Pion FF in QCD Sum Rules with NLCs

<u>A. Bakulev</u>, A. Pimikov & N. Stefanis Bogoliubov Lab. Theor. Phys., JINR (Dubna, Russia)

Excited QCD'09@Zakopane

Pion FF in QCD Sum Rules with NLCs – p. 1

Definition of pion form factor (FF)

- Definition of pion form factor (FF)
- AAV correlator and corresponding OPE diagrams.

- Definition of pion form factor (FF)
- AAV correlator and corresponding OPE diagrams.
- Non-local condensates in QCD calculations.

- Definition of pion form factor (FF)
- AAV correlator and corresponding OPE diagrams.
- Non-local condensates in QCD calculations.
- QCD SR with non-local condensates.

- Definition of pion form factor (FF)
- AAV correlator and corresponding OPE diagrams.
- Non-local condensates in QCD calculations.
- QCD SR with non-local condensates.
- QCD SR vs experimental data.

- Definition of pion form factor (FF)
- AAV correlator and corresponding OPE diagrams.
- Non-local condensates in QCD calculations.
- QCD SR with non-local condensates.
- QCD SR vs experimental data.
- Local Duality approach and NLC SRs.

- Definition of pion form factor (FF)
- AAV correlator and corresponding OPE diagrams.
- Non-local condensates in QCD calculations.
- QCD SR with non-local condensates.
- QCD SR vs experimental data.
- Local Duality approach and NLC SRs.
- Conclusions.

Definition of pion FF

Pion FF F_{π} is defined by the matrix element

$$\langle \pi^+(p') | J_\mu(0) | \pi^+(p)
angle = (p+p')_\mu F_\pi(Q^2),$$

where J_{μ} is the electromagnetic current, $(p'-p)^2 = q^2 \equiv -Q^2$ is the photon virtuality, and p pion FF is normalized to $F_{\pi}(0) = 1$. \boldsymbol{q}

Definition of pion FF

Pion FF F_{π} is defined by the matrix element

$$\langle \pi^+(p')|J_\mu(0)|\pi^+(p)
angle = (p+p')_\mu F_\pi(Q^2),$$

where J_{μ} is the electromagnetic current, $(p'-p)^2 = q^2 \equiv -Q^2$ is the photon virtuality, and $p \checkmark$ pion FF is normalized to $F_{\pi}(0) = 1$. At asymptotically large Q^2 pQCD factorization gives pion FF

$$\varphi_{\pi} \qquad \varphi_{\pi} \qquad F_{\pi}(Q^2) = \frac{8\pi\alpha_s(Q^2)f_{\pi}^2}{9Q^2} \left| \int_{0}^{1} \frac{\varphi_{\pi}(x,Q^2)}{x} dx \right|^2$$

in terms of twist-2 pion DA $\varphi_{\pi}(x,Q^2)$.

Excited QCD'09@Zakopane

q

AAV correlator

Axial-Axial-Vector correlator can be used for studying pion FF by QCD SR technique:

AAV correlator

Axial-Axial-Vector correlator can be used for studying pion FF by QCD SR technique:

where EM current $J^{\mu}(x) = e_u \,\overline{u}(x) \gamma^{\mu} u(x) + e_d \,\overline{d}(x) \gamma^{\mu} d(x)$

Excited QCD'09@Zakopane

AAV correlator

Axial-Axial-Vector correlator can be used for studying pion FF by QCD SR technique:

where EM current $J^{\mu}(x) = e_u \overline{u}(x)\gamma^{\mu}u(x) + e_d \overline{d}(x)\gamma^{\mu}d(x)$ and axial-vector current: $J_{5\alpha}(x) = \overline{d}(x)\gamma_5\gamma_{\alpha}u(x)$.

