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1 Summary Lecture 1

Dick Feynman told me:“The electron does anything it likes . . . It just goes in any direc-
tion at any speed . . . however it likes, and then you add up the amplitude and it gives you
the wave-function.” I said to him: “You’re crazy.” But he wasn’t.
Freeman Dyson

The method of path integrals presents an alternative way to describe quantum-
mechanical and quantum field-theoretical systems. The underlying idea is that a quantum-
mechanical particle may not only take the classical trajectory (which extremizes the ac-
tion) from point ~qa to point ~qb, but also all other possible trajectories, properly weighted
with a complex phase. The quantum-mechanical transition amplitude is then given as
“path integral”, i.e., the coherent superposition of all these phase factors.

After a short reminder on the dynamics of classical and quantum-mechanical parti-
cles given in Chap. 2, in Chap. 3 we will derive the path-integral representation of the
quantum-mechanical transition amplitude. We will then explain the connection between
the transition amplitude and the Green’s function, or propagator, of the Schrödinger
equation. A discussion of external gauge fields, which couple to the quantum-mechanical
particle, will reveal some peculiar aspects of the path integral. In particular, it will be-
come clear that the latter consists mostly of trajectories which resemble Brownian motion
and require a careful treatment when evaluating certain quantities on these trajectories.

In Chap. 4 a few applications will be discussed. We will explicitly compute the propaga-
tor of the free Schrödinger equation, and with this in hand, discuss the famous double-slit
experiment and the resulting interference pattern, which is a result of the wave nature
of the quantum-mechanical particle. In general, the propagator cannot be computed ex-
actly, but in many cases the semiclassical approximation for the propagator has proven
useful, for which an analytic expression can be derived. This expression is exact for poten-
tial energies which are quadratic in the particle coordinate, e.g., the harmonic oscillator,
which is discussed subsequently. The chapter closes with a discussion of the anharmonic
oscillator.

Chapter 5 gives an introduction to perturbation theory. First, the Born series for
the propagator is presented, followed by a discussion of the scattering matrix and the
Feynman-diagram technique. Finally, the generating functional for n–point correlation
functions is derived, which is the central object in Quantum Field Theory.

In order to proceed to Quantum Field Theory, Chap. 6 gives a brief discussion on how
to make the transition from a classical system of N particles to classical field theory, i.e.,
a system where N →∞. The central object is the Lagrange density or Lagrangian, which
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1 Summary

defines any given theory. A variational principle allows to derive the classical equation of
motion for fields.

The Lagrangian is also the central object for Quantum Field Theory in the functional-
integral formulation, as will be explained in Chap. 7. After a brief discussion of non-
interacting Klein–Gordon theory as the simplest conceivable field theory, the generating
functional for n–point correlation function of this theory is derived in the form of a
functional integral, and then explicitly computed. Finally, λφ4 as an example of an
interacting field theory is presented and it is explained how to apply perturbation theory
to compute the generating functional. The final Chapter 8 gives a brief discussion how the
partition function of Statistical Field Theory can be formulated in terms of a functional
integral.

2



2 Dynamics of Particles

2.1 Dynamics of classical particles

2.1.1 Hamilton’s principle

From Classical Mechanics we know that, in classical physics, the dynamics of a particle
can be described using Hamilton’s action principle,

δS[~q(t)] = 0 , (2.1)

where

S[~q(t)] =

∫ tb

ta

dt L(~q, ~̇q, t) (2.2)

is the action along the trajectory of a particle, which is traversed during the time interval
[ta, tb], and L(~q, ~̇q, t) represents the Lagrange function of the system. Here ~q denotes the
vector of the (generalized) coordinates of the particle and ~̇q is the corresponding velocity
vector.

Hamilton’s principle (2.1) tells us that the actually traversed trajectory corresponds to
an extremum of the action (2.2). In order to determine the latter, one compares the
action for a competing set of trajectories in coordinate space, cf. Fig. 2.1. The competing
set consists of all trajectories with fixed initial and final coordinates ~q(ta) ≡ ~qa,
~q(tb) ≡ ~qb. The classical trajectory is the one which makes the action stationary
(extremizes the action).

