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1 Summary

The notion of symmetry, i.e., the invariance of a theory under certain transforma-
tions of its degrees of freedom, plays an important, if not the most important, role in the
mathematical formulation of the laws of Nature.

The notion of symmetry is already known from lecture courses on “Mechanics”. Accord-
ing to Noether’s theorem, the invariance of the action under coordinate trans-
formations

t — (1),
qt) — q'(qt),1),

leads to integrals of motion, i.e., to conservation laws. A transformation which leaves
the action invariant is called symmetry transformation or symmetry.

As we shall see in this lecture course, the notion of symmetry can be applied to
quantum-mechanical systems, too. Also in this case, we will be lead to integrals of
motion. However, we will not derive them via the invariance of the action, as in Noether’s
theorem, but we will directly investigate the behavior of Schrodinger’s equation under
symmetry transformations (Chapter [2). To understand the mathematical structure of
symmetry transformations in quantum mechanics, we will give a short introduction to
group theory (Chapter [3)).

We will see that symmetries of a theory are not restricted to the invariance under co-
ordinate transformations. At least of equal importance is the class of so-called internal
symmetries, i.e., transformations which are not related to the space-time coordinates
of the system. Of fundamental importance for physics is the group of unitary trans-
formations in three dimensions, SU(3) (Chapter 4)), and its applications in the
theory of strong interactions in particle physics (Chapter [5)).

We will conclude this lecture course by a discussion of the Poincaré group, which is of
eminent importance in relativistic quantum field theory (Chapter [6]), because all theories
of Nature (which are well-established up to now) are formulated to respect this symmetry.






2 Symmetries in Quantum Mechanics

2.1 Space translations

Consider the Hilbert-space state [1). We can assign a coordinate-space wave function
to this state according to

) — () = (Fl) -

Let us now consider a translation in space
r—7'=r+da, (2.1)

o T C . . .
where @ = const.. If we demand that physics is invariant under such space translations,
i.e., that the space translation (2.1 is a symmetry transformation, then we must have
for the transformed wave function

() = 0(r), (2.2)

i.e., the transformed wave function 1’ at the transformed position 7’ has to be equal to
the original wave function ¢ at the original position 7. Using Eq. (2.1) we may write Eq.

(2.2) as follows

Y +d) =9(F) or JI(F) =o(F—ad). (2.3)

Using the so-called spatial translation operator Ur(ﬁ) the last equation can be ex-
pressed as follows

U (F) = Up(@) (7). (2.4)

If a space translation is a symmetry transformation, it cannot influence the probabil-
ity with which a quantum-mechanical state occurs. According to the conservation of
probability we therefore have

Wiy = [ @) - / @ () 9 () = / @7 [0.(@) v 0@ v
= [ @@ U@ U@ = [ e e = @) (25)

This means that Ux(@) must be a unitary operator,

A

U@ U@ =1 < Ul@=0U"a). (2.6)

Let us now explicitly determine this operator. Without restriction of generality we con-
sider a translation in z—direction, @ = (a,0,0)”, and expand the right-hand side of Eq.
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(2.3)) in terms of a Taylor series around the point 77

WE- ) = V) a0 () et () - k() ¢
= Z (_nft)n aa:n »(T) = exp (—a 8_) ()

where we have used the momentum operator ﬁ = —ihV. Comparison with Eq. 1} yields

). (2.7)

This form of the space-translation operator holds also for arbitrary vectors d. The momen-
tum operator p'is hermltean (since the momentum is a physical observable), T = p, and
thus the unitarity of the space-translation operator U, (@) is 1mmed1ately obvious.
On the one hand we have

l>

a-

DHN.
'B

(@) = exp (

U7} (@) = exp (+3 a-ﬁ*) — exp [—% (-2 p] — U(-a),

where we used that @ € R3. On the other hand, since a translation by —a reverses the
translation by +d,

U (—a)U,(@) =1,
one has R R R
Ul(@) = U.(=a) =U @), qed.. (2.8)

r

If the space translation (2.1]) is a symmetry transformation, the Hamilton operator has
to be invariant, too,

H—H=H (F—7 =7+ad). (2.9)

The transformed wave function (2.2]) obeys the (in general time-dependent) Schrédinger
equation,

0
zhaw( 7) = Hy'(t,7) . (2.10)

If we insert Eq. (2.4)) (a possible time dependence of the wave function does not influence
this equation), we obtain

m%m@w@mza@m%w@m:ﬁm@¢@m7 (2.11)

since temporal and spatial derivatives commute with each other. Since the original wave
function also fulfills the time-dependent Schrodinger equation,

m%¢@m:ﬁ¢@ﬂ, (2.12)



2.2 Time translations

we can write Eq. (2.11)) as
U (@) H(t,7) = HU@) ¥(t,7) (2.13)

or, since the wave function (¢, ) was arbitrary,

A~ A~

U@ H=H0,G) < [UT(J), H} ~0, (2.14)
where we introduced the commutator of two operators A, B,
(4, 5] = AB - BA. (2.15)

Thus, a space translation is a symmetry transformation, if the space-translation op-
erator UT(CT) commutes with the Hamilton operator of the system.
This must also be valid for infinitesimal space translations, |@| < k/|(p’}|. For such
one can expand the space-translation operator in terms of a Taylor series,
- i

U, (@) ~ 1[_;3‘7'5’ (2.16)

where we can neglect terms of order O(a?). Inserting this into Eq. (2.14)) yields

[u—%a-ﬁ,ﬁ]z%*-[ﬁ,ﬁ}zo — [ﬁ,ﬁf}zo, (2.17)
since the infinitesimal translation vector @ was arbitrary. We conclude that, for systems
invariant under space translations, the momentum operator commutes with the
Hamilton operator. Then, however, the momentum is an integral of motion, i.e., we
have momentum conservation, and one can find a system of eigenstates of H which
are simultaneously eigenstates of p.

2.2 Time translations

We now consider translations in time,
t—t' =t+a, (2.18)

where a = const.. We demand that physics remains invariant under such translations
in time, i.e., the time translation is a symmetry transformation. Then the
transformed wave function must fulfill (we suppress a potential spatial dependence, since
it does not play any role in the following)

W) =9(t), (2.19)

i.e., the transformed wave function v’ at the shifted time ¢ must be identical to the
original wave function ¢ at the original time ¢. If we insert Eq. (2.18)), we can write this
in the following way,

A

V(t+a)=1y(t) <= )=t —a)=Ula)p(t), (2.20)
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where, in analogy to the preceding section, we have again expressed the effect of the time
translation by an operator, the so-called time-translation operator U;(a). In complete
analogy to the derivation of the space-translation operator (2.7)) we now obtain

O4(a) = exp <—a %) = exp (% aE) | (2.21)

with the energy operator £ = ihd/0t. The unitarity of the time-translation operator
follows from the hermiticity of the energy operator, Et=FE (energy eigenvalues are always
real-valued), and from a € R.

Acting with the operator on states which fulfill the time-dependent Schrodinger
equation ([2.12]) yields the identity E=H , such that we can also write the time-translation
operator (2.21)) as

Uy(a) = exp (% Ffa) . (2.22)

Thus, it is identical to the time-evolution operator well-known from lectures on quan-
tum mechanics, for Hamilton operators which do not explicitly depend on time. (Note
that the time translation affects a time evolution of the state ¢ (t) into the state
Y(t — a), cf. Eq. (2.20), i.e., backwards in time by an amount —a.)
Symmetry under time translations means that also the Hamilton operator remains
invariant,
H—H=H (t—t =t+a). (2.23)

The time-translated state () of course fulfills the time-dependent Schrédinger equation

0 N
h—'(t) = HyY'(t
v = HY()
L0 - 3 o, - - A
= zha Ul(a)(t) = Uyla) zha W(t) = Up(a) Hp(t) = HU(a) () , (2.24)
where we have used Eq. (2.20) and the original Schrédinger equation ([2.12)) for the state
¥(t). Since this holds for an arbitrary wave function, we get

A

U(a) H = HUy(a) = [Ut(a), H} —0, (2.25)

in analogy to Eq. (2.14) for space translations. If the system is invariant under time
translations, the time-translation operator commutes with the Hamilton operator.
Since this holds also for infinitesimal time translations, |a| < h/|(E)|, after Taylor-
expanding the time-translation operator (2.21)) we obtain
- o - OH
E,H}: ihs Hl =0 — Zi_p, 9.26
2. 4] = i 4] at 220
i.e., the Hamilton operator must not depend explicitly on time. For systems which
are invariant under time translations, the time-translation operator is thus identical to
the time-evolution operator, cf. Eq. (2.22)). The conserved quantity associated with

this symmetry is the total energy of the system.



2.3 Rotations

2.3 Rotations

Let us consider a rotation in space by an infinitesimal angle 55 (around an axis defined

-

by the direction of §¢),

P 7 =T g X T (2.27)
We demand that this is a symmetry transformation, i.e.,
V() =) = ) =0 -6 x 7). (2.28)

For infinitesimal rotation angles, |5qg| < 1 we may again expand the right-hand side in
terms of a Taylor series, which we can truncate at order O(d¢?),

W) = o)~ (66 x 7) - V() + 0(3¢?)
o) =66 (7x 9) w() = [1- 163 (7 5) | v

12

- (]1_ %55 E) W(7) , (2.29)

where we have used the definitions of the triple product, of the momentum operator,

~
=

p = —ihﬁ, and of the orbital angular-momentum operator, L=7x ﬁ We again
demand that the transformation ([2.28]) is affected by an operator,

V() = (7 = 6 x ) = Un(66) (7). (2:30)
A comparison with Eq. (2.29) shows that the infinitesimal rotation operator has the
form

Ur(6¢) = 1 — %55- L (2.31)

These are the first two terms of the Taylor expansion of the exponential function. The
rotation operator for arbitrary (not necessarily infinitesimal) rotation angles is thus
defined as

Ur(6) = exp (—% - E) . (2.32)
The unitarity of the rotation operator follows from the hermiticity of the orbital angular-

momentum operator, LT = L, and from ¢ € R3.
For systems which are invariant under rotations the Hamilton operator must also
remain invariant,

H-—H=H (F—7=f+¢x7). (2.33)
By the same arguments as in the two preceding sections one then shows that
Un(d), ] =0, (2:34)

i.e., the rotation operator commutes with the Hamilton operator. For infinitesimal rota-
tions this is equivalent to

[E, H} ~0. (2.35)
This means that the orbital angular momentum is conserved and that one can find

a common system of eigenstates of H, L?and L7






3 Introduction to Group Theory

Definition: A set
G={a,b,c, ...}

is a group, if there exists an operation (“multiplication”), which combines elements
a,b e G,
aob,

with the following properties:

(i) Closure: Va,b€ G alsoaob € G.

One says that G is closed under the operation (multiplication) which combines
group elements.

(ii) Identity element: J e € G, such that V a € G it holds that ace =eoa = a,

i.e., a so-called identity element exists.

(iii) Inverse element: Va € G Ja™ ! € G, such that a7t ca=aoa ! =e¢,

i.e., for each group element exists an inverse element.

(iv) Associativity: V a,b,c € G it holds that (aob)oc=ao (boc),
the so-called law of associativity of group multiplication.
The group multiplication is essential to the definition of the group, hence one also de-

notes the group by (G, o), i.e., the set of elements G which are combined by the group
multiplication o.

Definition: A group (G, o) is called abelian, if V¥ a,b € G it holds that aob =boa, i.e.,
the group multiplication fulfills the law of commutativity.

Definition: A group is called continuous, if it is possible to characterize the elements
of the group by continuous parameters t = (t;,t,,...)7 € R", i.e.,

G={a(@) . b(D), (@), ..}

Definition: A group is called continuously connected, if one can transform every
group element into another one by a continuous change of the parameters t.

Example 1: The group of space translations

G) = ({0@. aer} )
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(132

(with the standard multiplication of group elements as group multiplication) is a
continuously connected, abelian group.

It is continuously connected, since one can generate any arbitrary element of the group

by a continuous change of the parameters @ = (a®, a?, a*)7.

It is abelian, since two arbitrary translations commute with each other. It is sufficient
to show this for infinitesimal translations, because, since the group is continuously
connected, one can represent any arbitrary finite translation by an infinite series of
infinitesimal translations. For two infinitesimal translations by the constant vectors da;
and dds we have

U, (0i) U (6) = (n— ! s p) (u— ! s, p>

h h
i U B
= ll—ﬁ(éal—ir&ag)-p—ﬁéaléa%pp]
i NP
= ]l_i_i (5a1+5a2)-p—ﬁ5a16a§p7p

- (]1— %552 -ﬁ) <]1— %551 -ﬁ) = U,(6d,) U,(5a,) ,

where we used the fact that the components of the momentum operator commute with
each other,

p', ] =0, qed. (3.1)

Example 2: In contrast, the group of rotations in space,
(GR7.> = ({UR((E‘)v (EE 52} ) > ) (32)

(52 is the two-dimensional unit sphere around the origin of three-dimensional space) is
continuously connected, but non-abelian, since

[ii, iﬂ} — ihek [E (3.3)
The commutation residue is responsible for the fact that

Ur(61) Ur(2) # Ur(¢2) Ur(n) -

Definition: A continuous group is called compact, if the set of all values assumed by
the parameters ¢, the so-called group manifold, is compact.

Example: Rotations in two space dimensions, i.e., in a plane, are affected by orthogonal
(2 X 2) matrices
. cos¢ sin¢
0(9) = ( —sing cos¢ )

with determinant det O(¢) = cos? ¢ + sin®¢ = +1. These matrices form the group of
special orthogonal (2 X 2) matrices,

(50(2)7 ) = ({O(¢)a ¢ € [O’ 271-]} ) ) ) (34)

10
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(13X

with the standard matrix multiplication as group multiplication. It is a one-parame-
ter group, with the rotation angle ¢ as group parameter. Since each rotation maps onto
itself after rotating by an angle 27, one can restrict the group manifold to the compact
interval [0, 27]. Hence, (SO(2),-) is a compact group.

Definition: A group (G, o) is called homomorphic to a group (H,), if there exists a
function f : G — H with the property

flaob) = f(a)Uf(0), Ya,be G, f(a), f(b) € H .

In other words, it does not matter whether one first multiplies the two elements a,b € GG
and then applies the map f, or whether one first applies the map f and then multiplies the
two elements f(a), f(b) € H. This ensures that f(eg) = ey and f(a™') = f~'(a) Va € G.
The function f is called group homomorphism. Its properties are such that it preserves
the structure of the group (G, o) and maps it onto the group (H,O).

Definition: Two groups (G, o) and (H,) are called locally isomorphic, if the group
homomorphism f is a bijection (a “one-to-one correspondence”) between group elements
on subsets U C G,V C H,

YVacUCG, beVCH : b=f(a), a=f1b).

Example: (SO(2),-) is isomorphic to the group of unitary transformations in one
dimension,

(U1),)=({e? ¢€l0,2n]}, ), (3.5)
i.e., multiplication with a “phase factor”, a complex number of modulus 1. This can be
interpreted as a rotation in the complex plane. The existence of a bijection f is now
evident: one simply assigns each element O(¢) € SO(2) to the corresponding element
e eU(1).
Definition: If U = G, V = H, one speaks of global isomorphy.

Example: Since the group manifold [0, 27] is the same for (SO(2),-) and (U(1), -), these
groups are not only locally but even globally isomorphic.

Definition: A group is called finite, if it has a finite number of elements, otherwise it is
called infinite. The order of a finite group is the number of its elements.

3.1 Representation of groups

Definition: A representation of a group (G, o) is a map D of elements g € G onto the
set L of linear operators D(g),

D: G — L,
g = Dlg),

with the properties
(i) D(e) =1,

the identity element is mapped onto the unit operator, and

11
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(ii) D(aob) = D(a)- D(b) = D(a)D(b),
the group multiplication corresponds to the standard multiplication of linear opera-
tors. One can easily check that D is a group homomorphism between the group
(G, o) and (a particular subset of) the set of linear operators L.

Example 1: ¢ is strictly speaking not an element of the group (U(1),-), but the re-
presentation of such an element. In physics, one often uses the terms “representation
of a group element” and “group element” synonymously.

Example 2: The linear operator UT(&’) = exp (—% a- ﬁ) is strictly speaking the re-
presentation of an element of the group (G,, ) of space translations, namely that which
affects a translation of the position vector 7 by the vector a.

Example 3: The cyclic group of order 3, (Z3, 0), is defined by the following link table:

ofelalb]
ellelalb
Ak

Table 3.1: Link table of (Z3, o).

The link table obviously provides closure of the group. One also realizes that b = a~
(because a o b = e), such that the existence of an inverse is guaranteed. The validity of
the law of associativity can also be readily proven using the link table. The group (Z3, o)
is not a continuous, but a so-called discrete group. Moreover it is abelian, as one can
convince oneself using the link table. A representation of Z3 is the set of phase factors

1

D(e) -1 ’ D(a) — 62m’/3 ’ D(b) _ 67271-1'/3 = 6471-1;/3 ,
One readily checks that this representation, with the standard multiplication as group
multiplication, has the same properties as given in the link table.

Definition: The dimension of a representation is the dimension of the space, onto which
the linear operators of the representation act.

Example: In the above representations of U(1) or Zs this is one dimension, hence these
representations are one-dimensional.

Definition: The regular representation D(G) of a group (G, o) corresponds to as-
signing to each g; € G a state vector |g;) of an orthonormal basis of a Hilbert space

H,
Vg, €G  gi—lg), (ailgy) =0y Ylg), lg;) €M, (3.6)
and by defining the action of an arbitrary element g; € G onto the state vector |g;) via a
linear map B
D(gi) lg;) = lgiog;) Vg1, 9, €G. (3.7)

12
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Example: Let us consider (Z3,0). First we have to assign Hilbert-space states to the
group elements,

g=e = |q)=le),
G=a — |g) =la),
gg=b = |g3) =|b),

with (g;|g;) = 0;;. The regular representation follows according to the definition (3.7 and
with the help of the link table [3.1}

De)e) =leoe)=le),  Dla)le) =lace)=a), D()le)=lboe)=b),
D(e)la) = leoa) =), Dla)la) =|aoa) =[5}, D(b)la)=lpoa)=Ie).
D)) =leot) =Ib), D@ ) =laot) =le), DE)|B) = [pob) = o) .

The dimension of the regular representation of a group corresponds to the order
of the group. The order of the cyclic group (Zs,0) is 3 and thus dimD(Z3) = 3.

The regular representation (3.7) can also be written as a matrix representation. To
this end one defines

[D(9)],, = (9:|D(9)lg;) Ya€G, lg), lg;) €H . (3.8)

Example: For (Z3,0) we have

1
[D(e)] = 8 . [D()] =

o = O
— O O
o = O
— o O

1 01
0], [DB)]=1]00
0 10

o = O

In the matrix representation the group multiplication is the ordinary matrix multipli-
cation,

[D(giogi)],, = (9xlD(giog;)lge) = (gl D(g:)D(g;)|ge)
= > (9|D(9:)gm)(gm|D(g:)lge) = > [D(9i)],,,, [D(g))],,, - (3.9)

m

In general, matrix multiplication is not commutative. One readily checks, however, that
this is still true for (Z3, o) (since it is an abelian group).

In general, matrix representations of a group are again groups themselves, which
are (globally) isomorphic to the group. Therefore, in physics one uses the term “group”
synonymous with “matrix representation of a group” or “representation of a group”.

