced in Large N_c QCD

Back to Regge trajectories

• Heavy baryons

 $(M - m_Q)^2 \approx \frac{4\pi a}{3} K \approx 1.3\pi a K$

- Smaller slope than light baryons $M^2 \approx 2\pi a \, K$
- Mesons
 - Light $q \overline{q}$ $M^2 \approx 2 \pi a K$
 - Heavy $Q\bar{q}$ $(M-m_Q)^2 \approx \pi a K$

Additional terms

• OGE

- $\alpha_s(qq) \neq \alpha_s(Qq)$
- Simple choice $\alpha_s(Qq) = 0.7 \alpha_s(qq)$

C. Semay and B. Silvestre-Brac, Phys. Rev. D 52, 6553 (1995)

- QSE for heavy quark $\Delta M_{qse} \propto m_Q^{-3} \approx 0$
- Strangeness
 - Power expansion in m_s^2

$$\Delta M_s = n_s \Theta(K) \, \frac{m_s^2}{\mu_1}$$

Comparison (I)

$$M = m_Q + c_0 N_c + \frac{c_2}{N_c} J_{qq}^2 + \frac{c'_0}{2m_Q} + \frac{c'_2}{2N_c^2 m_Q} J_{qq}^2 + \frac{2c''_2}{N_c m_Q} \vec{J}_{qq} \cdot \vec{J}_Q$$

$$M_{qqQ} = m_Q + 4\mu_1 + \dots + \frac{a}{2m_Q} G(K, K_2 = 0) + \dots$$

- Matching between the coefficients
 - Spin effects neglected
- Quark model parameters fixed from light baryons
- Heavy quark masses fitted on Λ_c , Λ_b $(J_{qq}^2 = 0)$

Comparison (II)

• K = 0

	Large N _c (MeV)	Quark Model (MeV)	δ(%)
m _c	1315	1252	4.7
m _b	4642	4612	0.6
c ₀	324	333	2.7
c' ₀	96	91	5.2
ΔM_s	206	170	17.5

• Satisfactory agreement

Conclusion

Summary

- Compatibility between Large N_c mass formula and quark model for light and heavy baryons
 - Support for the quark model assumptions
 - Physical interpretation of the coefficients in Large $N_{\rm c}$ mass formula
- Dynamical origin of the classification number K understood from quark model
 - Light baryons: total excitation number
 - Heavy baryons: heavy quark- light diquark picture

Outlook

- Future predictions in the heavy baryon sector
 - $K = 1 \longrightarrow 5$ coefficients in the Large N_c formula
 - Can be fitted on experiment BUT...
 - Quark model parameters fitted on ground state heavy baryons
 - Prediction of mass formula coefficients for excited baryons (K = 1)
- Masses of excited baryons from a combined Large $\rm N_{c}$ Quark model approach, without fit.