Excited QCD'09@Zakopane

1 Perturbative LO term

Nesterenko&Radyushkin ⊕loffe&Smilga [1982]

Introducing NLC in QCD calculations

Introducing NLC in QCD calculations

Excited QCD'09@Zakopane

Introducing NLC in QCD calculations

Excited QCD'09@Zakopane

Pion FF in QCD Sum Rules with NLCs - p. 6

Lattice data of Pisa group

Nonlocality of quark condensates from lattice data of Pisa group in comparison with local limit.

Even at $|z| \simeq 0.5$ Fm nonlocality is quite important!

Diagrams for $\langle T(J_1(z)J_2(0)) \rangle$

Diagrams for $\langle T(J_1(z)J_2(0)) \rangle$

Diagrams for $\langle T(J_1(z)J_2(0)) \rangle$

Quarks run through vacuum with nonzero momentum $k \neq 0$:

$$\langle k^2
angle = rac{\langle \overline{\psi} D^2 \psi
angle}{\langle \overline{\psi} \psi
angle} = \lambda_q^2 = 0.4 - 0.5 \, {
m GeV}^2$$

Excited QCD'09@Zakopane

Pion FF in QCD Sum Rules with NLCs – p. 8

Illustration of NLC-model: $\langle \bar{q}(0)q(z) \rangle = \langle \bar{q}(0)q(0) \rangle e^{-|z^2|\lambda_q^2/8}$

- Illustration of NLC-model: $\langle \bar{q}(0)q(z) \rangle = \langle \bar{q}(0)q(0) \rangle e^{-|z^2|\lambda_q^2/8}$
- A single scale parameter $\lambda_q^2 = \langle k^2 \rangle$ characterizing the average momentum of quarks in QCD vacuum:

- Illustration of NLC-model: $\langle \bar{q}(0)q(z) \rangle = \langle \bar{q}(0)q(0) \rangle e^{-|z^2|\lambda_q^2/8}$
- A single scale parameter $\lambda_q^2 = \langle k^2 \rangle$ characterizing the average momentum of quarks in QCD vacuum:

Correlation length $\lambda_q^{-1} \sim \rho$ -meson size

- Illustration of NLC-model: $\langle \bar{q}(0)q(z) \rangle = \langle \bar{q}(0)q(0) \rangle e^{-|z^2|\lambda_q^2/8}$
- A single scale parameter $\lambda_q^2 = \langle k^2 \rangle$ characterizing the average momentum of quarks in QCD vacuum:

- Correlation length $\lambda_q^{-1} \sim \rho$ -meson size
- Possible to include second (\$\Lambda\$ \sum 450 MeV\$) scale with $\left. \left< \overline{q}(0)q(z) \right> \right|_{|z| \gg 1 \text{ Fm}} \sim \left< \overline{q}q \right> e^{-|z|\Lambda} (\text{not included here})$

Parameterization for scalar and vector condensates:

$$egin{aligned} &\langle ar{\psi}(0)\psi(x)
angle &=&\langle ar{\psi}\psi
angle &\int\limits_{0}^{\infty} f_{S}(lpha) e^{lpha x^{2}/4}\,dlpha\,;\ &\langle ar{\psi}(0)\gamma_{\mu}\psi(x)
angle &=& -ix_{\mu}A_{0}\int\limits_{0}^{\infty} f_{V}(lpha) e^{lpha x^{2}/4}\,dlpha\,, \end{aligned}$$

where $A_0 = 2 \alpha_s \pi \langle \bar{\psi} \psi \rangle^2 / 81$.