Example: Let us consider the group of space translations, (G,,-). We have already
encountered a representation of (G,, ),

D(G,) = {0.@), ae R},

with the linear operator Ur(c_i) = exp (—% a- ﬁ) (Obviously, we have previously been

somewhat sloppy with the use of the term “group” and “representation of a group”; we

13
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had introduced the “group” of space translations as a possible representation of this group
in the form of the linear operators U,(@).) A matrix representation of (G,,-) can be
obtained by taking an arbitrary orthonormal basis {|¢,), n = 0,1,2,...} and constructing
matrices from the representation D(g(@)) of the group element ¢(a) € G,,

D@, = D@0 = (10 DIv) = (lexp (~5.5) 1)

By inserting complete sets of position-space eigenstates this can be written as

[D(g(@)]; = /d3f’d3f<wilf’><7?’lexp (——a ﬁ) [P {1s)
- / & Brr (') 0B (7 — 7) exp (—6- ﬁ«) W5 (7)
/d?’Fzﬁ(F) exp <—6~ 67’) ¥;(7)

where we have used the momentum operator in coordinate representation and the or-
thonormality of the position-space eigenstates.

3.2 Lie groups

Lie groups are continuous groups with N € N real-valued parameters @ = (ay, ..., ay)’
€ RY, whose elements (in the representation as linear operators) can be written in the
form
. i X
U(d) = exp (_ﬁ Zozj X]) . (3.10)
j=1
Obviously,

A

U@o)=1, (3.11)

the origin in parameter space is mapped onto the identity element (or its corresponding
representation as linear operator, i.e., the unit operator). Note that the factor 1/h in the
exponent is pure convention, it could have been absorbed in the parameters a;;. With this
factor, ozjf( ; has the dimension of action or angular momentum.

Examples:

(i) The elements of the group of space translations, (G, -), have a representation in the
formoquw1thN—3X pjandoz]—a Jj=xv,2, Cqu

(ii) The elements of the rotation group, (Gg,-), have a representation in the form of

Eq. ,W1thN—3 X —Ljanda3—¢ j = x,y,z2, cf. Eq. Since

the angular momentum operators L have dimension of A, while the rotation angles
¢’ are dimensionless, the additional factor 1/h makes the exponent in Eq. ( -
dimensionless.

14



3.2 Lie groups

The so-called generators X ; of the Lie group are defined as derivatives of a group element
with respect to the parameters at the location of the identity element,

X, =ih 9 U(a)

e (3.12)

—

a=0

Infinitesimal transformations are obtained from the Taylor expansion of the exponential
function for infinitesimal parameters, |da;| < 1,1 =1,..., N (if do; is dimensionless),

. N
U(6a) =1 — % 3" s, X; + 0(8a?) . (3.13)
j=1

Any finite transformation can be written as an infinite sequence of infinitesimal
transformations. To see this, let a; = nda;, n €N, j =1,..., N, and compute

. N "
— _INT Y
—Jz&[ﬂ hE_;nXJ]

J

n

. N
lim [U(é&')}n = nhi& []l—%z&vjf(j
=1

n—00 -
j_

. N
(4 O > —
= exp (—7—1 g anj> =U(a),
Jj=1
where we have used the identity

lim <1 + f>n =e",
n—00 n

with z = —<i/h) Zjvzl O‘jXJ"

Consequences:

(i) The generators are linearly independent.
Proof: The identity element is unique, so that from the condition
U@ =1
follows that
Oq:...:OéNEO.

This also holds for infinitesimal parameters da;, i.e., from the condition

. N
~ . ) ~
U@oa) =1 -+ ]Zlaaj X;+ 0% =1 (3.14)
follows that
(50&1:...:(5041\750.

By subtracting the 1 on both sides of Eq. (3.14) and after neglecting quadratically
small terms, this condition can be written as

N
> 60y X;=0. (3.15)
j=1

15
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16

However, if from this condition follows that all dc; = 0, then all X ; must be linearly
independent, generalizing the definition of linear independence from vectors (cf.
lectures on linear algebra) to operators, q.e.d.

For unitary Lie groups the generators X ; are hermitean.
Proof: For unitary Lie groups we have

A~ A~

Ul(@) =U74a) . (3.16)

For infinitesimal transformations this leads to

. N . N
] s 2 ~
I+ Y 6ai X+ 00607 = 11— (=d0y)X; + O(6a%)
j=1

h 4
7=1
N N
<~ Z(SOZJXJT = Z(Sanj
J=1 J=1
— X = X, j=1...N.

where in the second step we have used that the parameters are real-valued, oo} =
daj, and in the last step that they can be chosen arbitrarily, g.e.d.

Example 1: The elements of the group U(1) have the representation e, with the
(single) parameter ¢ € R and the (single) generator X = 1 = 1.

Example 2: The group SU(2) is the group of special unitary (2 X 2) matrices,
i.e., the unitary (2 x 2) matrices with determinant +1. A representation of the
elements of SU(2) is

Ny

a -

). arm

SIS

U(a) = exp (—

where the parameters are o; € R, j = 1,2,3, and S = gé is the spin operator,

A

s
which is proportional to the vector of Pauli matrices ¢ = (61, 72, 63)7,

. 01 . 0 — . 1 0
(1) () (U)o

For this reason, the group SU(2) is also called spin group.

From Eq. (3.17)) it is obvious that SU(2) is a Lie group. But are the elements (3.17))
in fact unitary (2 x 2) matrices with determinant +17 The unitarity is immediately

obvious from the fact that the parameters «; are real-valued and S is a hermitean
operator (since spin is a physical observable, or because the Pauli matrices are
hermitean, respectively),

0 (@) = exp (% g §T) — exp (_% (-a) - §> —01(a).



3.2 Lie groups

In order to show that U(&) is a (2 x 2) matrix, we first compute

n

(@- &) = [(@-3)2} - [07-&—1—2'3- @xa)| =a®1,  (3.19)
g8 = (§.8)7a-F=ad - d=a"2 .5 3.20
(@-3) ,
(8%
where we have used the identity
F.a5-b= -E]Lﬂ'&-(zixz?) , (3.21)

readily proven by employing the commutation and anticommutation relations of the
Pauli matrices,

With Egs. (3.19), (3.20) we can write the Taylor expansion of an element (3.17)) of
the spin group as

0(@) = i% <—%)n(&-3)n

o N -
2n+; 2n+1 (_5) (@-5)
e <%>2"n—z;<;n£; OREE

7 (3.24)

o o
= cos— 1l — ¢ sin —
2 2

This is a linear combination of (2 x 2) matrices and thus itself a (2 x 2) matrix.
Finally, we compute the determinant of U(&):

QL
=
STE
Il

In det U(&) = Tr In U(@) = Tr (——d’-é’)z— 0,

since the Pauli matrices are traceless. Then we have

detU(@) =41, qed..

From the closure of the group under multiplication we now derive another important
relation for the generators of a Lie group. In general,

exp( Za] >exp(—ﬁ. )#exp [_' Z a; + 5;) Z] )
k=1 =1

St e

17



3 Introduction to Group Theory

However, it is always true that multiplying two group elements yields another element of

the group,
P . ;N
exp <_ﬁ Zaj Xj> exp <_ﬁ ) = exp (_ﬁ Zéi Xi> .
j=1 k=1 i=1

We now compute §;. To this end we take the logarithm on both sides,
N P P
6 X; =ih1 — X, — X,
; i n[exp( h;% j>exp< h;ﬁk k)]

and expand the exponential function up to second order in the parameters «;, B,

N . i N . 1 N o
ZézXz ~ Zhln[<]l_ﬁZa]X]_Q_hQZajakX]Xk>
1=1

] =
=
§<>

j=1 jk=1

7 N 1 N
| R X, — — o X o Xom
( R T )]

N N
. i ) 1 A
~ ihln []L — E (aj + B;)X; — o2 E (ajag + 2058, + @ﬂk)Xij] :

j=1 J,k=1

Now we also expand the logarithm up to second order in the parameters o, S, using the

formula ,
In(1+ z) :x_%—FO(.T?’) ’
and obtain
N ) S ) Lo B
Z(Si X; = ik [_g Z(%’ + 85X - o2 Z (ajag + 20,8k + B 86) X; Xk
i=1 = e
1 & o
+ ﬁj;l(ajak + O‘jﬁkz + Bjak + Bjﬁk)Xij
N N
= ) (a;+8)X, - 22_71 > (0B — Bjou) X, X
g=1 k=1

If we move the first term on the right-hand side to the left-hand side and exchange the
summation indices in the second term, B0, X; Xi — Bra; XX, we obtain

N N
=1

J,k=1

If all generators commute with each other,

[XJXk] —0 Vjk=1,.. N,

18



3.2 Lie groups

it is now obvious that
5i:ai+ﬁi; izl,...,N,
due to the linear independence of the generators. Then, however, we have

N

N N :
i 5 i 5 i X
exp (—7—1 Zaj Xj> exp (—73 Zﬁk Xk) = exp [—7—1 (i + ;) XZ-]
j=1 k=1 i=1
AR RN
= exp <_ﬁ Zﬁk Xk,) exp (—?_L Zaj Xj> ) (3.26)
k=1 j=1

i.e., the group elements themselves commute. In this case we therefore have an abelian
group.
However, in general not all generators commute with each other. Let us denote
2ih(0; — a; — Bi) = ihy; (3.27)

and compute the ;. Obviously, they have to be proportional to the o as well as to the
B, since they vanish if either all ; or all §; vanish, cf. Eq. (3.25). We therefore make
the following Ansatz:

N
Y=Y fini B, (3.28)
k=1
with some constants f;z;. Inserting this into Eq. (3.25)) we obtain

N N
ih Z Fiki i X = Z a; B [Xj, Xk] 7 (3.29)

i,J,k=1 Jk=1

or, since «;, B can assume arbitary values,
N

X, X = in Y S K = i S X (3.30)
i=1

where we have again used Einstein’s sum convention. These commutation relations define
an algebra for the generators of the Lie group, the so-called Lie algebra. The constants
fjki are the so-called structure constants of the group.

Example 1: For the rotation group (Gg, ), Eq. (3.2)), the three generators are the com-
ponents of the angular momentum operator, which fulfill the angular momentum
algebra (3.3). Therefore we have

Jiki = A

Example 2: For the spin group (SU(2),-) with elements (3.17]) the generators are the
components of the spin operator. On account of the commutation relation (3.22]) for
the Pauli matrices, these obey the Lie algebra

59, Sk —h—Q[&-&]—h_ZQ'..A.:hjkigi 3.31
’ - 4 Jr Ykl — 4 L€jk; Oy = TNE , ( )

19



3 Introduction to Group Theory

i.e., the same Lie algebra as the rotation group (Gg,-).

Properties of the structure constants:

(i)

(iii)

Because of [X;, X;] = —[Xy, X;] we have

fiki = = frji - (3.32)

For (SU(2),-) and (Gg, -) this is automatically fulfilled due to the antisymmetry of

the Levi-Civitd tensor €%,

For unitary groups the structure constants are real-valued. Namely, using the
hermiticity of the generators we compute

~ ~ 7T ~ N N N N A N
[}g,)@l - [x@,xj}::[X@,xy]::—[x;rxq = il i X
Due to the linear independence of the X, we immediately conclude that

fivi = Fiwi» aed.. (3.33)

Jacobi identity:
fije foom + fike feim + frie fojm = 0. (3.34)
Proof: We have the following identity for the generators:

(X6, X, %] + (1%, X, %] + | K], 5]
LR K- KKK — KKK 4 KKK,
+ XXX — X X, X, — Xo X5 X + Xi X X
+ XipXiX; — X Xe X5 — XX Xo + XXX, =0
Using the Lie algebra this is identical to
0 = iﬁ{fuz [Xe, Xk} + fire [Xe, Xz] + frie [Xz, X]”
= =12 (fije foum + Fine feim + Frie Frjm) Xom

Due to the linear independence of the generators the term in parentheses has to
vanish, i.e., the Jacobi identity (3.34) holds, q.e.d.

Example: The structure constants of the groups (SU(2),-) and (Gg,-), respec-
tively, are given by the components of the Levi-Civita tensor. From the lectures on
classical mechanics we already know that these obey the Jacobi identity (3.34]).

Lie groups have the special property that, on account of Eq. , knowledge of the
generators suffices to determine all group elements. A representation of the genera-
tors then defines a representation of the group. A particularly important represen-
tation is the so-called adjoint representation, where the generators are determined by
the structure constants,

20
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3.2 Lie groups

This is a matrix representation of the generator XZ-; the (jk) element of the ith gen-
erator is (up to a factor —ih) given by the structure constant f;;x. Due to Eq. it
is obvious that, for matrix-valued generators, also the group elements are matrix-valued.
The adjoint representation thus also defines a matrix representation of the group.

We now show that the adjoint representation is indeed a possible representation
of the generators, because also in this particular representation the latter obey the Lie
algebra of the group. We start with the Jacobi identity , which we write using Egs.

(3.32) and (3.35) in the form

B2 fije foem = —h* (frie fejm + Fie foim)
- _?2 [(_.{iké)(_fjfr?) + fire(— fitm)]

= il fije X = (X)ke (X)) em — (X)re (Xi)om

- (%)),

This is indeed the correct Lie algebra ([3.30|) for the (km) element of the generators in

matrix representation.

Example: The adjoint representation of the generators f/x, I:y, L7 of the rotation group
(GR,-) reads

(Ll)jk = —iheijk . (336)
Therefore, the generators are the (3 x 3) matrices
0 0 0 00 -1 0 10
I*=—ih| 0 0 1), LY==kl 00 0 |, L*=—ik| =1 0 0
0 -1 0 10 0 0 00
(3.37)

Let us for example consider a rotation around the z axis,

o0

exp (—% quZ) - z%% (—% qs)n (L)" . (3.38)

n—

In the adjoint representation,

2 (=) 0 0 ot 0 10
(LZ) — (=i o (=) o], (L) = (iR [ =1 0 0
0 0 0 0 00
Using this result Eq. (3.38)) becomes
. o0 1 00 0o 0 10
! Tz (_1)n 2n (_1)11 2n+41
exp<——¢L) = 1+) o1 0| =Y b ~10 0
h = (@n)! 000) @+l 0 00
1 00 1 00 0 10
— (o010 |+@se—1)[010]|-sing| -1 0 0
0 01 0 00 0 00
cos¢p —sing 0 )
= sing cos¢ 0 | =Dz (—9)
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3 Introduction to Group Theory

This is just the rotation matrix for rotations of three-dimensional vectors by an
angle —¢ around the z axis. Analogously, using the generators L* and LY in the adjoint
representation, one can compute the rotation matrices for rotations around the x and y
axes.

Rotation matrices in three dimensions form the group of special, orthogonal (3 X
3) matrices with determinant 41, or short (SO(3),:). We have just shown that
(SO(3),-) is isomorphic to the adjoint representation of the rotation group (Gg, ).
Since we use the terms “representation of a group” and “group” synonymously, we can
also say that (SO(3),-) is isomorphic to the rotation group (G, ), or that (SO(3),-) is
the rotation group. It can be shown that (SO(3),-) is (locally) isomorphic to (SU(2),-).
Thus, (SU(2),-) is also (locally) isomorphic to (Gg, ).

Since the structure constants of the group (SU(2),-) are the same as those of (Gg, ),
Eq. represents also the adjoint representation of the generators S of (SU(2),-).
Note the difference to the so-called fundamental representation Si = g&i of these
generators. For (SU(2),-) the fundamental representation consists of (2 x 2) matrices,
while the adjoint is formed of (3 x 3) matrices.

In general, the form of the structure constants depends on the choice for the generators.
However, the Lie algebra must always be fulfilled, thus the structure constants are
always antisymmetric in the first two indices, cf. Eq. . However, once can choose
the generators in such a way that the structure constants are completely antisymmetric

in all indices,
Jiki = Jrig = fije = —frji = —Fjie = — firg - (3.39)

Remark: For the rotation group, (Gg,-), and thus also for (SO(3),-) and (SU(2),-),
this is automatically fulfilled, since fji; = €, and the Levi-Civitd tensor is completely
antisymmetric in all indices.

Proof: We need a basis in which the generators fulfill

where we do not sum over ¢ on the right-hand side. This equation can be interpreted in the
sense that the generators are orthogonal in this choice of basis. By suitably normalizing
the generators one can moreover achieve that

A A h?
5.6.2025 Tr (Xz' Xj) =5 0ij - (3.41)

Using the Lie algebra (3.30]) we now compute

% T . 2 N
— ﬁTr { [Xj, Xk} Xz} = ﬁfjke Tr (Xz Xi) = fike 06 = fini - (3.42)

On the other hand, the left-hand side of this equation is identical to

— i Tr (XX - XX X)) = — 5 Tr (XXi%; - XXX,
2i o
_ —ﬁTr{[Xk, Xi] Xj}zf,m-j, (3.43)
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3.2 Lie groups

where we used the cyclic permutability of operators under the trace and the result of
the computation which had lead to Eq. (3.42). Comparison with Eq. already
yields the first equality in Eq. . Starting from Eq. and performing a second
cyclic permutation under the trace we also obtain the second equality in Eq. . The
remaining equalities can now be obtained from the previous ones using property .
It remains to prove whether one can find a basis in which Eq. is fulfilled. To this
end, consider a linear transformation L of the generators (a “change of basis”), such that

X; — X! = Ly Xy, . (3.44)

In this new basis, the commutation relation (3.30)) reads

X}, XJ/] = L Ljg [ Xy, Xo] = Lix Liih fromXom
ih Lit Lj¢ frem Ly Lur X = i Lig, Ljg fuom Ly X,

where, from the first to the second line, we used the invertibility of the linear transforma-
tion,
L;’L}] Lnr = 577’1/7’

and then, to obtain the next equality, the definition of the change of basis. Finally,
the last identity arises from demanding that also the new generators X{ must obey the
Lie algebra (3.30]), with the new structure constants f;;,. We read off the following
transformation behavior for the structure constants:

fisn = Jhn = Liw Lt frem Loy, - (3.45)

These new structure constants define a new adjoint representation of the generators:
(X)) = —ihflj = —ih Lin Ljn fomr Ly,

Lim LJTL(X’ITL)’N/F L;kl - Lzm (L Xm Lil) )

jk

where we used the adjoint representation of the old generators X,,. In the adjoint repre-
sentation we now compute

Tr (X’ XJ’.) = Lip LTt (L X, LLX, L—1> = Ly Ly Tt <Xm Xn)
— LTt (Xm Xn> Lr. (3.46)
For unitary groups the structure constants are real-valued, thus the matrices
M =Tr <X’ XJ’.) . M, =Tr (Xm Xn> ,

are also real-valued. Moreover, because of the cyclic permutability under the trace, these
matrices are symmetric. Therefore, they can be diagonalized with the help of orthogonal
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3 Introduction to Group Theory

matrices. Choosing for the linear transformation L that orthogonal matrix O = L which
diagonalizes M, we obtain from Eq. (3.46)) the result

T

Thus, there exists indeed a basis (which one obtains by a suitable linear transformation
L = 0) in which
T (X/ X;) =\dy, qed. .

3.3 Simple and semi-simple Lie groups
Definition: An invariant subalgebra Z, a so-called ideal, is a set of generators
7= {X @:1,...,M} . M<N,

of the set of all generators

with the property

V;, Xi|eZ Vi=1,....M, j=1,...,N, (3.47)
i.e., the commutator between an arbitrary generator YJ with any generator from the ideal
is again proportional to (some linear combination of) the generators from the ideal.

Definition: An invariant subgroup U C G is the set of all group elements v € G for
which holds
g lugelU Ygeda.

Theorem: An ideal defines an invariant subgroup N, a so-called normal Lie subgroup,

Nz{h:exp (_%QZXZ>} CcG.