According to the laws of variational calculus, Eq. (2.1) leads to the Euler–Lagrange
equations

0 =
d

dt

∂L(~q, ~̇q, t)

∂q̇i
− ∂L(~q, ~̇q, t)

∂qi
, i = x, y, z , (2.3)

which are completely equivalent to Newton’s equations of motion. If the initial conditions

~qa ≡ ~q(ta) , ~̇qa ≡ ~̇q(ta) ,

are known, one can determine the position ~q(tb) and the velocity ~̇q(tb) of the particle at
any later time tb by solving the Euler–Lagrange equations. This uniqely determines the
trajectory ~q(t) which the particle takes and for which one computes the action (2.2).

2.1.2 Modified Hamilton’s principle

The modified Hamilton’s principle is a formulation which constitutes an alternative
to Hamilton’s principle,

0 = δS[~q(t), ~p(t)] = δ

∫ tb

ta

dt
[
~p · ~̇q −H(~q, ~p, t)

]
, (2.4)
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2 Dynamics of Particles
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Figure 2.1: Competing set of trajectories in the projection of coordinate space onto the
(qx, qy) plane.

Here one replaces the Lagrange function in Eq. (2.2) by its Legendre transform,

L(~q, ~̇q, t) = ~p · ~̇q −H(~q, ~p, t) , (2.5)

with the Hamilton function H(~q, ~p, t). In contrast to Hamilton’s principle one now
considers a competing set of trajectories in phase space, cf. Fig. 2.2. Note that the
coordinates of the initial and final point are fixed, ~q(ta) ≡ ~qa, ~q(tb) ≡ ~qb, but the values
~p(ta), ~p(tb) of the momentum can vary freely.

The classical trajectory is that which fulfills the canonical equations

q̇i =
∂H(~q, ~p, t)

∂pi
, ṗi = −∂H(~q, ~p, t)

∂qi
, i = x, y, z , (2.6)

which are completely equivalent to the Euler–Lagrange equations (2.3).

2.2 Dynamics of quantum-mechanical particles

According to Heisenberg’s uncertainty principle, in quantum mechanics one cannot si-
multaneously determine position and velocity (or momentum) of a particle. The central
quantity is now the quantum-mechanical overlap

〈~qb, tb|~qa, ta〉 , (2.7)

which corresponds to the amplitude for a transition from state |~qa, ta〉 at time ta to a
state |~qb, tb〉 at time tb. The modulus square of the transition amplitude,

|〈~qb, tb|~qa, ta〉|2 (2.8)
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2.2 Dynamics of quantum-mechanical particles
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Figure 2.2: Competing set of trajectories in the projection of phase space onto the three-
dimensional (qx, qy, pz) subspace.

determines the probability for such a transition. In other words, it is the probability to
find the particle at time tb at position ~qb, if it was located at position ~qa at time ta.

We now want to write the amplitude (2.7) in a somewhat different form. The time-
evolution operator is

Û(t, t0) = T̂ exp

[
− i
~

∫ t

t0

dt′ Ĥ(t′)

]
. (2.9)

Let the Schrödinger state |ψ(t)〉S at time t0 be identical with the corresponding Heisenberg
state |ψ〉H ,

|ψ(t0)〉S = |ψ〉H .

Using the time-evolution operator (2.9) the time evolution of this state reads

|ψ(t)〉S = Û(t, t0) |ψ(t0)〉S ≡ Û(t, t0) |ψ〉H .

The corresponding wave function follows by projection onto a coordinate-space state,

ψ(~q, t) ≡ 〈~q|ψ(t)〉S = 〈~q| Û(t, t0) |ψ〉H ≡ 〈~q, t|ψ〉H ,

where we introduced the time-dependent coordinate-space state

|~q, t〉 ≡ Û(t0, t) |~q〉 , (2.10)

noting that Û †(t, t0) = Û(t0, t). With this we can now write the amplitude (2.7) as follows:

〈~qb, tb|~qa, ta〉 = 〈~qb| Û †(t0, tb) Û(t0, ta) |~qa〉 = 〈~qb| Û(tb, t0) Û(t0, ta) |~qa〉
≡ 〈~qb| Û(tb, ta) |~qa〉 , (2.11)
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2 Dynamics of Particles

where we used the convolution property

Û(tb, t0) Û(t0, ta) ≡ Û(tb, ta) (2.12)

of the time-evolution operator. Equation (2.11) is the starting point for deriving the so-
called path-integral formula of the quantum-mechanical transition amplitude (2.7), as
will be explained in the next chapter.
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3 Path Integrals

3.1 Path integrals in phase space

We decompose the time interval [ta, tb] into N pieces of equal length τ , tb − ta = N τ , so
that

tn = ta + nτ , n = 0, . . . , N , t0 = ta , tN = tb .