Convenient to parameterize the 3-local condensate in fixed-point gauge by introduction of three scalar functions:

$$egin{aligned} &\langlear{\psi}(0)\gamma_{\mu}(-g\widehat{A}_{
u}(x))\psi(y)
angle &=& (x_{\mu}y_{
u}-g_{\mu
u}(xy))\overline{M}_{1}\ &+& (x_{\mu}x_{
u}-g_{\mu
u}x^{2})\overline{M}_{2}\,;\ &\langlear{\psi}(0)\gamma_{5}\gamma_{\mu}(-g\widehat{A}_{
u}(x))\psi(y)
angle &=& iarepsilon_{\mu
u}xy\overline{M}_{3}\,, \end{aligned}$$

with

$$\overline{M}_i(y^2, x^2, (x-y)^2) =$$

$$A_i \iiint_0^{\infty} d\alpha_1 d\alpha_2 d\alpha_3 \boxed{f_i(\alpha_1, \alpha_2, \alpha_3)} e^{(\alpha_1 y^2 + \alpha_2 x^2 + \alpha_3 (x-y)^2)/4}.$$
where $A_i = \{-\frac{3}{2}, 2, \frac{3}{2}\}A_0$ [Mikhailov&Radyushkin'89].

Excited QCD'09@Zakopane

The minimal Gaussian ansatz:

$$f_S(lpha)=\delta\left(lpha-\Lambda
ight)\,;\,\,\,\,\, f_V(lpha)=\delta^{\,\prime}(lpha-\Lambda)\,;\,\,\,\,\,\Lambda\equiv\lambda_q^2/2\,;$$

$$f_{i}(\alpha_{1}, \alpha_{2}, \alpha_{3}) = \delta(\alpha_{1} - \Lambda) \delta(\alpha_{2} - \Lambda) \delta(\alpha_{3} - \Lambda).$$

Only one parameter $\lambda_q^2 = 0.35 - 0.55 \text{ GeV}^2$.

The minimal Gaussian ansatz:

$$f_S(lpha)=\delta\left(lpha-\Lambda
ight)\,;\,\,\,\,\, f_V(lpha)=\delta^{\,\prime}(lpha-\Lambda)\,;\,\,\,\,\,\Lambda\equiv\lambda_q^2/2\,;$$

$$f_i(\alpha_1, \alpha_2, \alpha_3) = \delta(\alpha_1 - \Lambda) \delta(\alpha_2 - \Lambda) \delta(\alpha_3 - \Lambda).$$

Only one parameter $\lambda_q^2 = 0.35 - 0.55 \text{ GeV}^2$.

Problems:

- QCD equations of motion are violated
- Vector current correlator is not transverse
 ⇒ gauge invariance is broken

We modify functions f_i : $f_i^{\text{imp}}(\alpha_1, \alpha_2, \alpha_3) =$

 $\left(1+X_{i}\partial_{x}+Y_{i}\partial_{y}+Z_{i}\partial_{z}
ight)\delta\left(lpha_{1}-x\Lambda
ight)\delta\left(lpha_{2}-y\Lambda
ight)\delta\left(lpha_{3}-z\Lambda
ight)$

We modify functions f_i : $f_i^{\text{imp}}(\alpha_1, \alpha_2, \alpha_3) =$

 $(1 + X_i \partial_x + Y_i \partial_y + Z_i \partial_z) \, \delta \left(\alpha_1 - x \Lambda \right) \delta \left(\alpha_2 - y \Lambda \right) \delta \left(\alpha_3 - z \Lambda \right)$ What does it give us?

We modify functions f_i : $f_i^{\text{imp}}(\alpha_1, \alpha_2, \alpha_3) =$

 $\begin{array}{l} (1 + X_i \partial_x + Y_i \partial_y + Z_i \partial_z) \, \delta \left(\alpha_1 - x \Lambda \right) \delta \left(\alpha_2 - y \Lambda \right) \delta \left(\alpha_3 - z \Lambda \right) \\ \\ \hline \text{What does it give us?} \end{array}$

 $If 12 (X_2 + Y_2) - 9 (X_1 + Y_1) = 1, x + y = 1,$

than QCD equations of motion are satisfied;