. 1 ~
h = e eN, XEﬁOéiXia

. 1 N
g = eVed, Eﬁﬂjy}a

In other words, for

we have

g hge N .
Proof: We have

. , . (=)™, .
g—l hg _ 62Y e—zX e—zY _ Z ' 67,Y X" e—zY
n

n=0
- (—ni')" (¥ X e )"

n=0 ’ n=0

i (_Z)n X/n — efiX/ = h/ ’

n!
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3.3 Simple and semi-simple Lie groups

where we defined X’ = ¢ X e~ We now have to show that X’ € Z, since then b’ € N.
To this end consider the following operator,

X'(e) = e X |

Obviously, X’(0) = X and X’(1) = X’. A Taylor expansion of X’(¢) around € = 0 yields

X = X+ep x| +S x| +
€ = € — € - == € e
Oe o 2 0e 0
= X4e[iVer Xe ™ VX (—iY)e ]
2
+5 (VY X e 42V eV XY e — e X Y2 Y) 4

2
= X +ie[V,X] =5 (Y2X -2V XY +XV?) 4.,

62

= X+z‘e[Y,X]—5 Y, [V, X]]+....
From this follows that
X' = X'(1) = X +i[Y, X] _% Y, [V, X + ... .

However, since

1 N
X = —OéiXZ'GI,

h
1 ~ A
[Y,X] = ﬁ@zﬁj[ifj,)ﬁ] S I,
1 .
Y, X = 38 [Yj, [Y,X]} e T, etc.,

we obtain that X’ € Z, q.e.d.

Definition: A so-called abelian normal Lie subgroup is an invariant Lie subgroup
where all elements commute with each other,

VhheN : [h ] =0.
It is obvious that the ideal Z corresponding to N has to be a so-called abelian ideal,
(X, X;]=0, Vij=1,...,M.

Definition: A Lie group is called simple, if it does not have a normal Lie subgroup.
Its corresponding Lie algebra is called simple, if it does not have an ideal (except for
the Lie algebra itself, M = N, and the zero).

Definition: A Lie group is called semi-simple, if it does not have an abelian normal
Lie subgroup. Its corresponding Lie algebra is called semi-simple, if it does not have
an abelian ideal.
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3 Introduction to Group Theory

Example 1: Let us consider the rotation group (Gg,-) (or (SO(3),-) or (SU(2),-)). The
generators obey the commutation relations (3.3)),

[L®, LY] = ihl?,
(LY, [7] = ihL®,
(L7, L*] = kLY,

i.e., there is no ideal. (G, ) is therefore not only a semi-simple but even a simple Lie
group.

Example 2: Let us consider the product group (SU(2) x SO(3),-). The generators of
this group are the components S of the spin operator (for SU(2)) and the components
L7 of the angular momentum operator (for SO(3)). We have the commutation relations

1§87 = e S
B = ihet
S0 L] = 0.
Thus, there are two non-abelian ideals, the set of the Si and the set of the L7. Therefore,
the product group (SU(2) x SO(3),-) is semi-simple.
Definition: The rank of a semi-simple Lie group is equal to the number of mutually
commuting generators of its Lie algebra.

Example 1: The group of space translations (G,,-): A representation of the group
elements is given by Eq. . The generators are the components p° of the momen-
tum operator. All three generators mutually commute [p?, p/] = 0, 4,7 = 1,2,3. Hence,
rank (G, -) = 3.

Example 2: The rotation group (Gg,-): A representation of the group elements is given
by Eq. . The generators obey the angular momentum algebra . Each generator
L' commutes only with itself, rank (G, -) = 1.

Definition: The so-called Cartan subalgebra is that algebra which contains the maxi-
mum number of mutually commuting generators. Consequently, the rank of a semi-simple
Lie group is equal to the number of generators of the Cartan subalgebra.

3.4 Casimir operators, multiplets, Schur’s lemma

Definition: A Casimir operator C is an operator which is not identical to the unit
operator and which commutes with all group elements,

[C,g]=0 Vged. (3.48)

Example: Consider the rotation group (Gg,+). The square of the angular momentum

operator, L2 = Z?Zl I:? commutes with all generators L',

L2 L=0, i=1,23, 3.49
[
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-

and therefore also with all group elements Ur(¢) = exp (—% ¢ - E) (in their representation

as linear operators),

L2, Un(3)] =0 (3.50)

Thus, L2 is a Casimir operator of the group (Gg,-) (in fact, it is the only one, see below).

Casimir operators are usually not generators, but functions of the generators,
C=C(Xy, Xy, ..., Xn). (3.51)

In general, they are not uniquely determined. However, for unitary groups they can
always be chosen as hermitean operators.

Proof: For any given Casimir operator C also C' is a Casimir operator, since
X, €1 = [X], & = €, X =0,

where we have used the hermiticity of the generators for unitary groups. Let us then
define the new Casimir operator

C=C+Ct, (3.52)

which is hermitean by definition, C = é’T, q.e.d.
Of great importance is the following theorem (which we quote without proof), since it
relates the rank of a semi-simple Lie group to the maximum number of Casimir operators.

Racah’s theorem: Every semi-simple Lie group (G, o) of rank r has r Casimir operators
CZ'(Xl, ceey XN)7i:1,...,T.

Example: rank (Gg,:) = rank (SU(2),-) = rank (SO(3),-) = 1, thus there is exactly
one Casimir operator,

The physical meaning of the Casimir operators is due to the fact that their eigenvectors
span the so-called multiplets of the group, e.g. for (Gg, )

L2 = 206 +1)|0) . (3.53)

In this case, the multiplets are the (2¢ + 1)—fold degenerate states for a given angular-
momentum quantum number £. One denotes the multiplet for

¢ =0 as singlet,

{= % as doublet,

¢ =1 as triplet,

(= % as quadruplet, etc.
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3 Introduction to Group Theory

We also allowed half-integer values for the angular momentum. These cannot occur for
orbital angular momenta (they are always integer-valued), but for spin (which can also
assume half-integer values).

The meaning of a multiplet is clear for the rotation group (Gg,-). But what is a mul-
tiplet in general, i.e., for an arbitrary group? To clarify this, we need the following

Definition: A subspace U of a Hilbert space ‘H which remains invariant under trans-
formations of a symmetry group (G, o) is called an invariant subspace. It consists of
the set of all states which remain invariant under the action of linear operators D(g),
ge G, ie.,

Vi) eU, VgeG = D(g)|)=I[D(g)v) =) eU.

In other words, the linear operators D(g) of a symmetry group transform the states of
an invariant subspace only among themselves, but do not lead to states outside of the
invariant subspace. In this case one speaks of a reducible subspace and of a reducible
representation D(g) of group elements g € G.

Example: Consider eigenstates of angular momentum ¢ and of its z component m, [£ m).
An invariant subspace U with respect to the rotation group (G, -) is spanned, e.g., by

U=1{00), [11), [10), |1 — 1)} , (3.54)

because acting with the operators (2.32)) on these states does not lead outside of this
subspace. It is sufficient to show this for infinitesimal transformations,

Un(60) = 11— 305" L=1- ’ (507 L% + 60717 + 6071

i 0¢7 —idgV ;09" +idg ; )

=1 h(égf)L g L

where we used the ladder operators
Ly=L"+ilY.

The operator L7 simply measures the value of m, while L. raises or lowers the value of
m by one unit, respectively. Since

Lot +0)=0,
the ladder operators do not lead outside of the invariant subspace U.

Definition: An invariant subspace M C H is irreducible, if it does not contain any
further invariant subspaces (except for M itself). In this case the linear operators D(g),
which act on states of M, are in an irreducible representation of the group elements
g €G.

Definition: A multiplet is an irreducible invariant subspace.

Example: The invariant subspace ({3.54)) of the preceding example is reducible, because
it contains two irreducible invariant subspaces, the singlet

My ={[00)} ,
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3.4 Casimir operators, multiplets, Schur’s lemma

and the triplet

—

It is easy to see that acting with linear operators U r(®) onto My, M; does not lead to
states outside of these multiplets.

Definition: A representation D(g) is completely reducible, if it can be written in
block-diagonal form,

D(g) = 0 Di(g) : (3.55)

where all D;(g) are irreducible, i.e., they act only onto the ith multiplet M,;.

Example:
0 0 e
0 h? % 1 0
Po

0 m221; 0
: 0 mLi

is a completely reducible representation of L2. The individual block matrices are the

irreducible representations of L2 for the respective multiplets.

In Chapter 2| we had seen that a system is invariant under space and time translations,
as well as under rotations, if the generators of the respective groups (G,,-), (G, ),
and (Gg,-) commute with the Hamilton operator of the system. Let us repeat this
argument for arbitrary Lie groups and then draw consequences for the Casimir operators
of the group.

Let (G, o) be a Lie group and (D(G),-) = ({D(g), g € G},-) a representation of this
group, with

The Hilbert-space states of the system obey the time-dependent Schrodinger equation

L, 0 3
th o [9(1) = HIY(1)) . (3.56)

The state which has been transformed under (G, o) is

[W'(8)) = D(g) [(t)) = U(@) [4(t)) - (3.57)
We apply the transformation U (@) to the Schrodinger equation 1)

.~ 0 0 - . ,
Uih [0(t) = ihs D) = i [0/(1))
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3 Introduction to Group Theory

where we have used the definition of the transformed Hilbert-space state several
times. If the system is invariant under the Lie group (G, o), i.e., (G,0) is a symmetry
group of the system, the transformed state also obeys the Schrodmger equation, with
the very same Hamilton operator, H =H, ie.,

@ﬁ—\w(» = UHU [W'() = H ')
H=HU

— UHU' = H < U
— |[U,H = 0,
or, for infinitesimal transformations,
(X;,, H =0 Vj=1,...,N. (3.58)

Since the Casimir operators are functions of the generators, cf. Eq. (3.51)), it is obvious
that also these operators commute with the Hamilton operator,

C;, H =0 Yi=1,...,r, (3.59)

where r denotes the total number of Casimir operators (according to Racah’s theo-
rem, for semi-simple groups r is identical to the rank of the group). According to their
definition, all Casimir operators also mutually commute with each other,

Ci, Cl=0 Yij=1,...r. (3.60)

For now, the maximum set of commuting operators (which have the properties of Casimir
operators, i.e., they commute with all generators of the group) is then

(e, o.a},

Since H fulfills all requirements for a Casimir operator of the system, but cannot be a
new Casimir operator, i.e., one which is linearly independent from the other C; (since
7 is already the maximum number of possible Casimir operators), H must be a function
of the Casimir operators of the system,

H=H(C, ...,C).

If this function can be expanded in terms of a Taylor series, H can be simply expressed (to
leading order in the Casimir operators) as a linear combination of the Casimir operators
of the system, plus the unit matrix 1, which always commutes with all D(g) € D(G),

H=col+ > ¢;Ci+0(C}) . (3.61)

i=1
Example: Hydrogen atom. Because of the central potential the system is invariant under
rotations, i.e., under the group (Gg,-). As we know, the only Casimir operator of this

group is L2 Indeed, in spherical coordinates the Hamilton operator reads

ﬁ(F):{—h—zig(2§T>+V( )] 1+ I,

2m r2 Or 2mr2
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3.4 Casimir operators, multiplets, Schur’s lemma

cf. lectures on quantum mechanics. We thus identify

B 10 (,0

= g () HV0),
p— 1

4= o

The coefficients cq, ¢; are still (operator-valued) functions of radial distance r, which,
however, is invariant under Gg.

For now, the maximum set of linearly independent, mutually commuting operators is
then the set of the Casimir operators of the system,

{Gn.a}

Therefore, we can choose a system of states which are simultaneously eigenfunctions
of all Casimir operators. These states are characterized by quoting the respective
eivenvalues,

|Cy, ..., C)
This is, however, not yet a pure state, i.e., a state where all possibly measurable
quantum numbers are fixed. Namely, there can be further operators A;, 7 = 1,...,s

which are not Casimir operators, but which still commute with the Hamilton operator
and with all Casimir operators of the system.

Example: In the hydrogen atom the generator L7 is such an operator. It commutes with

H as well as with L 2. (We have excluded spin from this consideration. In principle, S 2
is another Casimir operator, which, however, does not occur in H, and S* is a further
operator which commutes with H.)

Pure states can therefore be characterized by the eigenvalues C; of the Casimir operators
C; and the eigenvalues a; of the operators AJ,

) =1[Cy oo, Cryany oy ) (3.62)

Theorem: The states of a multiplet are degenerate with respect to all Casimir opera-
tors.

Proof: Let us consider a pure state (3.62)), which belongs to a certain multiplet. In the
following, we will use the abbreviation o = {aq, ..., as} for the set of eigenvalues of the
operators A;. According to the definition of a multiplet, also

Wy =Ty =U|CY, ..., Cp, 0y =|CY, ...CL )
is a state of the very same multiplet. It remains to be shown that
Ci=C; Vi=1,...,r
To this end we compute using [C’Z, U | =0 that
cilct, ..., Clay = ClCt, ..., CLd)

= CA'Z»U|C’1,...,C'T,04):UC'7;\01, .,CT,Oé>
= UG|Cy, ..., Cr ) =CiU|CY, ..., Cp, )

= CAC{,,CL, O/),
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3 Introduction to Group Theory

i.e., indeed C! = C}, q.e.d.

This theorem means that the various multiplets can be uniquely characterized by the
eigenvalues C; of the Casimir operators.

Example: The various multiplets of different angular momenta are characterized by
specifying ¢; h?((¢ + 1) is the eigenvalue of E 2 on the multiplet characterized by /.

Corollary: Since H = H (C’l, ce C’T), all states of a multiplet are energetically de-
generate.

At the end of this chapter we prove another important theorem, which consists of two
parts:

Schur’s lemma (I): Let (G, o) be a semi-simple unitary Lie group and H the Hamilton
operator of a given system. If (G,0) is a symmetry group of the system, i.e., if the
dynamics is invariant under transformations D(g) € D(G), i.e.,

A

[D(g), H] =0 Vged,
then transitions between different multiplets are forbidden.
Proof: Because of Eq. we have for states
Cy, ..., Cry) e M, |CY, ..., CLdye M,
which belong to different multiplets M, M', M # M’,

0 = (C),...,C.d|[C;, H|CY, ..., C,, @)

L CL A |CH—HC|CY, ..., Cy, )
C’{,...,C’ﬁ,oﬂé’jlff—ﬁéﬂc&,...,C’T,oc)
) (C, L CL A H|C, .., G )

CZ)E<01,,C7»)< {,...,C;,O/|C’1,...,C’T, Oé>7

{

(
= {

(Ci -

(Ci—
where we used the hermiticity of the Casimir operators in the step from the second to the
third line. This equation can only be fulfilled if either (i) C} = C; or (ii)

(... CLd|C, ..., Crya) =0

(without loss of generality we can assume that the energy E(Cy, ..., C,) of the states
does not vanish). According to the assumption the two states belong to different multi-
plets and these are uniquely characterized by the eigenvalues of the Casimir operators.
Thus, at least for one Casimir operator, e.g. C’j, we have must have C # Cj. Then, the
equation can only be satisfied if case (ii) applies, i.e., the transition matrix element
between the two states must vanish, q.e.d.

Remark: If we consider the next-to-last line of the preceding proof, we can also formu-
late this fact in another way. Obviously, the Hamilton operator H does not possess a
piece which induces a transition between states of different multiplets. If there were such
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3.4 Casimir operators, multiplets, Schur’s lemma

a piece, then (C1, ..., C., /|Cy, ..., Cp, @) # 0. This can only happen, if H contains
parts which explicitly break the symmetry.

Schur’s lemma (IT): The irreducible representations of the Casimir operators are pro-
portional to the unit matrix.

Proof: Let us consider a multiplet M of d states,
M=A{|Cy,....,C.,5),7=1,...,d},

where we numbered the states of the multiplet (which differ by the values of the quantum
numbers o = {ay, ..., az}) by the index j. Obviously, dim M = d. An irreducible
representation of an operator D(g) has the (d x d) matrix representation

[D(g)]jk =(Cy, ..., C., | D(g)|Cy, ..., Cr k) .
The irreducible representation of the Casimir operator C; is therefore

[Cili = (Ch, ..., Cr, jICiICh, ..., G, k)
= C’i<C’1,...,Cr,j\Cl,...,C’r, k>ECZ(5]k,

where we have used the orthonormality of the states of the multiplet. Thus we have

[éz] =Cilgxa, qed. .
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4 The group (SU(3),-)

19.6.2025 (1)

The group (SU(3),-), i.e., the group of special unitary transformations in three dimen-
sions, is of paramount importance for the theory of the strong interaction, one of the
fundamental forces of Nature. Therefore, we discuss this group separately and in more
detail in this chapter.

4.1 Generators

The group (SU(N), ) of special unitary transformations in N dimensions possesses N2 —1
generators.

Example: The group (SU(2),-) has N? — 1 = 3 generators, the three components Sa of
the spin operator. These read in the fundamental representation

. h
§%=30a, a=123, (4.1)

with the Pauli matrices (3.18)). Obviously, the generators in fundamental representa-
tion are (2 X 2) matrices, i.e., they act on objects (Hilbert-space states) which are
two-dimensional.

We now construct the N? — 1 = 8 generators of (SU(3),-) in the fundamental repre-
sentation, i.e., in the representation where they are (3 X 3) matrices, and therefore
act on three-dimensional state vectors. To this end we generalize the Pauli matrices
to three dimensions. In analogy to (SU(2),-), cf. Eq. (4.1]), we write for the generators of
(SU),")

Ao, a=1,....8. (4.2)
Note that Ta as well as ;\a have to be hermitean,
T,=T1, X=A\, (4.3)

since (SU(3),-) is a unitary Lie group. The (3 x 3) matrices S\aA play the same role for
(SU(3), ) as the Pauli matrices 6, for (SU(2),-). The first three A\, are trivial extensions
of the Pauli matrices to three dimensions,

0 —
0
0

0
-1
0

~

)\1:

~

0
o= 0], A= (4.4)
0

o = O
o O =
o O O
o O =
o O O

?
0

The hermiticity of 5\1, 5\2, Ag is guaranteed because of the hermiticity of the Pauli matrices,
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4 The group (SU(3),*)

For the next four A, we take the structure of the first two Pauli matrices as an example
and displace the non-trivial elements by one row and one column, respectively,

) 00 1 ) 00 —i ) 000 ) 00 0
M=l0o00], =000 |, =[001], =00 —i
100 i 00 010 0 i 0

Also these matrices are obviously hermitean.

For the last generator we need a matrix with a non-vanishing (33) element, because oth-
erwise we cannot construct all possible SU(3) matrices with the generators, in particular
not those which have non-vanishing (33) elements. We make the Ansatz

~

Js = (4.6)

oo Q
o090 o
o o

with real-valued constants «, 3, since 5\8 must be hermitean. Elements of the group
(SU(N), ) have the property that their determinant assumes the value +1, therefore

0=1IndetU = Tr an:—%aaTrTa, (4.7)

i.e., the generators of (SU(N),-) are trace-free. Since this must also hold for Ty = b s,
we must have § = —2« in our Ansatz (4.6). The constant o can be determined from the
orthogonality (3.41]) of the generators,

2

Tr <T Tb> - %% , (4.8)

or, for A\,,

Tr (Xa x,) — 24, . (4.9)

One easily checks that our Ansatz (4.6 fulfills this relation for a = 8 and b= 1,...,7.
We determine the constant o from this equation for the choice a = b =8,

o a? 0 0 1
Tr (AgAS):Tr 0 2 0 |=6a2=2 — a=—.
0 0 4a? V3

10
01 (4.10)
0 0

The matrices defined through Eqs. (4.4), (4.5)), and (4.10]) are called Gell-Mann matri-
ces (after their inventor Murray Gell-Mann). Due to their orthogonality they are linearly
independent and thus span a basis in the space of trace-free hermitean (3 x 3) matrices.
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4.2 Structure constants

4.2 Structure constants
The Lie algebra of (SU(3),-) is

([T, Ty) = ih fane T, (4.11)
or in terms of the Gell-Mann matrices, respectively,

Nas o] = 20 fae A - (4.12)

One determines the structure constants from Eq. (3.42) using the explicit form of the
Gell-Mann matrices,

Fabe = % Tr {[T ) T} = 41Z_Tr {[xa, ] xc} . (4.13)

This relation insures that the structure constants are then completely antisymmetric.
They read explicitly:

fabc

For all other combinations of indices abc the structure constants vanish.
The generators of (SU(3), ) (or, more generally, of (SU(N), -)) also obey anti-commu-

tation relations,
2

. A .
{Tm Tb} = ? 5ab 113 + hdabc Tc ) (414)
or in terms of the Gell-Mann matrices, respectively,
~ A 4 N
{Aaa )‘b} = g 5ab ]13 +2 dabc )\c . (415)
The completely symmetric structure constants d,;. can be determined from the relation
2 A a 1 © e e
dupe = 55 Tr ({Ta, Tb}TC> =T <{/\a, W) /\c) . (4.16)

(This identity was proven in Exercise 4.2 (iii).) The non-vanishing symmetric structure
constants read explicitly:

abc || 118 | 146 | 157 | 228 | 247 | 256 | 338 | 344 | 355 | 366 | 377
IR R A AR R I
abc | 448 | 558 | 668 | 778 | 888
d I [T [T [T [T
abe 2\/5‘ 2\/3‘ 2V3 N:?‘ V3
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4 The group (SU(3),*)

4.3 Subalgebras and subgroups

The algebra of (SU(3), -) has several subalgebras, which generate subgroups of (SU(3), -):

(i) The set o
{Th T27 TS} )

constitutes an (SU(2), -) subalgebra, since fio3 = 1 = €)3,
[T, Th) = ih fupe To = iheae To . a,b,c=1,2,3 .
This subalgebra generates an (SU(2), -) subgroup of (SU(3), ),
SU(2) c SU(3) .
(ii) A second subalgebra consists of the set
{Ty, Ts, T} .

