Tests of Chiral Perturbation Theory with K_{e4} decays at NA48/2

Excited QCD 09 / Zakopane

SPASIMIR BALEV Scuola Normale Superiore / INFN, Pisa

On behalf of NA48 Collaboration: Cambridge, CERN, Chicago, Dubna, Edinburgh, Ferrara, Firenze, Mainz, Northwestern, Perugia, Pisa, Saclay, Siegen, Torino, Vienna

$\pi\pi$ scattering - Introduction

<u>Motivation:</u>

- In χPT the quark condensate <q̄q>₀ determines the relative size of mass and momentum terms in the perturbative expansion.
- $<\bar{q}q>_0$ is a free parameter and must be determined **experimentally**.
- **a**₀ and **a**₂ are S-wave $\pi\pi$ scattering lengths in isospin states I=0 and I=2, correspondingly. They enter into all $\pi\pi$ scattering amplitudes.
- The relation between $\langle \bar{q}q \rangle_0$ and the scattering lengths a_0 and a_2 is known from this theory [*] with a high precision (2%), so the experimental measurement of a_0 and a_2 provides an important constraint for χ PT Lagrangian parameters

How to measure a₀ and a₂?

- In $K^{\pm} \rightarrow \pi \pi e_{\nu}$ (K_{e4}): the hadronic effects are described in terms of formfactors; the relative phase between them depends on a_0 and a_2 (no theoretical uncertainty on the form factors).
- In $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$: "cusp" at $M_{00}^{2} = 4m_{\pi^{+}}^{2}$ due to rescattering.

[*] see G. Colangelo AIP Conf. Proc. 756, 60 (2005) and Nucl. Phys. B 457, 513 (1995)

8-14.02.2009

NA48/2 Beam Line

Simultaneous K⁺ and K⁻ beams, superimposed in space, with momentum spectra (60±3) GeV/c. Data-taking periods: 2003 – 50 days 2004 – 60 days

8-14.02.2009

50000

40000

30000

20000

NA48 detector

Main subdetectors:

^{8-14.02.2009}

Ke4 decays selection

<u>Ke4 topology:</u>

- 3 tracks and 1 vertex
- 1 electron (E_{LKr}/p_{DCH}~1)
- two π with opposite signs
- reconstruct PK → pick the solution closer to 60 GeV/c
- (or alternatively one can reconstruct the missing mass under PK=60 GeV/c assumption)

Background estimations:

- "wrong sign" selection (with electron opposite to the charge of the vertex)
- Suppressed by 10^{-10} by the $\Delta S = \Delta Q$ rule
- Need to be rescaled according to the relative misID probability:
 - RS/WS=2 if coming from $K3\pi$
 - RS/WS=1 if coming from K2π(π⁰)

Sources of backgrounds:

- K[±]→ $\pi^{\pm}\pi^{+}\pi^{-}$ (dominant) with π →eν decay or misID
- K[±]→π[±]π⁰π⁰ with π⁰→e⁺e⁻γ with e misID as π

Total background is ~0.5% from the signal

Estimated from WS events and crosschecked with MC simulation

Total statistics 1.15 Million K_{e4} decays

8-14.02.2009

Analysis procedure

 $\cos \theta_e$

5 kinematic variables [Phys.Rev. 137, B438 (1965)]:

$$S_{\pi}(M_{\pi\pi}^2)$$
 $S_e(M_{ev}^2)$ $\cos\theta_{\pi}$

3 form factors (F,G,H) – expanding in partial waves [Pais-Treiman1968]:

axial
$$\begin{cases} F = F_s e^{i\delta_s} + F_p e^{i\delta_p} \cos \theta_{\pi} \\ G = G_p e^{i\delta_g} \\ H = H_p e^{i\delta_h} + d\text{-wave } \dots \end{cases}$$

Expanding in terms of $q^2 = (S_{\pi}/4m_{\pi}-1)$ and S_e [Amoros-Bijnens1999]:

$$\begin{split} F_{s} &= f_{s} + f_{s}^{'}q^{2} + f_{s}^{''}q^{4} + f_{e}\left(S_{e}^{'}/4m_{\pi}^{2}\right) + \dots \\ F_{p} &= f_{p}^{'} + f_{p}^{'}q^{2} + \dots \\ G_{p} &= g_{p}^{'} + g_{p}^{'}q^{2} + \dots \\ H_{p} &= h_{p}^{'} + h_{p}^{'}q^{2} + \dots \end{split}$$

- Find F_s , F_p , G_p , H_p and $\delta = \delta_s \delta_p$ in q^2 bins Extract the slopes from these dependencies
- Extract a_0 from $\delta(q^2)$ dependence

Fitting of form factors:

Define 10x5x5x5x12 iso-populated bins in $(M_{\pi\pi}, M_{ev}, \cos\theta_{\pi}, \cos\theta_{e}, \phi)$ 49 K+/box and 27 K-/box (DATA) 1180 K+/box and 650 K-/box (MC)

10 independent fits (one fit per $M_{\pi\pi}$ bin) for F_s , F_p , G_p , H_p , δ in 4D space

The 4 sets of points fitted with polynomial in **powers of** q^2 (Taylor expansion valid in isospin symmetry limit)

- **Model independent analysis** \rightarrow no assumption is made on variation of δ and FF from one bin to the next
- Without the overall normalization from branching fraction, only relative form factors $(F_p, G_p, H_p)/F_s$ are measured.