We modify functions f_i : $f_i^{\text{imp}}(\alpha_1, \alpha_2, \alpha_3) =$

 $\begin{array}{l} (1 + X_i \partial_x + Y_i \partial_y + Z_i \partial_z) \, \delta \left(\alpha_1 - x \Lambda \right) \delta \left(\alpha_2 - y \Lambda \right) \delta \left(\alpha_3 - z \Lambda \right) \\ \\ \hline \text{What does it give us?} \end{array}$

If
$$12 (X_2 + Y_2) - 9 (X_1 + Y_1) = 1, x + y = 1,$$

than QCD equations of motion are satisfied;

We minimize nontransversity of polarization operator by special choice of model parameters:

$$egin{array}{rcl} X_1&=&-0.082\,;\ Y_1=Z_1=-2.243\,;\ x=0.788\,;\ X_2&=&-1.298\,;\ Y_2=Z_2=-0.239\,;\ y=0.212\,;\ X_3&=&+1.775\,;\ Y_3=Z_3=-3.166\,;\ z=0.212\,. \end{array}$$

$$f_{\pi}^2 F_{\pi}(Q^2) = \iint_{0}^{s_0} ds_1 \, ds_2 \, \rho_3(s_1, s_2, Q^2) \, e^{-(s_1 + s_2)/M^2} + \Phi_{\mathsf{OPE}}(Q^2, M^2) \, .$$

Approach	Acc	Condensates	Q^2 -behavior of Φ_{OPE}
N&R, I&S 82	LO	local	$const + Q^2$

$$f_{\pi}^2 F_{\pi}(Q^2) = \iint_{0}^{s_0} ds_1 \, ds_2 \, \rho_3(s_1, s_2, Q^2) \, e^{-(s_1 + s_2)/M^2} + \Phi_{\mathsf{OPE}}(Q^2, M^2) \, .$$

Approach	Acc	Condensates	Q^2 -behavior of Φ_{OPE}
N&R, I&S 82	LO	local	$const + Q^2$
B&R 91	LO	local + nonlocal	$(\operatorname{const} + Q^2)(e^{-Q^2\lambda_q^2} + \operatorname{const})$

$$f_{\pi}^2 F_{\pi}(Q^2) = \iint_{0}^{s_0} ds_1 \, ds_2 \, \rho_3(s_1, s_2, Q^2) \, e^{-(s_1 + s_2)/M^2} + \Phi_{\mathsf{OPE}}(Q^2, M^2) \, .$$

Approach	Acc	Condensates	Q^2 -behavior of Φ_{OPE}
N&R, I&S 82	LO	local	$const + Q^2$
B&R 91	LO	local + nonlocal	$(const + Q^2)(e^{-Q^2\lambda_q^2} + const)$
B&O 04 - LD	NLO	NO $M^2 ightarrow \infty$	$\Phi_{OPE} ightarrow 0, s_0 = ? (f_{\pi} \; LD \; SR)$

$$f_{\pi}^2 F_{\pi}(Q^2) = \iint_{0}^{s_0} ds_1 \, ds_2 \, \rho_3(s_1, s_2, Q^2) \, e^{-(s_1 + s_2)/M^2} + \Phi_{\mathsf{OPE}}(Q^2, M^2) \, .$$

Approach	Acc	Condensates	Q^2 -behavior of Φ_{OPE}
N&R, I&S 82	LO	local	$const + Q^2$
B&R 91	LO	local + nonlocal	$(const + Q^2)(e^{-Q^2\lambda_q^2} + const)$
B&O 04 - LD	NLO	NO $M^2 o \infty$	$\Phi_{OPE} ightarrow 0$, $s_0 = ?~(f_{\pi} LD SR)$
Here	NLO	nonlocal	$(const+Q^2)e^{-Q^2\lambda_q^2}$

The Borel SR for the pion FF based on three-point AAV correlator:

$$f_{\pi}^2 F_{\pi}(Q^2) = \iint_{0}^{s_0} ds_1 ds_2 \rho_3(s_1, s_2, Q^2) e^{-(s_1 + s_2)/M^2} + \Phi_{\mathsf{OPE}}(Q^2, M^2).$$