If we consider the explicit form of these generators,

[0 =i 0 1 0 10 ) 1

By=5 (i 0 0)=5(=m| 100 = (Db)i; = 5 (—ihesy),
0 0 0 0 00

(00 —i 1 00 -1 . 1

=500 0 |==S=m{00 0| = (@)= (-ihey),
i 0 10 0

(00 , 0 0 0 ) .

Tr=5( 00 i |=g(=i[{0 0 1 = (T1)y = 5 (mihey),
0 i 0 0 -1 0

it becomes obvious that, up to a factor of 1 /2 for Ty and 7> and a factor of —1 /2
for T5, respectively, we face the generators of (SO(3),-) in the adjoint repre-
sentation! If we define

j352T2, jQE_2T5, j152T7, (417)
we obtain from the commutation relation
[Tay Tb]:ihfabcfca aab7C:2a5777

with the value of the structure constant fas7 = 1/2 the following commutation
relation for the generators J; of (SO(3),-) defined through Eq. (4.17)),

[ji, jj] :iHGijk jk y i,j,k: 1,2,3 .
We thus have identified an (SO(3), -) subalgebra of (SU(3),-),

SO(3) € SU(3).
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4.4 Multiplets

(iii) The Cartan subalgebra consists of
{T?n TS} )

since [T3, Ts] = 0. It follows that rank (SU(3),:) = 2. The two Casimir
operators are R o R o
Ol - fabc Ta Tb Tc 5 C12 - dabc Ta Tb Tc . (418>

That these are the Casimir operators of SU(3) was proven in Exercise 5.2 (v).

4.4 Multiplets

Multiplets are determined by the eigenvalues C, C5 of the two Casimir operators
of (SU(3),+). The question is, how many states belong to a multiplet of given (Cy, Cy)
and how to distinguish them from each other. To this end we need to quantify further
quantum numbers, which belong to operators which commute with the Casimir operators
(but not with all generators) of (SU(3), ).

To answer this for (SU(3), -), let us step back one step and consider the group (SU(2), -).

The sole Casimir operator is Ci = J? and the multiplets are characterized by the eigen-

values of J 2 ie., h%j(j + 1), or simply the value of j. Furthermore, J? commutes with
jz, which has eigenvalues Aim. Thus, the individual states of a multiplets can be uniquely
characterized by the value of j (labelling the multiplet) and the value of m (labelling the
individual state within the multiplet), |jm). For given j there are 2j 4+ 1 states which
differ by the value of m, m=—3,—j+1,...,5 —1,7.

Obviously, J, is the generator of the Cartan subalgebra of (SU(2),-). In the case
of (SU(3),-) it therefore stands to reason that we also use the generators of the Cartan
subalgebra, T and Tg, to distinguish between the states of a given multiplet. Since T 3, Ty
commute with each other and per definition also with the two Casimir operators C’l, C’g,
we have a set of four mutually commuting operators, the eigenvalues of which uniquely
determine the states of a given multiplet,

|Ch, Co, T3, 1) (4.19)
For (SU(2),-) we had defined ladder operators
Jy=J,+iJ,,
which allow to jump between adjacent states of a multiplet,
Jeljm) ~|jm+1) .

This can be graphically depicted as follows:

m
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4 The group (SU(3),*)

For (SU(3),-) this is quite analogous, but here the states of a multiplet differ by two
quantum numbers, T3 and Tg, and not only by one, m. One can therefore raise or lower
quantum numbers not only in one direction, but in two, as it is schematically (but, as we
shall see, not quite correctly) depicted in Fig. :

T
/ I

Figure 4.1: Schematic action of ladder operators on (SU(3), ) multiplets.

In order to see how this works precisely, let us first define suitable ladder operators:

T, = Ty +iTy,
Vﬂ: = T4:]:Z'T57
U = To+iTy. (4.20)

In addition, we define the so-called hypercharge operator

X 9 . i 1 0 0
YE%ngg 8 (1] _()2 (4.21)
The commutation relations for the ladder operators read:
[Ty, Ty] = +hTy, (4.22)
[T, T ] = 2nTs. (4.23)

These relations are the same as in the angular momentum algebra for ZALAZ and the ladder
operators L. This, in turn, has the consequence that the operators {T%, T3} define an
(SU(2), -) subalgebra (which we had already mentioned above). Furthermore we have:

(T3, Va] = igvﬂ: 7 (4.24)
(T3, U] = q:;_iUi: (4.25)
Vi, V2] = 2n (% [y +§1?) =2h Vs, (4.26)
U, U] = 2h (—% s + EY) =2hUs; , (4.27)
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4.4 Multiplets

where the right-hand sides of the last two equations represent the definitions of the oper-
ators V3 and Us. We furthermore compute:

[V, T.] = 0, (4.28)

[V, Vi] = +hV., (4.29)

[V, U = +hU, (4.30)

[Te, Vi) = 0, (4.31)

[Te, U] = 0, (4.32)

[Us, Vi] = 0, (4.33)

[Aia Vﬂ = Fh ﬁ:F , (4.34)

[Ty, Us] = £hVi, (4.35)

(U, Vo] = +hT%, (4.36)

T3, Y] = 0. (4.37)

The proof of Egs. - is left as Exercise 7.1.
With the help of the relations (4.24)), (4.25)), (4.29), and we also derive
INERIN 1 .~ = 3. h ~ 3.~ ~
Va, Vil = 5[, Val + [V, Vil = & 2 Vi kb SRV = 20V, (4.38)
0y Us] = — % AR 2 V0, =+ Z 0, + % WO, = +h0. . (4.39)

Together with Eqs. 1 ) and ( - ) these equations can be interpreted in the way that
the operators {Vi, V3} and {Ui, Us} form two additional (SU(2),-) subalgebras. Since
V3 and Us both depend on T, these are, however, not independent from the (SU(2),-)
subalgebra spanned by {Ti, Tg} As we have already mentioned, there is only a single
(SU(2), -) subalgebra contained in (SU(3),-).

We now need to clarify how the ladder operators T 5, Vi, and U, affect the states
of a multiplet. To this end we consider the eigenstates , or by replacing Ty by
Y = /3 Ty/2, the eigenstates

|017 CQa T37 Y> = |T3 Y> )

where we have abbreviated the list of arguments, since C, Cy cannot be changed by the
ladder operators for any given multiplet of (SU(3),-). By definition we have

T3|T3Y> - T3 |T3Y>,
YI|T3Y) = Y|T3Y).

We now conclude that
(i) because of Eq. (4.24)),
A A A o~ - h -
13, Vil |T3Y) = T3Vi|T3Y) - ViT3|I3Y) =+ 5 Vi |T3Y)

A A\ ~
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4 The group (SU(3),*)

This equation means that V. raises/lowers the eigenvalue T of a state |T5 Y')
by h/2.

(i) because of Eq. (4.25)
[Ty, U] 1Y) = DU DY) = U T3 |BY) = 5 Us [ Y)

A A A\ -

This equation means that Uy lowers/raises the eigenvalue Tj of a state |T5 Y')
by h/2.

(iii) because of Eq. (4.29)
YV, Vi]|T3Y) = YV T3Y) = VoY |TI3Y) = £h V. T3 Y)
— YV T3Y) = (YXh)VL|T3Y). (4.42)
This means that V4 raises/lowers the eigenvalue Y of a state |[T3Y) by h.

(iv) because of Eq. (4.30))

YV, UL |T3Y) = YUL|TRY)—ULY |T3Y) = +h Uy |T3Y)
— YULTY) = (Y+h)UL|T3Y) . (4.43)

This means that Uy raises/lowers the eigenvalue Y of a state [T Y) by h.
(v) Ty raises/lowers the eigenvalue Tj of a state |T3Y) by h.
(vi) because of Eq. T does not change the eigenvalue Y of a state |T3 Y').
To summarize,
(i) T4 raises/lowers T3 by % and leaves Y unchanged.
(ii) V4 raises/lowers T3 by h/2 and Y by h.
(iti) Uy lowers/raises T3 by /2 and raises/lowers Y by F.

This can be graphically depicted as shown in Fig. The red line is the so-called
T —line. It defines the direction along which the ladder operators Ty act. These change
the value of T3 by A and leave the value of Y unchanged. The blue line is the so-called
V —line. It defines the direction along which the ladder operators V. act. They change
T3 by +h/2 and simultaneously Y by 4+/. Finally, the green line is the so-called U —line.
It defines the direction along which the ladder operators U, act. These change the value
of T3 by Fh/2 and simultaneously Y by +h.

The way the ladder operators act has the consequence that the states of an (SU(3), -)
multiplets do not form a regular lattice in the (73 — Y') plane, as shown in Fig. , but
one where states on a line of fixed Y are shifted in T3 direction by A/2 with respect to
states on a line with Y + &, as shown in Fig. 1.2
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4.4 Multiplets

Figure 4.2: Action of the ladder operators Ty, Vi, and Uy on states of an (SU(3),-)

multiplet.
19.6.2025 (IT)

This information suffices to determine the shape of (SU(3),:) multiplets in the
(T3 —Y) plane. To this end let us first remember that

(i) {Ty, T_, T3} forms an (SU(2), -) subalgebra of (SU(3), ), which transforms states of
(SU(2),-) multiplets (as parts of (SU(3),-) multiplets) among themselves. Graph-
ically, these (SU(2),-) multiplets are located along the (red) T—lines in Fig.
and the ladder operators T, lead from one state on a T—line to the next. While
the value of Y always remains the same for these (SU(2),-) multiplets, the value
of T5 runs between —75"* and +75"**. This, in turn, implies that these (SU(2),-)
multiplets must be located mirror-symmetrically with respect to the Y axis (i.e.,
the line 75 = 0).

(i) {V, V_, V4} also constitutes an (SU(2),-) subalgebra of (SU(3),-), which trans-
forms the states of (SU(2),-) multiplets (as parts of (SU(3),-) multiplets) among
themselves. However, these (SU(2),-) multiplets now lie along the (blue) V' —lines
in Fig. 4 . When jumping between states with the ladder operators Vi, the value
of V3 varies between —V;"** and +V;"**. This, in turn, implies that these (SU(2),-)
multiplets must have as many states left as right of the line V5 = 0 or, if we use
the definition 1} of Vi, of the straight line Y = —% Ts.

(iii) {U,, U_, Us} also constitutes an (SU(2),-) subalgebra of (SU(3),-), which trans-
forms the states of (SU(2),-) multiplets (as parts of (SU(3),-) multiplets) among
themselves However, these (SU(2),-) multiplets now lie along the (green) U—lines
in Fig. 4.2, When jumping between states with the ladder operators U, the value of
Us varies betweend —UP*™ and +U*. This, in turn, implies that these (SU(2), -)
multiplets must have as many states left as right of the line U3 = 0 or, if we use
the definition {D of Us, of the straight line Y = 2Ts.

The symmetry axes thus identified are shown in Fig.[4.3] The three-fold symmetry only al-
lows three possible geometrical shapes for (SU(3), -) multiplets in the (75 —Y) plane:
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=0, Y=2T;/3

T;[7]

V =0, Y=-2T, /3

Figure 4.3: Symmetry axes of (SU(3),-) multiplets in the (75 — Y) plane (full lines), as
well as T—, V—, and U—lines (dashed lines).

(a) a single state, the so-called singlet located at the origin of the (73 —Y') plane, i.e.,
for Ty = Y =0,

(b) triangles centered at the origin of the (73 — Y) plane,

(c) hexagons centered at the origin of the (T3 —Y) plane.
The simplest multiplets which fulfill criteria (a) and (b) are shown in Figs. (a—g).

Remarks:

(i) The number of states of a given multiplet is determined by the following operation:
beginning from the upper right (or lower left) corner move with the ladder operators
T_ (T t) or V (V+) respectively, to the adjacent state. From there use 7_ (77.),
V_ (V.), or Uy (U_) to move to the next possible state inside a given triangle.
One cannot leave the triangle, but in this way one can also reach states inside the
triangle. Finally, this prescription defines a lattice of states on the sides and inside
the triangle. Counting the states, one obtains the total number of states in a given
multiplet.

(ii) Counting along T—lines, the triplet [3] contains a T'—singlet and a T'—doublet or,
counting along V —lines, a V —singlet and a V' —doublet or, counting along U —lines,
a U—singlet and a U—doublet, respectively. An analogous argument holds for the
multiplet which is conjugate to the triplet, the so-called anti-triplet [3].

(iii) The sextet [6] contains a T'—singlet, a T'—doublet, and a T'—triplet, or a V —singlet,
a V—doublet, and a V—triplet, or a U—singlet, a U—doublet, and a U—triplet,
respectively. An analogous argument holds for the anti-sextet [6].

(iv) The decuplet [10] contains a T—singlet, a T—doublet, a T—triplet, and a T—qua-
druplet, or a V —singlet, a V' —doublet, a V —triplet, and a V—quadruplet, or a
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Y [#] Y [#] Y [#]
(a) (b) (c)
1/3 23
-1/ /2
T[] _1*/ *2 T[] | | T[]
-1/3
-2/3
Y
[ Y [#]
(d)
Jlt; 4/3
(e)
-1 \-1/ » /1
i i S i i '1; [F] 1
By ~ T Lhl
—4/3 Y

Figure 4.4: (a) Singlet [1], (b) triplet [3], (c) anti-triplet [3], (d) sextet [6], (e) anti-sextet

6], (f) decuplet [10], and (g) anti-decuplet [10].

U —singlet, a U—doublet, a U—triplet, and a U—quadruplet, respectively. An anal-
ogous argument holds for the anti-decuplet [10].

(v) The triplet [3] with three possible states corresponds to the fundamental repre-
sentation of (SU(3),-). We will see in the next section that we can generate the
singlet, the anti-triplet, as well as all higher-dimensional multiplets by coupling
a suitable number of triplets together.
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4 The group (SU(3),*)

The simplest multiplet obeying criterium (c) is the octet [8] shown in Fig. This
is the adjoint representation of (SU(3),-).

Y [f]

T [7]

Figure 4.5: Octet [8].

Remarks:

(i) The anti-octet [8] has the same shape as the octet. One says that [8] and [8]
self-conjugate.

(i) From Fig.[4.5|one observes that the octet contains two T'—doublets and a T'—triplet,
or two V—doublets and a V —triplet, or two U—doublets and a U—triplet, respec-
tively.

(iii) This yields only seven states. So why does one speak of an “octet”, i.e., a multiplet
with eight states? The reason is that the origin is doubly occupied with two
different states, namely with one state of the triplet and an additional singlet.
This is indicated by an additional circle around the origin in Fig. [4.5]

What is the reason for this double occupancy? Starting from the state |73 = 1Y =
0), one can reach the origin in three different ways:

00); ~ T_[10),
IS NI |
00 ~ V_UL10) ~ Vo[,
Ao A1
|00>IH ~ U+ V_ ‘10) ~ U+ |§ - ]_> .
These different ways are shown graphically in Fig. .6}
However, because of Eq. 1) U, V_=V_U;+hT_, way IlI is not linearly indepen-
dent of way I and way II,

00) i ~ U, Vo |10) = V.U, [10) + AT [10) = |00}y + 5]00); .
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Y [7]

1/21)

N

T [7]

[8§)

00) | 10)

112 -1)

Figure 4.6: The three different ways to reach the origin |00) starting from |10).

Thus, the octet has two linearly independent states, |00); and |00)y, which are
located at the origin.

The rule of multiple occupancy or degeneracy of states with the same quantum num-
bers T3 and Y can be generalized to arbitrary multiplets. In general, the degeneracy of
states on each inner shell is by one unit larger than those of the states on the adjacent
outer shell. The degeneracy of the outermost shell is always equal to one. An example is
shown in Fig. [£.7

This rule holds as long as a shell is not a triangle. Inside a triangle the degeneracy
does not increase any more, but stays constant. The reason is that there is now only one
linearly independent way to reach a point inside a triangle. To understand this, let us
consider the decuplet, Fig. 4.8|

At first glance, one would think that, starting from state |10), there are three different
ways to reach the origin |00), just like for the octet. For the same reasons as for the octet,
at least two of them should be linearly independent, e.g.

00); ~T_]10) and [00)y ~ V_U,|10),

so that the origin is again doubly occupied. However, it holds

.3
10) ~V_|21
[10) ~V_[51)
and therefore
o3 N 2\ 3
00 ~ V-0, V|51 =V (V_U++hT_>|§1>
VRO RV T By =R T2
2 2 2
. 3 -3
= BT V_|51) =T (hV_ |5 1))
~ T_[10) ~]00). (4.44)
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4 The group (SU(3), )

Figure 4.7: Starting from the outermost shell, the degeneracy of states increases by one
as one moves from one inner shell to the next.

Y [7]

Figure 4.8: The three ways to reach the origin |00), starting from state |10).

Here we have made use of Eqgs. (4.31) and (4.36)), and employed the fact that the state
|% 1) is the state with the maximum hypercharge ¥ = 1 in the multiplet, such that

U, |% 1) = 0, since this operation would lead outside the multiplet, which is not allowed.
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4.5 Construction of multiplets from the fundamental representation

Equation thus shows that [00);; ~ |00)y, i.e., these two states are not linearly
independent from each other, thus not different. Another way to see this is, starting
from |2 1), to apply either T_V_ or V_T_ in order to reach |[00). Because of Eq.
this is, however, the same, thus not linearly independent.

4.5 Construction of multiplets from the fundamental
representation

In the theory of coupling of angular momenta, two angular momenta (or spins, respec-
tively) are coupled or “added” to form states with a certain total angular momentum.
From the mathematical point of view, one takes the product space of the two angular mo-
menta and decomposes it in terms of multiplets for given total angular momentum
(or spin, respectively). This process is called reduction.