8-14.02.2009

FF extraction

8-14.02.2009

DATA/MC comparison after fit

8/12

FF – results

	Preli 2002
f' _s /f _s	$0.158 \pm 0.007_{\text{stat}} \pm 0.006_{\text{syst}}$
f" _s /f _s	$-0.078 \pm 0.007_{stat} \pm 0.007_{syst}$
f' _e /f _s	$0.067 \pm 0.006_{stat} \pm 0.009_{syst}$
f _p /f _s	$-0.049 \pm 0.003_{stat} \pm 0.004_{syst}$
g_p/f_s	$0.869 \pm 0.010_{stat} \pm 0.012_{syst}$
g' _p /f _s	$0.087 \pm 0.017_{stat} \pm 0.015_{syst}$
h _p /f _s	$-0.402 \pm 0.014_{stat} \pm 0.008_{syst}$

Results in agreement with the published 2003 data \rightarrow EPJ C54 (2008)

- Systematics conservatively taken as for 2003 data → mostly statistically limited → now being reevaluated for the whole sample
- Among the systematic effects studied: beam geometry, acceptance, particle identification, backgrounds, radiative corrections...

Scattering lengths extraction

- External inputs for extracting of the S-wave scattering lengths from $\delta = (\delta_0^0 \delta_1^1)$ variation:
 - Theoretical: numerical solutions of Roy equations [ACGL Phys. Rep.353 (2001), DFGS EPJ C24 (2002)] relate δ and (a₀,a₂)
 - Universal band → allowed solutions from the experimental inputs at high energy
- χ PT precise prediction [CGL NPB603(2001)]:

 $a_0 = 0.220 \pm 0.005$

a₂ = -0.0444 ± 0.0008

- **2p fit** \rightarrow find a_0 and a_2 as free parameters
- **1p fit** \rightarrow find a_0 by using χ PT constraint
- Radiative effects implemented in MC simulation
- Isospin corrections considered!

2p fit	lsospin corr OFF	lsospin corr ON	
a ₀	0.244 ± 0.013	0.218 ± 0.013	
a ₂	-0.0385 ± 0.0084	-0.0457 ± 0.0084	
\sim Large 2σ effect!			

Scattering lengths result

Ke4

₩^{0.01}

-0.02

-0.03

-0.04

-0.05

-0.06

NA48/2 (2003-2004)

Universal Band

Preliminary 2003+2004:

2p fit: $a_0 = 0.218 \pm 0.013_{stat}$ $\pm 0.007_{syst}$ $\pm 0.017_{theor}$ $a_2 = -0.0457 \pm 0.0084_{stat}$ $\pm 0.0041_{syst}$ $\pm 0.0030_{theor}$

 $\begin{array}{l} \mbox{1p ChPT fit:} \\ a_0 = 0.220 \pm 0.005_{stat} \\ \pm 0.002_{syst} \\ \pm 0.006_{theor} \end{array}$

 χ PT prediction: a₀ = 0.220 ± 0.005 a₂ = -0.0444 ± 0.0008

8-14.02.2009

S. Balev – χ PT tests with Ke4 by NA48/2

PRELIMINARY

ChPT

2004

all

2003

Conclusions

Comparisons with world data:

- Ke4: apply isospin corrections to published phase points of all experiments and perform $a_0 \chi PT$ fit
- Cusp: (a₀-a₂) χPT fit with two models
- **a** $\pi\pi$ **atoms Dirac:** preliminary
- NA48/2 results: preliminary for 2003+2004
- $\sim \chi$ PT prediction (yellow band):

 $a_0 = 0.220 \pm 0.005$

- NA48/2 experimental precision now at the same level
- Final publications coming soon.

8-14.02.2009

$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$: "cusp" in M_{00}^{2} distribution

- Selected events (2003+2004): ~60 x 10⁶
 - M_{00}^{2} computed imposing the mean vertex of the π_{0} s (improved resolution close to the threshold)
 - Evidence for a cusp at $M_{00}^2 = 4m_{\pi^+}^2$ due to $\pi\pi$ rescattering

8-14.02.2009

S. Balev – χ PT tests with Ke4 by NA48/2

$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$: "cusp" in M_{00}^{2} distribution

<u>N. Cabibbo – Rescattering model at one loop</u>

- Direct emission, given by M₀=1+gu/2+h'u²/2
- Charge exchange $(\pi^+\pi^- \rightarrow \pi^0\pi^0)$ in final state of $K \rightarrow \pi\pi^+\pi^-$, given by M_1
- M₀ and M₁ interfere destructively below the threshold
- Cabibbo-Isidori (CI) model: More complete formulation of the model includes all rescattering processes at one loop and two loop level [JHEP 0503 (2005) 21] has been used to extract NA48/2 result. Theoretical uncertainty \rightarrow 5%

Bern-Bonn model (Colangelo, Gasser, Kubis, Rusetsky): effective field theory approach based on non-relativistic Lagrangian; electromagnetic effects included in the amplitudes; two loop formulation [arXiv:0807.0515]

Using χ PT constraint: CI: $a_0 - a_2 = 0.268 \pm 0.003_{stat} \pm 0.002_{syst}$ $\pm 0.001_{ext} \pm 0.013_{th}$ BB: $a_0 - a_2 = 0.266 \pm 0.003_{stat} \pm 0.002_{syst}$ $\pm 0.001_{ext}$ a₂ free: CI: $a_0 - a_2 = 0.266 \pm 0.005_{stat} \pm 0.002_{syst} \pm 0.001_{ext} \pm 0.013_{th}$ $a_2 = -0.039 \pm 0.009_{stat} \pm 0.006_{syst} \pm 0.002_{ext}$ BB: $a_0 - a_2 = 0.273 \pm 0.005_{stat} \pm 0.002_{syst} \pm 0.001_{ext}$ $a_2 = -0.065 \pm 0.015_{stat} \pm 0.010_{syst} \pm 0.002_{ext}$

8-14.02.2009