Approach	Acc	Condensates	Q^2 -behavior of Φ_{OPE}
N&R, I&S 82	LO	local	$const + Q^2$
B&R 91	LO	local + nonlocal	$(const + Q^2)(e^{-Q^2\lambda_q^2} + const)$
B&O 04 - LD	NLO	NO $M^2 ightarrow \infty$	$\Phi_{OPE} o 0, s_{0} = ? (f_{\pi} \; LD \; SR)$
Here	NLO	nonlocal	$(const+Q^2)e^{-Q^2\lambda_q^2}$

Nonlocality improves Q² behavior of OPE \Rightarrow widens region of applicability up to Q² $\simeq 10 \text{ GeV}^2$.

$$f_{\pi}^2 F_{\pi}(Q^2) = \iint_{0}^{s_0} ds_1 \, ds_2 \, \rho_3(s_1, s_2, Q^2) \, e^{-(s_1 + s_2)/M^2} + \Phi_{\mathsf{OPE}}(Q^2, M^2) \, .$$

Approach	Acc	Condensates	Q^2 -behavior of Φ_{OPE}
N&R, I&S 82	LO	local	$const + Q^2$
B&R 91	LO	local + nonlocal	$(const + Q^2)(e^{-Q^2\lambda_q^2} + const)$
B&O 04 - LD	NLO	NO $M^2 o \infty$	$\Phi_{OPE} ightarrow 0, s_0 = ? (f_{\pi} \; LD \; SR)$
Here	NLO	nonlocal	$(\operatorname{const} + Q^2) e^{-Q^2 \lambda_q^2}$

- Nonlocality improves Q^2 behavior of OPE \Rightarrow widens region of applicability up to $Q^2 \simeq 10 \text{ GeV}^2$.
- We use model-independent expression for **P**_{OPE}-term obtained by **A. B.&Radyushkin**, but significantly different model of condensate's nonlocality.

Pion FF from: SRs with NLC (blue solid line),

Pion FF from: SRs with NLC (blue solid line), standard QCD SRs (red dashed line) [N&R \oplus I&S 82], $O(\alpha_s)$ Local Duality (black dashed line) [B&O 04],

Pion FF from: SRs with NLC (blue solid line),

standard QCD SRs (red dashed line) [N&R + I&S 82],

 $O(\alpha_s)$ Local Duality (black dashed line) [B&O 04], AdS/QCD (green dashed line) [B&T 07] and (green dot-dashed line) [G&R 07]

Pion FF from: SRs with NLC (blue solid line),

standard QCD SRs (red dashed line) [N&R + I&S 82],

 $O(\alpha_s)$ Local Duality (black dashed line) [B&O 04], AdS/QCD (green dashed

line) [B&T 07] and (green dot-dashed line) [G&R 07]

in comparison with [JLab 08] (\blacklozenge) experimental data.

Pion FF from: SRs with NLC (blue solid line),

standard QCD SRs (red dashed line) [N&R + I&S 82],

 $O(\alpha_s)$ Local Duality (black dashed line) [B&O 04], AdS/QCD (green dashed

line) [B&T 07] and (green dot-dashed line) [G&R 07]

in comparison with [JLab 08] (♦) and [Cornell 78] (▲) experimental data.

NLC QCD SR vs. Lattice QCD results

Pion FF from: SRs with NLC (blue solid line),

in comparison with recent lattice results by **D. Brommel et al. [Eur. Phys. J., C51 (2007) 335]**.