It stands to reason that, by coupling together sufficiently many smallest non-trivial
angular momenta (or spins, respectively), it should be possible to generate all higher-
dimensional multiplets. This is indeed the case: by coupling together sufficiently
many fundamental representations of (SU(2), ), i.e., doublets, all higher multiplets
for given angular momentum (or spin, respectively) can be generated. We show this at
hand of two examples:

1 1
()  Gi=g with =5 = j=0 and j=1 (4.45)
T ® 7 = 1] and 1 :
This relation can be simply written with the notation “doublet = [2]”, “singlet = [1],
and “triplet = [3]” as
2@ 2] =[1]®[3]. (4.46)

This process can be continued, by coupling the doublet to a triplet:

1 1 3

/I\
T ® I — I 1 and I :
With the notation “quadruplet = [4]” this can be succinctly written as
2] ® 3] =[2] @ [4] .. (4.48)
By coupling a doublet or triplet to the quadruplet, one can continue this process and in
this way generate all higher-dimensional multiplets.

There is a graphical method to perform this reduction. To this end, we draw the
first doublet onto the .J3 axis:

49



4 The group (SU(3),*)

o= ; »9 ]3[;‘{]
-1/2 0 172

Now we put the second doublet with its center (J; = 0) onto each of the two states
J3 =1/2 and J3 = —1/2 (in units of &) of the first doublet:

| Ll
-1 =12 0 1/2 1

This generates once the states J3 = 1 and J3 = —1, as well as twice the state J; = 0.
This just corresponds to one singlet, J = 0 or [1] (red dot), and one triplet, J = 1 or [3]
(black dots).

If one repeats this with another doublet and the triplet, one obtains a doublet, J = 1/2
or [2] (red dots), and a quadruplet, J = 3/2 or [4] (black dots):
e
o . ‘ ‘
¢ ————9 l !

e L, l#]
=32 -1 -12 0 1/2 1 32

Analogously, one can generate all (SU(3),-) multiplets by coupling, starting from the
fundamental representation, the triplet. As a first example, we consider the coupling of
two triplets:

2/3
1/3

AT T AR

$_43

2/3

2/3
_ -1\ -1/2 12 /1 @ —1/‘2 / \1/2

Ly VAN

-1/3

-4/3
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4.5 Construction of multiplets from the fundamental representation

This yields a sextet and an anti-triplet,
3] @ [3] = [3] & [6] . (4.49)

Now we couple the anti-triplet to another triplet:

A s _

This yields an octet and a singlet,

Bl 3]=[1aI8 . (4.50)

-

-1/2 1/2
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4 The group (SU(3),*)

This yields a decuplet and an octet,
3] @ [6] = [8] @ [10] . (4.51)
We can use rules (4.49), (4.50)), and (4.51) together with the law of associativity to

determine more complex couplings, e.g.

BlepBleB =Bl (3el)=BleoB)eBel)=[1]e @B e10]. (452)

4.6 Young Tableaux

Young Tableaux constitute another powerful method to construct the irreducible mul-
tiplets of the group SU(3). In fact, this method can be applied also for SU(N), with
arbitrary N. The advantage of Young Tableaux is that they also provide information
about the symmetry properties of an irreducible multiplet.

4.6.1 The permutation group Sy

We start by considering the so-called permutation or symmetric group Sy. This is
the group of permutations of M identical objects (e.g., quantum-mechanical particles),
which can assume N distinguishable states. In order to avoid confusion, let us first focus
on the case M = N, i.e., we consider N objects, which are supposed to be distributed
over N states. The permutation group Sy consists of all permutations how the objects
can be assigned to the states. A permutation is denoted by

. /(1 2 ... N

P(Oél,OdQ,...,OéN):(al ay - aN) s (453)
where (o, g, ...,ay) is any permutation of (1,2,..., N). In other words, if we keep
the order of the distinguishable states fixed, the permutation P(ay, as, ..., ay) re-assigns

particle a; to state 1, particle ay to state 2, etc.. Consider for instance the N-particle
product state (for the definition of such a state, see the lectures on Statistical Mechanics)

o, oo = e e 10 $) H o™y (4.54)

where |<,0§i)) is a quantum-mechanical single-particle state. Here, the superscript in paren-
theses stands for the particle index, while the subscript labels the state. Then

P(Q17a27" aN)‘Spl 79052)7"%90N > ‘90 790§a2)7"'7505\?]\])>7 (455)

e., the permutation assigns particle a; to the state ¢, particle as to the state o,
etc. Since the particles are supposed to be identical, i.e., indistinguishable, this describes
physically the same state. Nevertheless, since the single-particle states are orthonormal,
(¢§Z)|gpgl)> = ¢;;, the product states are also orthonormal,

N

N
1 2 N « « « i
(02, oWl o8P, o$) =TT 1Y) H i - (4.56)
=1 =1
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4.6 Young Tableaux

Here we have used the fact that the scalar product of a product state can be written as
the product of scalar products of the single-particle states. However, one has to take into
account that the individual scalar products are formed from states in the Hilbert space of
the same particle. This means that when computing the scalar product of the product
states one first has to put the single-particle states into the correct order,

N N
o\ o5 oy = T el = [T 1)) (4.57)
i=1 i=1

where P(ay,...,ay) = P~ ay,...,ay) denotes the inverse permutation. 26.6.2025

Note that any permutation can be written as a sequence of transpositions, i.e., in-
terchange of a pair of particles (see lectures on Statistical Mechanics). Denoting the
transposition which interchanges particles ¢ and j by PZ] and taking N = 3 as an exam-

ple, the permutation P(321) can be written as

P(312) = Py Py . (4.58)
Indeed,
PE12)[0l”, 087, 087) = PiaPisliot”, 57, 08
=P \901 08, o)
= i, o8, o) .
If a permutation ]f’(al, Qg,...,ay) can be written as an even number of transpositions,

we call it an even permutation, if it can be written as an odd number of transpositions,
we call it an odd permutation.
The transposition operator fulfills

A A A

PyP;=Pi=1, (4.59)

because interchanging particles 7 and j twice reproduces the original assignment of parti-
cles to states. Multiplying this equation with P ! then leads to the identity

~

Pt =Py, (4.60)

the transposition operator is self-inverse. Since the product states (4.54)) are normalized,
one also has

P N ,...]...,@El),...,gogj)?.._):1
:(...,@E”,...,(py),...\...,gofj),...,gog.),...)

<...,g0£l),...,g0] ... |P.TjP |. .,gpl ,...,goﬁ”,...).

Comparing left- and right-hand side, we deduce the hermicity of the transposition op-
erator,

A

PLR=1 = Py=Pj =B, (1.61)
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4 The group (SU(3),*)

where we have used Eq. (4.60) in the last step. The hermiticity implies that the trans-
position operator F;; has real eigenvalues \;; € R. These eigenvalues can be computed
from the eigenvalue equation

Py|on) = Nij | D)
= [Dy) =1 |Py) = P2 |Dy) = N\ Py |Pw) = XJj| D)
— N =1 =A==, (4.62)

where we have used Eq. 1) Consequently, each transposition operator ]5,5 has two
eigenstates |<I>SC,*L)>, corresponding to its two eigenvalues,

- + +
Pyloi)) = +10(7) (4.63)

one of which is symmetric (\;; = +1) under interchange of particles ¢, j and the other
is antisymmetric (A\;; = —1). These states can be formally generated by applying the
symmetrization and antisymmetrization operators

gﬁ%(

to the product state, such that

11+15U) Ay % (1[—15”) , (4.64)

O5) =Syl @l ey el = Ayl o@Dy (4.65)
Since )

the two eigenstates are orthogonal,

@105 = (ool 0P S A el ey =0, (4.67)

(2

where we have used the fact that S'ij is hermitean (as is Aij), due to the hermiticity of
P;;. Using

o . 1 . . . .
$185 =55 =5 (W+2Py+ P2) =1+ Py =28
P A 1 A A A A
Ajinj:A?j:§<]l_2Pij+P£’>:ﬂ_Pij:\/iAij,

one shows that the eigenstates are also normalized to one,

+ + 7 j 7 j
@F105) = (ol o e e
i(...,gpgl),...,¢§]),...|...,gpﬁj),...,gog-z),...)

due to the orthogonality (4.56)) of the product states.
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4.6 Young Tableaux

For instance, for N = 2 the eigenstates are
1
V2

Since Py, acting on |®g+)> or ]®g7)> leaves the state invariant (in the second case up to a
sign),

+ 1 2 2 1
067 = == (16, o) £ 16,68 ) . (4.69)

Ppo|®57) = +]95) | (4.70)

see Eq. (4.63)), each of these states constitutes an irreducible multiplet of the permu-
tation group Sy, in this case a singlet.

4.6.2 Young diagrams
One can represent the multiplets (4.70]) in terms of so-called Young diagrams,

5Ty = el = . (4.71)

Here, each box represents a particle. Boxes in a row represent a symmetric state, boxes
in a column an antisymmetric state.

For N = 3 the situation becomes more interesting. There are six permutations of (123),
namely (123) (the trivial one, leaving the order unchanged), (213), (321), (132), (312),
and (231), which can be generated by the transpositions 1, ]512, Plg, P23, plgplg, and
P3Py, Consequently, the totally symmetric state is

1 A A A A A A oA .
967) = 2 (1 Pra - Prs - Py - PraPis + PraP ) ol o, o) = ,
(4.72)
while the totally antisymmetric state is
_ 1 A . A A Lo
|<I>§ )> = % (1[ — Pio — Pig — Pog + P1o P13 + P13P12> |90§1)a 8052)’ 901(33)> =
(4.73)

Here, all terms which generate an even/odd permutation carry a plus/minus sign (see
lectures on Statistical Mechanics). However, in addition to these states, there are also
states with mixed symmetry, which are represented by the Young diagram

™) = . (4.74)

There are four such linearly independent states, generated by successive application of
symmetrization and antisymmetrization operators, which separate into two irreducible
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4 The group (SU(3),*)

multiplets, i.e., doublets, of the permutation group S3,

Doublet 1: {|(I)§,m1)> A13512 ’901 )y P2 )7903 ) |CI) 2 > A23Sl2 |901 7902 7903

Doublet 2: {|‘I’:(;m3)> ASis |, 02, 08y, 185 = AgsSis |0t 0, 03)) }
4

75)

For instance, the first mixed state reads explicitly

ml 3
1B5™) = 413805 |01, 0, o)

—A13\/—<|¢1 a%pg)aSps >+|§01 7§0§)7§0:(3)>>

1 2
(Iso”,soé),sog )+ 16,08, o) — 168, 0, o) = 62, 6, i)

(4.76)

Remarks:

(i)

In order to prove that these are two irreducible doublets, one applies all possible
permutations of S3, i.e., the six operators 1, P12, Plg, P23, P12P13, and P13P12, to the
states of the respective doublet and shows that they only lead to linear combinations
of the two states within this doublet. We leave the explicit calculation as Exercise
9.1. In particular,

~ ml m2 - m3 m4
Prolol™)y = @™y | Pylel™y = o™y . (4.77)

In principle, one could also write down two more states, applying Sps and then the
respective antisymmetrization operators. However, one can show that these states
are linear combinations of the four mixed states given above.

Likewise, one can first antisymmetrize with flij and then symmetrize with 5};{ But
the mixed states generated in this way are again linear combinations of the mixed
states given above.

Note that the state is antisymmetric under exchange of particles 1 and 3, but
apparently no longer symmetric under exchange of 1 and 2. The reason for this is
that the symmetrization in (1,2) is (at least partially) destroyed by the subsequent
application of the antisymmetrization operator. The (anti-)symmetrization operator
that is applied last determines the overall (anti-)symmetry of the state.

4.6.3 Young Tableaux

A Young diagram becomes a Young Tableau by labelling the boxes with non-zero integer
numbers, or in physical terms, by assigning states to the particles. For instance,
considering that the two identical particles (boxes) in the Young diagrams can
assume two distinct physical states, we arrive at the two Young Tableaux
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4.6 Young Tableaux

These are precisely the two eigenstates (4.69), now with an explicit enumeration of the
quantum-mechanical states that the particles occupy. Note that due to the (anti-)sym-
metrization it is not necessary to consider the following Young Tableaux,

2
21,1,

these are exactly the same states (in the second case up to an overall sign). It is therefore
advantageous to introduce the so-called standard form of the Young Tableaux. Here,
the enumeration of boxes in rows and columns strictly increases, just as shown in
the Young Tableaux (4.78)).

In the case N = 3, for the totally symmetric and totally antisymmetric singlets
and the standard forms of the Young Tableaux are

@Y= 11213 . [@i)= |2/ . (4.79)
3

For the states with mixed symmetry, Eq. 1) only |<I>éml)) and ]®§m3)> correspond to
the standard form of the Young Tableaux,

oy = L2 gy - L3 (480
3 2
The other two states correspond to the non-standard forms
P AR IR (451
3 2

4.6.4 The relation between Sy and SU(N)

The standard form of the Young Tableaux ignores one important physical situation, which
we have so far neglected in our discussion, namely that the two particles in the symmetric
state may occupy the same quantum-mechanical single-particle state. This cannot hap-
pen for the antisymmetric state (because then it would vanish identically), and it cannot
happen for fermions, due to the Pauli principle, unless they have some other quantum
numbers in which they differ, but it is certainly allowed for bosons (see lectures on Sta-
tistical Mechanics). Therefore, the following two symmetric states can occur in addition

to |(I>§+)):

1 1 2 2 1 2
M) =1t oy =1 111 . 9 =10 e =212

These states are also invariant under }512, i.e., also form irreducible multiplets of S,.
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4 The group (SU(3),*)

Requiring that the numbers in a row do not decrease, while those in a column
strictly increase leads to the so-called semi-standard form of the Young Tableaux.
This is the form which is relevant for physical applications. Consider for instance a two-
particle system consisting of particles with spin 7 = 1/2. The particles are supposed
to possess other quantum numbers besides spin, so that, in the case of fermions, the
Pauli principle does not prevent them from occupying the same spin state, i.e., either
Jjs = +1/2 or js = —1/2. The fundamental representation of SU(2), the doublet [2],
is represented by the two Young Tableaux

| 2 (4.82)

The numbers in the boxes enumerate the two spin states jz3 = +1/2 and j3 = —1/2.

Then, coupling the spins according to the coupling rules of the group SU(2), on the
one hand we can form a spin singlet [1] with total spin J = 0, where the two spins
occupy different spin states, i.e., one has j3 = +1/2 and the other j3 = —1/2. This
SU(2) singlet corresponds to the Sy singlet

07y = 1 . (4.83)

2
We conclude that this singlet is antisymmetric under exchange of the particles.

On the other hand, we can form a spin triplet [3] with total spin J = 1, where the spins
either occupy the same spin states, i.e., both have j3 = +1/2, leading to a z-component
of the total spin of J3 = +1, or j3 = —1/2, leading to J3 = —1, or they occupy different
spin states, which corresponds to J3 = 0. The SU(2) spin triplet corresponds to the three
Sy singlets

LT 122 .12 - (4.84)

Obviously, the spin triplet is symmetric under exchange of the particles. On the one
hand this elucidates the connection between irreducible representations of the permutation
group Sy and of the spin group SU(2). On the other hand, it explains why Young Tableaux
are such a powerful method, as they allow to extract information about the symmetry
properties of the multiplets.

Let us apply these considerations also to the case of a system consisting of three spin-
1/2 particles. Now the Young Tableaux consists of three boxes (corresponding to the three
particles), while the numbers in the boxes can be either 1 or 2 (corresponding to the two
spin states j3 = +1/2 and j; = —1/2 that the particles can assume). The semi-standard
form of the Young Tableaux then gives a quadruplet [4] with total spin J = 3/2, where
J3 = +1/2,43/2,

1 1]1 112 1122 212|2 (4.85)

Since all boxes form a row the quadruplet is a totally symmetric state. Furthermore,
there is a doublet [2] with total spin J = 1/2, where J3 = £1/2,

11 12
2 2

(4.86)
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4.6 Young Tableaux

This doublet has mixed symmetry, but it is overall antisymmetric with respect to the
exchange of two particles with opposite spin states.

Note that there is no totally antisymmetric state like |(I>§_)) in Eq. 1D because we do
not have a third single-particle state that allows to make the overall state antisymmetric
with respect to exchange of all particles. For two states and three particles, two of
the particles always occupy the same state and antisymmetrization is not possible. The
semi-standard form of the Young Tableaux naturally excludes this possibility, because it
requires that the numbers in a column have to strictly increase, which is not possible
for three boxes if we only have two states at our disposal. We conclude that, for SU(2),
there are no Young Tableaux with more than two boxes in a column, or in other words,
these Young Tableaux have at most two rows.

This result can be easily generalized:

for SU(N), there are no Young Tableaux with more than N boxes in a
column, i.e., they have at most N rows.

As an example, let us construct the irreducible multiplets of SU(3). The fundamental
triplet [3] is given by

1 2 3/ (4.87)

where the numbers label the three states in the fundamental triplet. A possible assignment
of these states to the states of the triplet shown in Fig. [1.4|b) is

Y [71]

A

1/3
N2

!
-1/2 1/2

-2/3

This means that the states have the following (73,Y") weights (in units of A):

(11 T~ 11 2] = (o 2
1 - 27 3 ) l - 27 3 ) i - ) 3 .
For two particles who can occupy these three states, we have the following semi-standard
form Young Tableaux. There is a totally symmetric sextet [6], cf. Fig. [1.4(d),

11 12 1]3 212 213 313 - (4.88)
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4 The group (SU(3),*)

and a totally antisymmetric triplet, which is in fact the antitriplet [3] shown in

Fig. [L.4{c),

1 | 2
2 3 3

(4.89)

Following the assignment of the states of the fundamental triplet, the sextet and antitriplet
states are assigned as follows,

Y [71]
Y [71]

25
$
2/3

—1{2 1/? T ﬁ
L A‘. N
7

The (T3,Y") weights of the states in the sextet and the antitriplet follow simply by adding
the corresponding weights of the states of the fundamental triplets constituting the sextet
and antitriplet states. As one observes, this gives the correct position in the (73, Y)-plane
and is consistent with the “vector addition” rule explained earlier in the construction of
the higher-dimensional multiplets from the fundamental representation.

Finally, we obtain the following multiplets for three particles occupying states of the fun-
damental triplet of SU(3). There is a totally symmetric decuplet [10], cf. Fig. [1.4]f),

111]1 1112 1 1|3 1122 123
. (4.90)
1133 21212 21213 233 31313
a totally antisymmetric singlet [1], cf. Fig. [4.4](a),
1
A (4.91)
3
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and a mixed-symmetry octet [8], cf. Fig. [£.5]

11 11 1 2 1 2
2 3 2 3

(4.92)

13 13 212 213
2 3 3 3

The assignment of the singlet to a state in the (73,Y)-plane is trivial, it can only be
the origin of that plane, which is confirmed by adding the weights of the states of the
fundamental triplet, T3 = % — % +0=0,Y = % + % — % = 0. The assignment of the states
for the decuplet and the octet are as follows,

Y [71]
1

Y [fi]

L [7]

Again, the correct (73,Y") weights follow by adding the corresponding weights of the states
of the fundamental triplets constituting these multiplet states.

4.6.5 Construction of irreducible multiplets via reduction

The construction of irreducible multiplets via reduction of tensor products can also be
done using Young diagrams. The rule is simply that, in a tensor product, one stacks
the boxes of the second multiplet onto the rows and columns of the first in all possible
ways to obtain a valid Young diagram (i.e., a diagram where the length of the rows does
not become larger from column to column), and then discards diagrams which contain
columns with more than N boxes (as they cannot exist for the SU(N) group). The
simplest tensor product is that of two fundamental representations,

& = D : (4.93)

Interestingly, this works for any SU(N) group. For instance, for N = 2 we obtain with
Eqgs. (4.83)) and (4.84)) the relation [2]®[2] = [1]®[3], cf. Eq. (4.46]). For N = 3, we obtain
with Eqs. (4.88) and (4.89) the relation [3] ® [3] = [3] & [6], cf. Eq. (4.49).
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Further multiplying the totally antisymmetric multiplet with a fundamental represen-
tation yields

& = © : (4.94)

For N = 2, the first diagram on the left-hand side is the totally antisymmetric singlet,
cf. Eq. (4.83), while the first diagram on the right-hand side does not exist, as there are
only two states and the numbers have to increase from row to row. The second diagram

yields a doublet, cf. Eq. (4.86)). This gives the (trivial) relation
[ ®[2]=[2].

On the other hand, for N = 3, the first diagram on the left-hand side is the totally
antisymmetric antitriplet, cf. Eq. , while the first diagram on the right-hand side
is the totally antisymmetric singlet, cf. Eq. , and the second an octet with mixed
symmetry, cf. Eq. . This gives the relation

cf. Eq. (4.50)).

Now multiplying the totally symmetric multiplet from Eq. (4.93) with a fundamental
representation, we obtain

® = ® . (4.95)

For N = 2, the first diagram on the left-hand side is the totally symmetric triplet,
cf. Eq. (4.84: , while the first diagram on the right-hand side is a mixed-symmetry doublet,
cf. Eq. (4.86]), and the second a totally symmetric quadruplet, cf. Eq. (4.85). This yields

Bl® 2] =[2]eM4],

cf. Eq. . On the other, for N = 3 the first diagram on the left-hand side is the
totally symmetric sextet , while the first diagram on the right-hand side is a mixed-
symmetry octet, cf. Eq. , and the second the totally symmetric decuplet ,
giving rise to the relation

6] © [3] = [8] @ [10]

cf. Eq. (4.51)). This construction can be continued to arbitrary order in the dimensionality
of the multiplets. We refer to the literature [4] for further details.
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5 Unitary symmetries of the strong
interaction

5.1 (U(1),-) symmetry of quantum electrodynamics

Symmetries play a prominent role in modern theories of the Forces of Nature. This is espe-
cially true for the theory of the strong interaction. Before turning to this theory, however,
let us first consider the (simpler) theory of electromagnetism, quantum electrodynam-
ics (QED), which describes the interactions between electrons and photons. The
respective Lagrangian reads (in natural Heaviside-Lorentz units, h = ¢ =gy = o = 1)

‘CQED = _%1 FMVF;UJ + @E(le - m)w ) (51)

where F* = OFAY — 0V A* is the field-strength tensor of the electromagnetic field,
with the 4-vector potential A*, the so-called gauge field. The object ) is defined as
P =~"D,,, where v* are the Dirac matrices and D, is the covariant derivative

D, =8, —ieA, . (5.2)

The quantity v is the 4-spinor of the electron and m its mass. The Dirac adjoint spinor
is 1 = ¥Tyy. The first term in the Lagrangian is the so-called gauge-field term,
which describes the dynamics of the gauge field A, in this case the photon field. The
second term is the so-called matter term, which describes the dynamics of the matter
fields, in this case the electron.

The Lagrangian (5.1)) is invariant under so-called (U (1), -) gauge transformations,

v — Y =U1y, (5.3)
AP — An =AY - L0 (5.4)
(&
where
U=eX e ) (5.5)

is a space-time dependent phase factor, and at the same time a representation of
an element of the group (U(1),-). For elements of (U(1),-) Eq. simplifies as
follows:

AF — ATH = AP L OFA

The invariance of the Lagrangian (5.1)) under the transformations (5.3)), (5.4) is seen as

follows:
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5 Unitary symmetries of the strong interaction

(i) The field-strength tensor is invariant under the transformation ([5.4)),
FH — F'W = gF (AY 4+ 0"A) — 0" (A" + O*A) = F*

as long as A(X) is twice continuously differentiable, 0#0¥A = 9”0"A. Consequently,
also the gauge-field term in Eq. (5.1) is invariant.

(ii) The covariant derivative of the matter field transforms as the matter field itself,
Dy — Dy = (9, —ieA) Y =0, —ieA, —ic (9,N)] ety
= M9, +ie (0,A) —ie A, —ie (9,M)] ¥
= M (9, —ieA)Y =D,
Therefore, also the matter term in Eq. (5.1)) is invariant,
V(D —m)p —> W' (P —mpy' = e R NP —m)ip = (i) —m)y .

Gauge transformations are also termed local symmetry transformations and one
speaks of local invariance under these transformations or, short, of a local symmetry.
The special case A(X) = const. corresponds to global symmetry transformations or
global invariance or global symmetry, respectively.

5.2 (SU(3),-) color symmetry of quantum
chromodynamics

The theory of the strong interaction is quantum chromodynamics (QCD) (greek:
yeua = color). It describes the interaction between quarks and gluons. The Lagrangian

of QCD looks quite similar to that of QED, Eq. (5.1)),

1 = N
Locp = ) Tr (F* Fuu) + V(P —m)¥ . (5.6)
Here, R
F = F*™T, (5.7)

is the matrix-valued field-strength tensor, with the eight generators 7, of (SU(3),-)
in the fundamental representation, i.e., as (3 x 3) matrices, cf. Eq. . U is the
quark field and m its mass.
Using Eq. the gauge-field term of QCD can be brought into a similar form as

that of QED,

1T iy v bl AA_]' uv b _1 uv a

5 Ir (F" Fu) = Fi F,, ETr(TaTb) =1 EyF,, Oap = 1 EYFL,
The difference to QED is that there are now eight different field-strength tensors F!*,
corresponding to the eight colors of the gluon fields. There is, however, another, less
obvious, difference between the field-strength tensors of QCD and that of QED. Up to a
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5.2 (SU(3),+) color symmetry of quantum chromodynamics

factor i/g, where g is the coupling constant of the strong interaction, the field-strength
tensor can be defined in terms of the commutator,

FH = —[D*, D"], (5.8)

Q| =

of two covariant derivatives

Dy =0,—ig Ay, (5.9)

where the covariant derivative is matrix-valued, just as the field-strength tensor, with
the matrix-valued 4-vector potential, or gauge field, respectively,

At = ART, . (5.10)

The eight 4-vector potentials A# correspond to the eight gluon fields. We compute the
commutator (5.8)) explicitly,

l

[DM’ Dy] =
g

(0" —ig A") (0" —ig A”) — (0" —ig A”) (9" — ig A")]

Q |~

(090" — ig (0" AY) — ig A7O" — ig A" — g2 AP A

Q| =

— Q0" +ig (0" A") +ig A"D” +ig A"O" + > AY A"
= O'AY — VA" —ig[AF, A
= OFAY — AP —ig Al AV [T, T
= (MY — 0" AL+ g fure A AT,

where we used the Lie algebra (4.11)) of (SU(3),-) in the last step. Comparing this result
with Eq. (5.7), we realize that

FMv = 9FAY — 9V AP + g fape Al AY | (5.11)

The non-abelian nature of the group (SU(3),-) causes additional terms in the field-
strength tensor of the ath gluon, which depend on the gluon fields with colors b and c.
These non-abelian terms lead to 3- and 4-gluon interaction terms in the gauge-field
term of the QCD Lagrangian,

1

v a 1 v a a
— FUE, = =5 0" AL (0,47 - 0,47)

2
— fure (P AL) Al A = T furofoae AL ALALAS, (5.12)

where we used the antisymmetry of the structure constants fu;.. These self-interactions
of the gluon fields lead to physically very different properties of QCD as compared to QED.
For instance, QCD is an asymptotically free theory, while QED is not. A more detailed
discussion is topic of lectures on quantum field theory.

Let us make a remark concerning the matter term in the QCD Lagrangian: the matrix-
valued covariant derivative implies that the quark spinors ¥ are not only Dirac 4-spinors,
but simultaneously 3-vectors in so-called color space. The three components of these
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5 Unitary symmetries of the strong interaction

vectors symbolize the quark colors, usually termed red, green, and blue. Moreover,
there are six different quark flavors: up, down, strange, charm, bottom, and top.
Therefore, quark spinors have 4 -3 -6 = 4NNy = 72 components, where we denoted the
number of (fundamental) quark colors as N. and the number of flavors as Ny. The quark
mass 71 in the QCD Lagrangian is not a single number, but a diagonal [(4N.Ny) x (4N.Ny)]
matrix in Dirac, color, and flavor space,

m, 0
0 mq O
A 0 ms O
m= S0 e 0 e |
0 my O
S0 oy

where the individual flavor matrices m; = m;1l4y_, with the mass m; of quark flavor .

Quite analogously to the case of QED, the QCD Lagrangian (5.6)) is invariant under
local (SU(N.),-) transformations in color space,

U — V=0T, (5.13)
A AR =T AT - é CRoTim (5.14)

where
U = exp [z’g Au(X) T] e SU(3) (5.15)

is a representation of an element of the group (SU(3),+). The invariance can be seen as
follows:

(i) The covariant derivative transforms under gauge transformations as follows:

D,=0,—igA, — D, = 0,—igA,

= U9, —igA)Ut=UD,U". (5.16)
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5.2 (SU(3),+) color symmetry of quantum chromodynamics

Therefore, also the matrix-valued field-strength tensor transforms as

i

{ y {
Fu= 1Dy D) — F* = D], D)= (DD, ~ D,D,)
- 2 (UDU DU~ UD, U DI
g
- éU[DM, DI =0 F,, 0 (5.17)

Thus, the gauge-field term in the QCD Lagrangian is invariant under local (SU(N,), -)
transformations,

1 (N !
§Tr (F* F) — =T (]—““ ]:W)

N~ N

o 1
Tr (UPW o U]-"WU*I) = ST (F™ F) | (5.18)

because we may cyclically permute terms under the trace.

(ii) The matter term is also invariant under local (SU(N,.),-) transformations, because
the covariant derivative of the quark spinor transforms with the help of Eq. (5.16])
as

D,V — D,V =UDU'UY=UD,V, (5.19)

and thus

TP — )0 — V(G — )V =V U TGP —m)¥ = V(i —m)¥. (5.20)

The gauge invariance of QCD, i.e., the symmetry under local (SU(N,),-) trans-
formations implies that quarks as well as gluons can be grouped into multiplets of
(SU(N,.),-). This must be the case, since quarks can also transform amongst each other,
but not into gluons or other objects. The same holds for gluons. The N, = 3 quark colors
are states of the fundamental representation, the triplet:

Y [71]

1/3

N1/

VL B
-2/3
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5 Unitary symmetries of the strong interaction

The colors are assigned as follows to eigenstates |73Y") of “color spin” T3 and “color

hypercharge” Y:

11
= 7 d77 = _
=) = 53,
7 ” J— 1 1
lg) = |"green”) = 5 3> ,
2
|b) = "blue”) = |0 —§> .

Anti-quarks differ from quarks in all charge quantum numbers, and thus also in color.
Therefore, anti-quarks occupy states of the anti-triplet,

Y [7i]

2/3

1{2

—1(2
!

v

N

-1/3

The assignment of colors to |T3Y) eigenstates is the following:

|7) = |"anti-red”) = |—= __> :

|g) = |"anti-green”)

- 2
|b) = |”anti-blue”) = 0—> .

Il
N —
|
Wl
\/

The eight gluons occupy states of the adjoint representation, the octet. Since the octet
can be generated by coupling a triplet and an anti-triplet, cf. Eq. (4.50]), one can imagine
gluons to carry combinations of colors and anti-colors.

Y [#]

7 -gQ) 2
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5.3 (SU(Ny),-) flavor symmetry

A peculiarity of QCD is the so-called color confinement: particles which are subject
to the strong interaction, so-called hadrons, appear in Nature always as singlet (“white”
objects) of the (SU(N,),-) color symmetry, color-charged objects such as quarks and
gluons are never observed in isolation. The confinement of color charges is an experi-
mentally observed fact, but so far could not been shown rigorously on the basis of the
theory of QCD.

The fact that hadrons are always color singlets means that they must consist of several
quarks and gluons, and in particular of such couplings between these particles which allow
a singlet, e.g., as in Egs. and (4.52). Color singlets which consist of a quark and
an anti-quark are called mesons, color singlets which consist of three (anti-)quarks are
called (anti-)baryons. We will discuss concrete examples in the next sections, but first
we discuss another symmetry of QCD, the so-called flavor symmetry.

5.3 (SU(Ny), ) flavor symmetry

In the case of vanishing masses, left- and right-handed Dirac fields,

I+ I1F s

Yrp = Protp = V, e =YP =1 5 (5.21)

where 75 = i7°v'y?73, decouple in the Dirac Lagrangian,
ViD= i P e+ bei P (5.22)
(In order to show this, use {75,7*} = 0, as well as the projector properties Pﬁz =

Prv, PP = PP. =0, P.+ Py, = 1,.) This also holds for the QCD Lagrangian
(5.6), which is then invariant under global unitary transformations of right- and
left-handed quark fields,

Ve — U, =Une ¥y,
Uy = exp (—z’aﬁﬁé Ta> € U(Ny)pe, afy=const., a=0,...,N7—1.(523)
Since one can transform right- and left-handed fields separately, the full symmetry group

is (U(Ny), x U(Ny)g, -), the so-called chiral symmetry of QCD.
A mass term explicitly breaks this symmetry, as one readily confirms,

bmp = Ygmip, + Pomy . (5.24)

This term is only symmetric under those chiral transformations which fulfill U h— U .=

A

U™ or a® = af. This is the symmetry of vector transformations V =r + ¢,
Uy = exp ( i ) ceU(Ny)y, ay=ay,,=a,y+ay, (5.25)

which forms the diagonal subgroup (U(Ny)v,-) of the chiral symmetry group (U(Ny), X
U(N¢)s,-). On the other hand, the symmetry of axial-vector transformations A =
r—4,

UA:eXp< iv50% ) €U(Npa, of=ar,=ar—ap, (5.26)
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5 Unitary symmetries of the strong interaction

is explicitly broken. (There is no such symmetry, since the mass term requires af = af,
which means that o% = 0.)
The individual quark masses are non-zero,

my, >~ 2.3 MeV | mg >~ 4.8 MeV ,
ms ~ 95 MeV me >~ 1.275 GeV
mp ~ 4.18 GeV | my >~ 173.21 GeV , (5.27)

consequently, the chiral symmetry of QCD is explicitly broken. If all quark masses were
equal, then the residual symmetry of QCD would be that of the vector transformations,
(U(N¢)v,-). Since U(N) = SU(N) x U(1), cf. Exercise 4.2, and the U(1)y symme-
try represents according to Noether’s theorem simply the (trivial) conservation of quark
number, one usually considers the group (SU(Ny),-) of special unitary vector trans-
formations, or short, the (SU(NNy), -) flavor symmetry.

This symmetry is broken because the quark masses are all of different value.
However, for some quark flavors the breaking is less strong than for others. For instance,
the mass difference between up and down quark is, in comparison to a typical hadronic
mass scale of M, ~ 1 GeV, vanishingly small. This results in an approximate (SU(2), )
flavor symmetry, the so-called isospin symmetry of QCD and thus of the strong inter-
action, which will be discussed in the next section. Moreover, also the mass difference
between strange and up or down quark is, on a hadronic mass scale, small, so that one
can assume to good approximation also an approximate (SU(3),-) flavor symmetry of
the strong interaction. This will be discussed in the next-to-next section. More strongly
broken is the (SU(4),-) flavor symmetry, which also takes into account the charm quark.
It is nevertheless reasonable to also consider this symmetry in order to classify hadrons
with the quantum number charm, which will be done at the end of this chapter.

5.4 Isospin symmetry

The masses of up and down quark are, in comparison to a hadronic mass scale M, ~ 1
GeV, almost of equal magnitude (and also vanishingly small),

my ~ 2.3 MeV <mg~48 MeV <« M;, ~1GeV .

Therefore, one can to good approximation assume that QCD possesses an (SU(2), -) flavor
symmetry. (Since the quark masses are vanishingly small compared to M}, one may think
that the symmetry group is actually larger, namely that of chiral symmetry for Ny = 2
massless flavors, U(2), x U(2),. This is, however, not true because of spontaneous
breaking of chiral symmetry by a non-vanishing quark condensate (UW¥) # 0.)

We write

1
m= 3 (my +mgq), dm=mg—m,, (5.28)
so that 5 5
mu:m—Tm, md:m+7m, (5.29)
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5.4 Isospin symmetry

and neglect the mass difference dm in the following. Then, the (SU(2), ) flavor symmetry
of QCD is even an exact symmetry. Up and down quarks form an (SU(2),-) doublet,

2],

| d> | u >
° ; ° é[ﬁ]
-172 0 1/2
If we denote the states with |I I3), we have

Coa N\ 11

W = [w) =10,
1 1

d = [“down”) = |~ — =) .
@) = |down’) = |} — 1)

The corresponding anti-doublet 2] consists of the corresponding antiparticles, the anti-
up @ and anti-down quark d. Formally, it has the same shape as the doublet,

| u> | d>
° | ° é[ﬁ]
-1/2 0 1/2
The assignment of states reads
1 1
— = «“ t-_ N |2
@) = |antiw’) =15 - 5).,
@) = [“anti-down’) = | o)
= ["anti-down”) =[5 7).

Because of the formal similarity with [2] the coupling rules for the anti-doublet are iden-
tical with those of the doublet, i.e., in analogy to Eq. (4.46)) we have

2@ 2] =[1]4[3]. (5.30)

Because of the (SU(2),-) symmetry, all hadrons which are composed of up and down
quarks (or the respective anti-quarks) must also fall into (SU(2),-) multiplets. The as-
signment follows the coupling rules for (SU(2),-), which we have discussed in Sec. [4.5
Since the eigenvalues of the Hamilton operator H (él) are degenerate on a multiplet, all
hadrons of a given multiplet must possess the same mass, if the (SU(2),-) flavor sym-
metry is exact. Therefore, the (SU(2),-) flavor symmetry is also called isobaric spin
symmetry, or short isospin symmetry (greek: icoc Pouplc = equally heavy). This is
the origin of the labels I and I3 for magnitude and 3-component of the isospin.

Mesons are colorless quark—anti-quark states. The possible (SU(2),-) flavor mul-
tiplets can be determined from Eq. , i.e., there is a flavor singlet and a flavor
triplet. Considering the respective Clebsch-Gordan coefficients one obtains

(| uw>+|dd>)/12 |du>  (|uu>—]| dd>)/2 - |ud>
0 é -1 0 1 é
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5 Unitary symmetries of the strong interaction

The symmetry properties of singlet and triplet are not entirely obvious. The reason is that
the generators in the antifundamental representation [2] are actually —T*, cf. Exercise 6.1.
Using this fact, one can show [§] that d corresponds to —u and @ to d. Then, the singlet
%(|ua> + |dd)) is equivalent to \/Li(|ud> — |du)), which is antisymmetric, in accordance
with Eq. (4.83), while the states of the triplet,

|du) — |dd) ,

L (ua) - ddy) — %<|ud>+|du>>,

V2
fud) — |uu) |

are symmetric, in accordance with Eq. (4.84).

There are, however, different kinds of mesons with the same flavor content, but differ-
ent behavior under Lorentz transformations, i.e., they differ in their spin J. The usual
classification follows according to the isospin I of the meson, and then according to spin
J, parity P, and charge conjugation C, with the notation JF¢. Some of the N; = 2
mesons are listed in Tab. B.11

| Mesons | [JI=0) | 3] (I =1) |
Scalars (JFC = 0+) fo(1370) ag (1450) \ ad(1450)
Mass [MeV] 1350 £ 150 1474 £ 19
Pseudoscalars (J7¢ = 077) n Tt 0
Mass [MeV] 047.862 £ 0.018 | 139.57018 £ 0.00035 | 134.9766 £ 0.0006
Vectors (JFC =177) w P \ p°
Mass [MeV] 782.65 £ 0.12 775.26 £ 0.25
Axial-vectors (JTC = 177) f1(1285) a; (1260) \ a%(1260)
Masse [MeV] 1281.9+ 0.5 1230 £ 40

Table 5.1: Mesons which consist of a quark and an anti-quark.