Local Duality vs Sum Rules for pion FF

Borel SR:

$$f_{\pi}^2 F_{\pi}(Q^2) = \iint_{0}^{s_0} ds_1 \, ds_2 \, \rho_3(s_1, s_2, Q^2) \, e^{-(s_1 + s_2)/M^2} + \Phi_{\mathsf{OPE}}(Q^2, M^2) \, .$$

Excited QCD'09@Zakopane

Pion FF in QCD Sum Rules with NLCs – p. 15

Local Duality vs Sum Rules for pion FF

Borel SR:

$$f_{\pi}^2 F_{\pi}(Q^2) = \iint_{0}^{s_0} ds_1 \, ds_2 \, \rho_3(s_1, s_2, Q^2) \, e^{-(s_1 + s_2)/M^2} + \Phi_{\mathsf{OPE}}(Q^2, M^2) \, .$$

Local Duality approximation:

$$f_{\pi}^2 F_{\pi}(Q^2) = \iint_{0}^{s_0} ds_1 \, ds_2 \, \rho_3(s_1, s_2, Q^2) \, .$$

Local Duality vs Sum Rules for pion FF

Borel SR:

$$f_{\pi}^2 F_{\pi}(Q^2) = \iint_{0}^{s_0} ds_1 \, ds_2 \, \rho_3(s_1, s_2, Q^2) \, e^{-(s_1 + s_2)/M^2} + \Phi_{\mathsf{OPE}}(Q^2, M^2) \, .$$

Local Duality approximation:

$$f_{\pi}^2 F_{\pi}(Q^2) = \iint_{0}^{s_0} ds_1 \, ds_2 \, \rho_3(s_1, s_2, Q^2) \, .$$

In general $s_0 = s_0^{\mathsf{LD}}(Q^2) \neq s_0(Q^2)$.

Approximation of LD result

In general $s_0 = s_0^{LD}(Q^2) \neq s_0(Q^2)$:

Pion FF in QCD Sum Rules with NLCs - p. 16

Approximation of LD result

This is the reason for pion FF underestimation in **Braguta–Lucha–Melikhov (2008)** approach:

Pion FF in QCD Sum Rules with NLCs – p. 16

Taking into account nonlocality of condensates makes QCD SR stable and widens region of applicability up to $Q^2 \simeq 10 \text{ GeV}^2$.

- Taking into account nonlocality of condensates makes QCD SR stable and widens region of applicability up to $Q^2 \simeq 10 \text{ GeV}^2$.
- Solution We use the model-independent expression for Φ_{OPE} -term obtained by **A. B.&Radyushkin [1991]**, but significantly different model of NLCs with nonlocality parameter $\lambda_q^2 = 0.4 \text{ GeV}^2$.

- Taking into account nonlocality of condensates makes QCD SR stable and widens region of applicability up to $Q^2 \simeq 10 \text{ GeV}^2$.
- Solution We use the model-independent expression for Φ_{OPE} -term obtained by **A. B.&Radyushkin [1991]**, but significantly different model of NLCs with nonlocality parameter $\lambda_q^2 = 0.4 \text{ GeV}^2$.
- NLO corrections to double spectral density, obtained by
 Braguta&Onishchenko [2004], are large. Taking them into account in
 Local Duality approach suffers from underestimation of $s_0^{LD}(Q^2)$: our
 results show that $s_0^{LD}(Q^2)$ grows with Q^2 .

- Taking into account nonlocality of condensates makes QCD SR stable and widens region of applicability up to $Q^2 \simeq 10 \text{ GeV}^2$.
- Solution We use the model-independent expression for Φ_{OPE} -term obtained by **A. B.&Radyushkin [1991]**, but significantly different model of NLCs with nonlocality parameter $\lambda_q^2 = 0.4 \text{ GeV}^2$.
- NLO corrections to double spectral density, obtained by Braguta&Onishchenko [2004], are large. Taking them into account in Local Duality approach suffers from underestimation of $s_0^{LD}(Q^2)$: our results show that $s_0^{LD}(Q^2)$ grows with Q^2 .
- QCD SR method with NLCs for the pion FF gives us a strip of predictions. This strip appears to be in a good agreement with existing experimental data of JLab and Cornell, as well as with lattice data.