The states of the triplet differ in their electric charge, which can be calculated according

to the formula
Q) =el3 (mesons) . (5.31)

As one observes, the isospin symmetry is nearly exact, only the different states of the
pion triplet differ slightly in their masses,

OMmy = Myx — myo = 4.59358 MeV << my+, myo .

Baryons are colorless states composed of three quarks. The possible flavor multiplets
can be determined from

RlolRleR2=2e({(lJeB) =[R2 [2]eH4]. (5.32)

One of the doublets is the nucleon doublet, consisting of proton and neutron:
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5.4 Isospin symmetry

l n> lp>
° | ° é[ﬁ]
=12 0 12

Taking into account the Clebsch-Gordan coefficients, the flavor content of proton and
neutron is

1

11
p) = [*proton”) =[5 5) = 7 (luud) + [udu) — 2|duw))
“© ” _ 1 1 _ 1
|ny = |“neutron”) = |2 2) = \/6(2]udd> |dud) — |ddu)) .

In accordance with Eq. (4.86)), these are states of mixed symmetry. The quantum

numbers of the nucleon doublet read I(JF) = %(%Jr) and the masses are

m, = 939.565379 £ 0.000021 MeV ,  m, = 938.272046 4= 0.000021 MeV ,

so that the mass difference (and thus isospin violation) is again small compared to the
absolute magnitude of the nucleon masses,

omy =my, —m, = 1.293333 MeV < m,,, m, .

The quadruplet in Eq. (5.32) is that of the so-called Delta resonances:

IA > 1A > IAF> IA"S
-3/2 -1 0 1/2 3/2

Taking into account the Clebsch-Gordan coefficients, the flavor content of the A reso-
nances reads

AT = 5 2) = Juua)

) = 15 5=~ () + ) + )
A% = 15 = 5) = = (udd) + |dud) + |dds)
AT = |5~ 3) = lddd)

In accordance with Eq. (4.85)), these are symmetric states. The quantum numbers of
the A quadruplet are I(JF) = %(%Jr) and the mass is ma = 1232 MeV.
In order to compute the electric charge of the baryons, Eq. (5.31]) needs to be modified:

Q= (13 + %) (baryons) . (5.33)
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5 Unitary symmetries of the strong interaction
5.5 Strangeness and (SU(3), -) flavor symmetry

The difference between the masses of up, down, and strange quarks is, in comparison to
a typical hadronic mass scale Mj ~ 1 GeV, still relatively small,

OMyg = Mg — My, == 2.5 MeV

Omgs = mg — mg ~ 90 MeV
~  Mys = Mg — My = 92.7 MeV
<L My ~1GeV,

so that one can speak of an approximate (SU(3),-) flavor symmetry of the strong inter-
action. In the following, we first neglect the mass differences dm,q, dmys, and dm,s and
assume an exact (SU(3),-) flavor symmetry.

Then, the three quark flavors form an (SU(3),-) triplet:

Y [71]

The role of the 3-component of isospin from the preceding section is now assumed by T5.
The assignment of states is

2 7 —_ 1 1
Wy =Pw) = I3,
11
d = 77d 7 = _
2
|s) = |"strange”) = [0 — §> .

Note the analogy to the assignment of the three colors red, green, and blue in the case of
the (SU(3), ) color symmetry of QCD.

Anti-quarks form an anti-triplet:
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5.5 Strangeness and (SU (3), -) flavor symmetry

Y [71]

The assignment of states is

1 1
5 = ” t'_ 7 = -
@) = ["anti-up”) =5~ 3
- 1 1
d = 2 t'_d 2 = .
|d) = |”anti-down”) 5 —3)
2
|5) = |”anti-strange”) = |0 §>

According to the coupling rule (4.50)), mesons form a singlet and an octet:

Y [#]
Y [#] as |, e

(|uit>+ | dd>=2 | ss>)1l6
(|uir>— | dd>)A2-

S T[h]
(|uit>+| dd>+ | ss>)A3 _1

| du> | ud>

su> -1 | sd>

We distinguish

(i) Scalar mesons, JF'¢ = 0*+:
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5 Unitary symmetries of the strong interaction

Y [h]

Y [f] K;(1430) K;"(1430)

£(1370)

1

d)(1450)

a(1450)

(1500) (1450)
QJB TGh] % T,[Hh]

K, (14300 | ~1 K;(1430)

As we observe, the isosinglet f;(1370) and the isotriplet of a¢(1260) mesons from
the Ny = 2 case are parts of the octet. New as compared to the latter case are the
four scalar K mesons, which form two isospin doublets inside the octet. The new
isoscalar fp(1500) meson constitutes the singlet. The masses and isospin quantum
numbers of these mesons are:

fo(1500) = I
K;(1430) : T

=0 s Mgy (1500) = 1505+ 6 MeV s
% y Mgy = 1425 4+ 50 MeV .

(ii) Pseudoscalar mesons, JF¢ = 0~+:

Y [A]

Il T[]

K -1 Ko

As we observe, the isosinglet 7 and the pion isotriplet from the Ny = 2 case are
parts of the octet. New as compared to the latter case are the four pseudoscalar
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5.5 Strangeness and (SU (3), -) flavor symmetry

K mesons, or short kaons, which form two isospin doublets inside the octet. The
new isoscalar n’ meson constitutes the singlet. The masses and isospin quantum
numbers of these mesons are:

n : I=0, m,y = 957.78 £0.06 MeV ,
K : I= % ,  mg+ =493.677 £ 0.016 MeV ,
mygo = 497.614 + 0.024 MeV .
(iii) Vector mesons, JF¢ =1"":
Y [H]
*0 *+
Y [A] K%892) |, K'(892)
/
o T[]

K892) | ~1K0(892)

As we observe, the isosinglet w and the isotriplet of the p mesons from the Ny = 2
case are parts of the octet. New as compared to the latter case are the four vector
K* mesons, which form two isospin doublets inside the octet. The new isoscalar ¢
meson constitutes the singlet. The masses and isospin quantum numbers of these
mesons are:

me = 1019.461 = 0.019 MeV ,
, Mg+ =2891.66 = 0.26 MeV .

~

I
o= O

K*

(iv) Axial-vector mesons, JF¢ = 17+:
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Y [h]

Y [#] K9(1270) K/ (1270)

£(1285)

1

all1260)

a(1260)
T;[h]

SO Tm) o a(1260)

K, (1270) | 1 K9(1270)

The isosinglet f1(1285) and the isotriplet of the a; mesons from the case Ny = 2 are
parts of the octet. New as compared to the case Ny = 2 are the four axial-vector
K4 mesons, which form two isospin doublets inside the octet. The new isoscalar
f1(1420) meson constitutes the singlet. The masses and isospin quantum numbers
of these mesons are:

f1(1420) : I=0 s mf1(1420) = 1426.4 £ 0.9 MeV y
Ki : I=1L, mg =12124£7 MeV .

According to the coupling rule (4.52)), baryons form a singlet, two octets, and a
decuplet:

Y ] Y ]
1 | ddu>
Y [H#]

T, ]
-1\ -1/2 12 1

| sss>

We only show one of the two octets, and we just indicate the flavor content of the states of
the decuplet, without respecting proper symmetrization. The flavor content of the states
of the singlet and of the two octets is in principle the same as that of the corresponding
states of the decuplet, but the quarks appear in different combinations, corresponding to
the respective symmetry of the state under exchange of particles.

We just mention the assignment of physical baryon states to these multiplets:
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5.5 Strangeness and (SU (3), -) flavor symmetry

Y [#H]

T, 7]

We observe that the nucleon isodoublet is part of the octet and the A isoquadruplet is
part of the decuplet. New baryon states as compared to the case Ny = 2 are:

A s IJP)=0(T),  ma=1115.683+0.006 MeV

St I(JP) =117, myre = 1189.37 £ 0.07 MeV |
S0 0 I(IP)=1(1T),  mse = 1192.642 £ 0.024 MeV
2T I(JP) =1(T),  my- =1197.449 £ 0.030 MeV ,
=0 IJP)=31ET),  mae =1314.86 £ 0.20 MeV
= IR =L11T),  me =1321.71£0.07 MeV,
A TP =001T),  mae =1630+70 MeV
S IR =13T) . mger = 1382.80£0.35 MeV
S0 TP =1(32T),  mgeo = 13837+ 1.0 MeV
S I(JP) =137, mype =1387.240.5 MeV,
=0 0 1P =1(3T),  m=o =1531.80 £ 0.32 MeV
= 0 1P =L1EY), mze =1535.0+0.6 MeV,
O I(JP)=0(3"),  mg- =1672.45+0.29 MeV .

The corresponding anti-baryons are members of a singlet, two anti-octets (which have,
however, the same shape as the octets), and an anti-decuplet. Besides these baryons,
there is a multitude of further excited states, as well as such of negative parity. Because
of identical flavor content, also these states must be members of a singlet, two octets, and
a decuplet. Further details can be found in the compilation of the Particle Data Group
[9].

With the help of the hypercharge, the empirically found charge formulas and
(5.33) can now be generalized to all (SU(3),-) multiplets,

Q=c¢ (T3 + %Y) ) (5.34)

This is the so-called Gell-Mann—Nishijima formula. One readily checks that it holds
for meson as well as for baryon multiplets. If it is valid for all (SU(3), -) multiplets,
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5 Unitary symmetries of the strong interaction
it should also apply to the triplet. Thus it follows that
1 1 1 2
Qu = e(§+§'§> —3%
1 11 1
Qo = 6(‘5*5'5) -3¢

0. - 6( _%%)__%e, (5.35)

Murray Gell-Mann was the first to systematically assign hadrons to (SU(3), -) flavor mul-
tiplets and interpret them as quark—anti-quark (mesons) or three-quark states (baryons),
respectively. His realization culminated in postulating the existence of quarks as “building
blocks” of the hadrons.

If the (SU(3),-) flavor symmetry were exact, all hadrons of a given multiplet should
be degenerate in mass. This is obviously not the case. However, we observe that the
isospin symmetry, i.e., the mass degeneracy inside an isospin multiplet as part of an
(SU(3),-) flavor multiplet still holds to very good approximation. Deviations are of the
order of the mass difference between up and down quark. Quite analogously, the violation
of (SU(3), ) flavor symmetry, i.e., the mass difference between various isospin multiplets
inside an (SU(3), -) flavor multiplet, is of the order of the mass difference between up or
down and strange quark. For instance, for the baryons we have

ma —my ~ 176.76 MeV ,
m= —my =~ 202.60 MeV
mss —ma =~ 152.57 MeV |,
m=+ — myx ~ 148.83 MeV ,
mqo —m=- =~ 139.05 MeV ,

where we have assumed averaged values inside an isospin multiplet. Obviously, the mass
of the baryons grows proportional to the number of strange quarks contained in them, by
an amount of the order of the strange quark mass.

This observation can also be expressed in terms of an empirical formula. To this end,
we write the Hamilton operator of QCD symbolically in the form

I;[QCD = ﬁSU(3) + Hpgp (5.36)

where the first part, [ su(3), is assumed to be invariant under (SU(3),-) flavor transfor-
mations, while the second part, Hpgp, breaks (SU(3), ) flavor symmetry explicitly. If
Hpgg = 0, all hadrons of an (SU(3),-) flavor multiplet must have identical masses, since
HSU(g) can only depend on the Casimir operators Cy, Cy of (SU(3), ), which assume the
same eigenvalues on any given multiplet. In the following, the eigenvalue of H SU(3) on a
given multiplet will be denoted by a.

The observed violation of mass degeneracy inside an (SU(3), ) flavor multiplet is pro-
portional to the number of strange quarks or to the hypercharge of the respective isospin
multiplet. On the other hand, isospin invariance is (approximately) fulfilled on isospin
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5.5 Strangeness and (SU (3), -) flavor symmetry

multiplets. Therefore, the symmetry-breaking part Hpsp must be proportional to Y (or

higher powers of Y), and may depend on the Casimir operator T2 of the isospin group.
We thus make the Ansatz

N N 2 1 -
HMB:bY+c@ﬂ—ZYﬁ. (5.37)

If we are interested in accounting for isospin violation as well, we would have to add a part
~ Ty. Equations (5.36) and (5.37)) imply that the mass of a hadron on a given (SU(3),-)
flavor multiplet can be calculated from the formula

1
m:a+MCH{ﬂT+U—ZY1, (5.38)
where the constants a, b, ¢ have dimension energy (in natural units) and assume different
values on different multiplets. Equation ([5.38)) is the so-called Gell-Mann—Okubo mass
formula. Let us check its validity at hand of the baryon octet. For the various isospin
multiplets inside the baryon octet we have:

tote(2 T
my = a cl-—=)=a —
N 1 4 2
ma a ,
my = a+c(2—-0)=a+2c,
3 1 c
m= = a—b+C<Z—Z—1)—CL—b+§.
Forming linear combinations, one can eliminate b,
1( +me) =a+ c 3 n 1
27’I’LN m=)=a 2—4mA 4m2.
This equation is fulfilled to good approximation, because
1 3 1
§(mN +mz) ~ 1128.60 MeV ~ 1135.05 MeV ~ 1 my + 1 ms .

The deviation is only 6.5 MeV, i.e., of the order of magnitude of isospin violation, which
is not taken into account in the Gell-Mann-Okubo formula (5.38)).
For the decuplet we compute

SN (S
ma = a 53571 a c,
mys = a+c(2—-0)=a+2c,
3 1 c
- = —b —— —)=a-=9? —
ms a +c<4 4) a —i—2,

mg = a—2b+c(0—1)=a—2b—c.
This leads to the equations

1
—(ma +me«) =a+2¢c=mg =2m=« — Mg,
2
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5 Unitary symmetries of the strong interaction

which are also fulfilled to very good approximation:

1
E(mA +mz=) =~ 1382.70 MeV
myx =~ 1384.57 MeV |
2m=+ —mq =~ 1394.35 MeV .

5.6 Charm and (SU(4), -) flavor symmetry

The considerations regarding the (SU(3), -) flavor symmetry of the strong interaction can
also be extended to the charm quark (and in principle also to bottom and top quark).
However, because of the large mass of the charm quark,

me ~ 1.266 GeV > m, ~ 95 MeV ,

the (SU(4), ) flavor symmetry is much stronger explicitly broken as the (SU(3),-) flavor
symmetry. The mass difference dm., = m. — my >~ 1.161 GeV ~ M, is now even of the
order of the hadronic mass scale.

The generators of (SU(4), -) are (as direct generalization of the generators of (SU(3), -)
and in natural units, i = 1)

~ 1=
Ta:§)\a, a=1,...,15,
with
0100 0 - 00 1 0 00
. 1000 . i 0 0 0 . 0 -1 0 0
)\1_0000’)\2_0000’)\3—0000’
0000 00 00 0 0 00
0010 00 —i 0 0000
< 0000 < 00 0 0 < 0010
A4_1000’A5_¢000’A6_01007
0000 00 0 0 0000
00 0 0 10 0 0
. 00 —i 0 . 1 01 0 0
A= 0 ’As_ﬁ 00 —20 [~ (5-39)
00 0 0 00 0 0
0001 00 0 —i 0000
5 0000 N 000 0 5 0001
"l oooo0o]> "™ 1000 0 AT 0 00 0 |
1000 i 00 0 0100
000 0 0000 000 0
< 000 —i < 0000 < 000 0
AIZ_0000 ’)\13_0001’/\14_00()—i’
0 i 0 0 0010 00 i 0
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5.6 Charm and (SU (4), -) flavor symmetry

as well as
1 00 O
“ 1 010 O
000 -3

The structure constants of (SU(4), ) can again be computed from Egs. (4.13)) and (4.16));
we leave this as homework exercise.
The group (SU(4),-) has three Cartan generators,

{T37 Tg, T15} 3
and, since it is a semi-simple Lie group, also three Casimir operators,
{éla éQa 03} .

States of (SU(4), -) multiplets are therefore characterized by the eigenvalues of the Casimir
operators and Cartan generators,

1} Cy C3 Ty Ty Ths) (5.41)

Due to historical reasons, however, one classifies states a little bit differently. To this
end we go back one step and consider the group (SU(3),-). One defines the strangeness
operator via the relation

Y=B+S, (5.42)

where Y is the hypercharge operator and B the baryon-number operator. For mesons
one has B = 0 and for baryons B = 1 (anti-baryons B = —1). Quarks carry therefore
B = 1/3 and anti-quarks B = —1/3. The strangeness operator S =Y — B then reads in
fundamental representation (and in natural units)

| 10 0 1 100 00 O
525 01 O —=1 01 0]=100 0
0 0 -2 0 01 00 -1

Here we have used the fact that the baryon number in the fundamental representation
(i.e., for quarks) is B =1/3 and therefore B = 3 1l3. Then we have

1

Sluy = S| 0 |=0,
0

) AL

Sldy = S 1]=0,
0

) AL

Sls) = S| 0 |=-1]s)
1
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5 Unitary symmetries of the strong interaction

Up and down quarks thus carry strangeness S = 0, while strange quarks carry strangeness
S = —1. The minus sign is simply historical convention. The strangeness operator
measures exclusively the number of strange quarks inside a hadronic state. Therefore,
(SU(3), -) flavor states can also be characterized by their strangeness quantum number S
instead of Y, if we also specify their baryon quantum number B,

|Cl CQT3Y> — |Ol OQBTgS) .

For (SU(4), ) one proceeds accordingly. We generalize the relation (5.42)) by introduc-
ing the so-called charm operator C|

Y=B+S5+C, (5.43)
where
. 3. 3 .
C=-B—1/=-T;is . 5.44
4 g 15 (5-44)

In fundamental representation this operator reads

100 0 100 0 0000

. 1 lo100 11010 0 0000

C_Z 0010 2loo1 o0 | 1loooo (5.45)
0001 000 —3 000 1

The charm operator thus measures the number of charm quarks in a given state. Due to

=1|c)

>
>
— o O O

charm quarks carry the charm quantum number C' = +1. (Note the opposite sign as
compared to the strangeness quantum number.)

If one specifies B, instead of Tg und T}5 one can also use S and C' in Eq. (5.41)) in order
to classify (SU(4),-) states,

|Cl CQ Cg T3T8T15> — ’Cl Cg CgBTgSC> .

The Gell-Mann—Nishijima charge formula is still given by Eq. ((5.34)), if we use Eq. (5.43])
for the hypercharge. For the fundamental (SU(4),-) quadruplet all relevant quantum
numbers are listed in Tab. 5.2l

(SU(4), -) flavor multiplets can be represented in the three-dimensional (75 — S — C)
space, e.g., the quadruplet [4] and the anti-quadruplet [4]:
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B[ [S[C]Y [Q]
D EE RS
dll g —5[0]0] 5 |—3
s|ls]0]-1]0[-2] —¢
clsloJol1] 3] 2

Table 5.2: Quantum numbers of the fundamental (SU(4),-) quadruplet.

C

lc>a 1 C

| d> | u>
-1/2 1/2

| s>

In the (75 — S) plane one observes the (SU(3),-) sub-multiplets consisting of up, down,
and strange quark (triplet) or of the corresponding anti-quarks (anti-triplet).

Higher multiplets can again be generated by coupling fundamental quadruplets. We
list the most important coupling rules (without proof):

[4od] = e,
@M e[4 = [4 2020 20].

Accordingly, one finds mesons in (SU(4), -) singlets or 15-plets and baryons in (SU(4),-)
anti-quadruplets as well as three 20—plets. For the pseudoscalar mesons this is exemplified
in the following figure:

85



5 Unitary symmetries of the strong interaction

D=|sc>
S

In the 15—plet one recognizes one octet (blue) at C' = 0. This is the pseudoscalar-meson
octet we have already encountered when discussing the (SU(3),-) flavor symmetry. The
individual states are no longer explicitly labelled. New states are an (SU(3),-) triplet
(green) at C = —1 and an (SU(3),-) anti-triplet (red) at C = 1. The corresponding

states are
D
DO
Dy
Me
.

I(JPC) = L(07F), mps = 1869.5+ 0.4 MeV ,
I(JPC) = 1(07) , mpo = 1864.91 +0.17 MeV ,
I(JPO) =0(0F), mp: =1969.0+ 1.4 MeV
I(JPCY =0(0"), m, =2981.0+ 1.1 MeV
I(JFCY =0(07F), my = 363894 1.3 MeV .

The vector meson corresponding to the (SU(4),-) singlet 7., the so-called J/¥ meson
(mye = 3096.916 £ 0.011 MeV) was the first particle carrying charm which was ex-
perimentally detected, in the year 1974 by Samuel Ting at the Alternating Gradient
Synchrotron (AGS) of Brookhaven National Laboratory (BNL) on Long Island. For this
achievement he received (together with Burton Richter of Stanford Linear Accelerator
Center, SLAC) the Nobel prize 1976.
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6 The Poincaré group

In Chapter [2 we had considered rotations in space. Together with the so-called Lorentz
boosts, i.e., transformations between inertial frames encountered in special relativity,
they form the so-called Lorentz group L (or more precisely, the so-called proper or-
thochronous Lorentz group Ll, since space-reflection and time-reversal transformations
will not be considered). Moreover, we had considered translations in space and time
in Chapter 2 Taking these together with the Lorentz group, we obtain the so-called
Poincaré group P.

6.1 Characterization of the Poincaré group

Let us consider a Poincaré transformation of the space-time position vector,
at — 't = A + a? (6.1)
i.e., the Lorentz transformation
ot — Tt = A" " (6.2)
of the position vector, followed by a space-time translation by the constant 4-vector
at,
o — 't =7+ ot (6.3)
Remark: Of course, one can also first perform the space-time translation,
at — a2t =2t +at (6.4)
and then the Lorentz transformation,
o — P = AP FY = APt 4 AP aY . (6.5)

If we denote A a” = a*, we again obtain Eq. (6.1)).
Two successive Poincaré transformations can therefore be written as follows:

ot — 2" = A+t
= A, (N 2P +a”) +a”
= AF A o+ AP e+ at (6.6)

Two successive Lorentz transformations yield (because of the closure of the Lorentz group)
again a Lorentz transformation, i.e.,

AN =AM €. (6.7)
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6 The Poincaré group

If we denote
a* = A" a” +a* (6.8)

we realize that two successive Poincaré transformations, Eq. , again yield a Poincaré
transformation,
ot — = Al a (6.9)

This shows the closure of the Poincaré group. If we consider the transformation of an
object in an arbitrary representation of the group instead of the transformation of a
4-vector x#, and the corresponding representation of an element of the group, U(A,a) €
D(P), then Eq. reads as follows:

U(A,a)U(A,a) = UAA, Aa+a) = U(A, a) . (6.10)
The identity element of the Poincaré group has the form U(1,0), so that
U(L,0)U(A,a) =U(A,a)U(1,0) =U(A,a) . (6.11)
The inverse element is
U YA a)=UA', —Ata) € D(P) (6.12)
since according to Eq. we have
U NN, a)UN,a) =UN, A a)U(Aa) = UAN A A a— A ta) = U(1,0) . (6.13)
With Eq. we compute on the one hand
UA,a)UA, a)U(A,a) = UA, a)UAN, Aa+a) = UMAA, Aha+Aa+a),  (6.14)
and on the other hand

UA, a)U(N,a)U(A, a) = U(AN, Aa + a)U(A,a) = UAAA, Aha + Aa+a) . (6.15)

Comparison of Eq. (6.14]) with (6.15)) proves the law of associativity for the Poincaré
group. With Eqgs. (6.10), (6.11), (6.12), (6.14), and (6.15) we have proven that the
Poincaré group fulfills the group axioms.

6.2 Generators

The Poincaré group is a Lie group, i.e., each element U(A, a) has a representation as a

linear operator,
N
U(d) = exp (—iZan]) : (6.16)
j=1

cf. Eq. (3.10) (using natural units A = ¢ = 1). How many generators (or parameters,
respectively) are there? Four generators enact translations in the three spatial directions

88



6.2 Generators

and in time. We know them already from the discussion in Chapter [2} they can be
compactly written as a 4-vector:

. o \7
oo — [ 22—
PH =40 _Z(at’ V) , (6.17)
where the right-hand side of the equation corresponds to the representation of Pr as
linear differential operator. On the other hand, the Lorentz group has six generators,
three for rotations around the three spatial axes and three for boosts in each spatial
direction. Thus, the Poincaré group has ten generators.

The four generators of space-time translations we have already encountered.
But what are the six generators of the Lorentz group? We first write these generators
compactly in the form of an antisymmetric Lorentz tensor of rank 2, Jw = — vk, The
relationship to the generators of rotations (which of course have to correspond to the
angular momentum operator) and to that of the boosts will be discussed later. One
readily convinces oneself of the fact that due to the antisymmetry of J#, only six of the
16 possible components are independent. Then we can write Eq. in the form

N

U(w,a) = exp <—% W I + iaup“) . (6.18)

The four parameters of space-time translations are summarized in the constant 4-vector
a*. The choice of sign in front of the translation part corresponds to the convention
used in Chapter [2] The six parameters of Lorentz transformations have been written as
components of a rank-2 tensor w*”. This tensor can also be chosen to be antisymmetric,
wh = —w"" since any possibly existing symmetric part would vanish anyway after com-
plete contraction with the antisymmetric tensor J# | thus does not need to be considered.
The six parameters are on the one hand the three angles for rotations around the z, vy,
and z directions, and on the other hand the three rapidities for boosts along these spatial
directions.

In order to see this, let us look at the explicit form of the Lorentz-transformation matrix.
A spatial rotation, e.g., around the angle ¢ around the z-axis, is enacted by

1 0 0 O
0 cos¢p sing O

5(0,0,0) = 0 —sing cos¢ 0 (6.19)
0 0 0 1
For an infinitesimal angle ¢ < 1 this reads
1 0 00
55(0,0,0) = 8 _1¢ gf 8 =g% + 0 (99" s — 9*'9%5) - (6.20)
0 0 01
A boost, e.g., with rapidity y in z-direction, is enacted by
coshy 0 0 —sinhy
A%5(0,0,x) = 8 (1] (1) 8 (6.21)
—sinhxy 0 O coshy
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For infinitesimal rapidities y < 1 this reads

—X

« 0 o « (e
A%5(0,0,x) = o | =9t x99’y —9™g%s) - (6.22)
1

o O =
OO = O
O = O O

—X

For arbitrary infinitesimal Lorentz transformations, Eqgs. (6.20)) and (6.22]) can be gener-
alized as

Aalg = gaﬂ + waﬁ ; (623)

with the antisymmetric tensor w®; of the parameters of Lorentz transformations.

Let us remark that the representation (6.18]) of an element of the Poincaré group as
linear operator is not yet completely determined. It depends which irreducible repre-
sentation of the group this linear operator is supposed to act on. This then influences
the form of the generators.

6.3 The Poincaré algebra

We now determine the Poincaré algebra fulfilled by the generators J* and P*. To
this end we first consider how the generators behave under Poincaré transformations. An
arbitrary infinitesimal Poincaré transformation can be written as U(1 + w, €), where on
account of Eq. we have written an infinitesimal Lorentz transformation compactly
as A = 1+ w, with the tensor w*” of the infinitesimal parameters of rotations and boosts,
and we have introduced an infinitesimal space-time translation vector e#. We now compute

using Eqgs. (6.10) and (6.12)

UANa)U(l+w,e)U Y (Aa) = UNAIL+w),Ae+a)UAT, ~Ata)
= UMA1+wA™ A1+ w) A a+ Ae + a)
= U1+ AwA™ ' Ae — AwA™ta) . (6.24)

Using Eq. (6.18)) and expanding the left-hand and right-hand sides to leading order in the

infinitesimal parameters,
U(A, a) (1 - %ww,j‘“’ + z'qf’“) U YA, ) (6.25)
_ 1 %wqu(A, Q) UN(A, @) + i U(A, a) PPUY(A, )
= 1- %AW W (A1), T + i (A — Ny (A7 ,a”) P
—1- % (Bap @, 7T - Ny A, 70 P = Ay P, 7 P i e PP

where we have employed the property A=' = g7 'A% g of the Lorentz-transformation ma-
trices and the antisymmetry of w*”. We now relabel the indices p <+ v and p <+ o in the
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last term in parentheses and obtain after subtracting one and multiplying both sides with
2i

U(A, a) <w#,,j‘“’ — 2eﬂp“> U (Aa)=A,,w’ A° (j“’/ +a’P* — a“f’”) —2A,,e" P* .

(6.26)
A further relabelling of indices on the right-hand side (i <> p, v <> 0) leads to

U(A,a) <wle‘”’ — 26“}5“> U YA a) = Ay, wh AV <jpa +a’ PP — a"ﬁ”) —2A,, PP

(6.27)
The parameters w,, and €, can be chosen arbitrarily, so that one can compare their
coefficients on the left- and right-hand side to obtain the transformation behavior of the
generators:

U(A,a) /U™ (A,a) = AMAY (jpwaaﬁﬂ—apﬁff), (6.28)
UA,a)P*U M (Aa) = AMPP. (6.29)

We now consider the infinitesimal form of Eqs. (6.28) and (6.29)), i.e., for A =1+ w
and a = e. To first order in infinitesimal parameters we obtain from Eq. (6.28))

<1 - %wpgjpa + z‘epﬁﬂ) JH (1 + %waﬁjaﬁ - z’eaﬁa) (6.30)
N
= (o ) ot ) (77 P o)
= JW 4 'PH— PVt wp“jp” + wal’j“"
= Jw 4 €, (gPV pro_ g fDV) + Whe (QqupV _ gpl/ju0>
= Jw 4 ¢ (qu pr_ g ]5;/) + %wpa <gUMij — g Jjov _ gpujuo + gauj;w> :

where in the last step we have doubled the last term, accounting for that by an additional
factor of 1/2, relabelled the indices p <> o, and finally used the antisymmetry of w,,.
Comparing the coefficients of w,, and €, in the second and sixth line, we obtain the
commutation relations

[om, 3] =i (g = g — g o g o) (6.31)
[PP, jﬂ”} — (g"’“p” _ g’”’p“> . (6.32)
We perform a completely analogous calculation for Eq. (6.29)):
(1 - %wmﬁ” + zepﬁp) pr (1 + %waﬁjaﬁ - z’eaﬁa)
= Pt S [J7 P i, [P, ]
= (gpu + wp“) pr

~ 1 ~ ~
= P+ Su, (gU“Pp - gp“PU> . (6.33)
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Comparison of coefficients in the second and fourth line leads on the hand again to Eq.
(6.32)) (after a suitable relabelling of indices), and on the other hand to

[ﬁﬂ,ﬁ“} ~0. (6.34)

Equations (6.31)), (6.32), and (6.34) represent the Poincaré algebra. From Egs. (6.32))

and (6.34) follows that there is an (abelian) ideal, thus the Poincaré group is not a
(semi-)simple group. Since the group of space-time translations is not compact, the
Poincaré is also not a compact group.

If we identify

P = H, (6.35)
A, . N N T
J o= (JB g J”) , (6.36)
A . . N T
K = (JOl,JOQ, J03) , (6.37)

where J is the operator of total angular momentum (i.e., the sum of orbital angular

momentum and spin) and K is the boost operator, the Poincaré algebra (6.31)), (6.32)),
and (6.34]) can be brought into the following form:

[ji,jf _ ek ik [JKJ} — iR
[[A(",[A(j_ _ ek jk |:jz’ pg} — ik pk

K4 P = il R H| =P

[j’,]:l _ [pz’ﬁ} —0. (6.38)

We leave the proof as homework exercise. The first commutation relation is, of course,
obvious, since it represents the angular-momentum algebra. This holds for orbital angular
momentum as well as for spin, and thus also for total angular momentum.

6.4 Casimir operators

We define the so-called Pauli-Lubanski pseudovector

~

1 A A
W, = 5 €pvpod PP . (6.39)

Here, €,,,, is the completely antisymmetric tensor of rank 4, with €”?* = +1. It fulfills
the contraction formula

ijaﬁ Curpo = gyr (gaagﬁp - gapgﬁa) _'_ng(gOng,Ba - gaagﬁr> +gya(gapgﬁ'r - ga'rg/j/) : (640)
A further contraction over the second index yields
¢ e = A9%9°, — 9%9°) +9%,9% — 9°9°, + 9%,9°5 — 9°,9°,
= 2(ga0'gﬁp - gapgﬁa) : (64]‘)
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The Pauli-Lubanski pseudovector is orthogonal to the 4-momentum vector. Namely,
using Eq. (6.34]), we obtain
7D 1 TUp DO T 1 TUp DI DO 1 TUp DO T
wW,P* = 56#1,ng PP°PH = §eu,,ng PPHPT = §EUVWJ PP p*
1 A A A A A
= 3 €uvpo PP P! = —W,P* =0, (6.42)

where in the last step of the first line we relabelled indices o <+ p and to the second line
we have used the antisymmetry of the tensor €,, ..

Proposition: The following two operators are the two Casimir operators of the
Poincaré group:

PP ppr und W2 TN (6.43)
Remark: According to Egs. , , and the Poincaré algebra contains an
abelian ideal, consisting of the generators of space-time translations. Thus, it is not
a semi-simple group, therefore Racah’s theorem does not apply to draw a conclusion
from the rank of the group about the number of Casimir operators. However, it is in
fact true that the two operators given in Eq. are the only Casimir operators of the
Poincaré group.

Proof: We first show that P? commutes with all generators of the group. Using the

Poincaré algebra , , and we obtain
P3P = g [PrPr, P7) = g { P [P ] 4 [P e ] P} <0,
(P2 = g [P ] = g { P[P e [P ] P
= G {]5" (gl’pﬁ’” - gwpp> + (g“pf:’” — g‘“’fjp> ]5”}
= (Pﬂﬁ" — Popr 4 popr - PPPG) ~0. (6.44)

Now we show that W2 commutes with all generators of the group. First, on account of
the commutation relations (6.32)) and ((6.34)) we conclude that

Tra T 1 e TUp DO D
[W ,P“] = 5 [J op ,P“]
1 T 1.
= S { I P P+ [, ] P
i a VD Hr\ po
= _56 vpo <gﬂ PP_gMPP )P
i
5 (
where in the step to the last line we have relabelled the indices p <> v in the first term
and then in the next-to-last step used the antisymmetry of €**¥?, The final result is zero,
because €**? is antisymmetric under v <+ o, while P, P, is symmetric.
Furthermore, we require

EOZ;J,I/U — EaV,LLO') pypo' - _?:ECM}LVUprO_ = 0 ) <645>

[Wﬂ, jﬂ”} —i (ga“W“ - g"‘”W“) . (6.46)
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The proof of this relation utilizes the definition of a new tensor,

1 A
Juw = =€upo . (6.47)

2

Contracting from the left with €*# and multiplying by —1/2 we obtain using Eq. (| -
and the antisymmetry of Jeo

1 vT 1 v Tpo 1 Ipoc — T
- éeaﬁu ‘]HV - _Zeaﬁu GHVPUJP = 5 (gapgﬁo - gaagﬂp) JP7 = JQB : (648>
In order to prove Eq. (6.46]), we need the following commutation relation:
- ~ 1 A A
o v _ po af} v
] = e
_ %epa y (Qﬂu Jov _ gon jBv _ gow jub o b juoe>
_ % <€pao¢ujau . epauﬂjﬁu o Epauﬂj#ﬁ + Epaowjua>
N R (649

Here we have used Eq. - ) for the second step and relabelled the indices in the second
and third term (8 — «) for the fourth step. Furthermore, we exploited the antisymmetry
of €qppp and Juv Inserting Eq. , we obtain using Eq. (6.40)

[jpcr7 jw/} — % (Epauagavm _ Epwagauﬁv) jﬁw
= _% [g”” (gmgaﬁ _ gpﬁgm) + guﬁ (gpvgm _ gmch) + g (gpﬂgw _ gpl/gaﬁ)

—(p 4 V)] Js,
= —4 ( pv Jho _ pujva _ gcwjup + gcwjl/p>
= i (g — g — g e g g ) (6.50)
where to the next-to-last step we have used the antisymmetry of J 17 and to the last step
reordered the terms somewhat (again using the antisymmetry of J#). Comparison with
Eq. (6.31]) reveals that J#” fulfulls the same commutation relation with J* as J*° with

itself. )
An important property of the tensor J*” is

1 P 1 N
P"J, = §EWWP"J”" = §e“payP”Jp"
1 A A A
=§wW@WMJVJﬂ}
= W + eupg,, <g””]5" — g”"p"> = VVM . (6.51)

Here we have made use of the definition (6.39) of the Pauli-Lubanski pseudovector, of the
commutation relation (6.32), as well as of the antisymmetry of €,

94



6.4 Casimir operators

Using the relations and , as well as Eq. , we prove Eq. :
e g ] = [Bped ] = By [Jo2, ] + gy, [P, ] o
— Zf’g <gﬁujow _ gaujﬂv _ gowjuﬂ + gﬁl/j/wz> +igs, (QPM[SV _ gpvpu> Jos
= (P g g P g P o o)
= i(ga”W” —go‘”W“) . q.ed. (6.52)

Now it is no longer difficult to show that W2 is a Casimir operator. On the one hand
we have on account of Eq. (6.45])

(W2, Pr] = g [, 7] = g, {3 [V, Po) 4 [ i) =0, (6.59)
and on the other hand we compute with the help of Eq.
W27 = g [, e | = g {i W] [, e e |
= 9 {Wy <g””W" — g”"W”) + (g“pW” — g“"W”) VAVM}
= (VT/PVT/" ~WoW? + WoW? — W"W”) =0, qed (6.54)

Finally, we give an explicit representation of W2 as function of the generators of the
Poincaré group:

N P | A A
W2 = WHW, = 1€, 7% o Doy Py

1 N A A A
= 3 (977 (9°79" — g*°9") + 9" (9°" 9" — 9*79"") + 4" (9°*9"" — 9°"9"")] JvaPsJ:pPs
1 ~ o~ ~ A~ ~ A~ A~ A A~ A ~ o~ A~ A
::AWW—WW+WW—WF+WF—FWWM}
1/ o N | N
:_dﬂwef@uﬁwj%g:_Gﬂw+ﬂw>%g, (6.55)

where we have frequently used the antisymmetry of Jr . Now we emply the commutation

relation (6.32)) and obtain

A A ~ A~

2 = (g 0 ) [t i (e = 00, )| P
_ _%jij P §J (B B = 77 0o 7By — 4107 B, B, + i B,
_ _%jwjmzw +Je g BT (6.56)
where we utilized Eq. and the antisymmetry of Jrv.

What are the eigenvalues of W?2? Choosing eigenstates of the momentum operator pr,
we may replace the momentum operator in Eq. 1} by its eigenvalue, P* = P*. Since
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W2 is Lorentz-invariant, we may evaluate it in the rest frame of the respective particle,
P* = (m,0)T. Then we obviously have
572 m® s, - 2 30 7 m? (s 50p 24j § 500 7 2 7
W = —TJTpJTp+m JP Jp() = —7 <JT JTO + J pJOp + JUJij - 2Jp JpO) =—-m J )
) X R (6.57)
where we have replaced J¥ = €% J* cf. Eq. (6.36]). Here, J* is the kth component of the
total angular momentum operator, i.e., the sum of spin and orbital angular momentum.
In the rest frame of the particle, the latter vanishes, and J* = S*. The eigenvalues W?
of the Casimir operators are therefore

W? =-m?S(S+1), (6.58)

where S is the spin of the particle. For an explicit discussion for particles with spin zero,
one, 3/2, and two, see Ref. [10].
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