Using the convolution property (2.12) we write

Û(tb, ta) = Û(tb, tN−1) Û(tN−1, tN−2) · · · Û(t2, t1) Û(t1, ta) ≡
N∏
n=1

Û(tn, tn−1) , (3.1)

so that Eq. (2.11) assumes the form

〈~qb, tb|~qa, ta〉 = 〈~qb|
N∏
n=1

Û(tn, tn−1) |~qa〉 . (3.2)

We now insert to the left of each time-evolution operator a complete set of coordinate-
space eigenstates and to the right a complete set of momentum eigenstates. In order
to distinguish the individual sets, we label them with an index corresponding to the
respective time step tn,

1 =

∫
d3~qn |~qn〉〈~qn| , 1 =

∫
d3~pn |~pn〉〈~pn| , n = 1, . . . , N . (3.3)

Then it follows from Eq. (3.2) that

〈~qb, tb|~qa, ta〉 =

∫ [ N∏
n=1

d3~qn d3~pn

]
〈~qb|~qN〉 〈~qN | Û(tN , tN−1) |~pN〉 〈~pN |~qN−1〉 (3.4)

× 〈~qN−1| Û(tN−1, tN−2) |~pN−1〉 〈~pN−1|~qN−2〉 · · · 〈~q1| Û(t1, ta) |~p1〉 〈~p1|~qa〉 .

For N → ∞ the time intervals τ become infinitesimally small, τ → 0, so that one can
approximate the integral in the exponent of the time-evolution operator according to the
mean-value theorem of integral calculus,∫ tn

tn−1

dt′ Ĥ(t′) = τ Ĥ (tn−1 + λ τ) +O(τ 2) , λ ∈ [0, 1] .

In this limit, one can also expand the exponential to leading order in τ

Û(tn, tn−1) = T̂ exp

[
− i
~

∫ tn

tn−1

dt′ Ĥ(t′)

]
= 1 − i τ

~
Ĥ (tn−1 + λ τ) +O(τ 2) . (3.5)
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3 Path Integrals

The time-ordering operator plays no role if we terminate the expansion of the exponential
function after the linear term in τ . The matrix elements of the time-evolution operator
appearing in Eq. (3.4) then assume the following form:

〈~qn| Û(tn, tn−1) |~pn〉 = 〈~qn|~pn〉 −
i τ

~
〈~qn| Ĥ (tn−1 + λ τ) |~pn〉+O(τ 2) . (3.6)

Usually the Hamilton operator is a function of the momentum and the position operator,

Ĥ(t) ≡ H(~̂q, ~̂p, t) .

The matrix element of the Hamilton operator between momentum and coordinate-space
eigenstates is then simply the expectation value of the Hamilton operator,

〈~qn| Ĥ (tn−1 + λ τ) |~pn〉 ≡ H(~qn, ~pn, tn−1 + λ τ) 〈~qn|~pn〉 . (3.7)

Putting all this together we obtain for Eq. (3.6)

〈~qn| Û(tn, tn−1) |~pn〉 =

[
1− i τ

~
H(~qn, ~pn, tn−1 + λ τ) +O(τ 2)

]
〈~qn|~pn〉

= exp

(
−i τ

~
Hn

)
〈~qn|~pn〉 , (3.8)

where we reversed the expansion of the exponential function in the last step and abbre-
viated

Hn ≡ H(~qn, ~pn, tn−1 + λ τ) .

Note that the exponent in Eq. (3.8) is just a function and no longer operator-valued.
As is known from the lectures on Quantum Mechanics, the quantum-mechanical overlap

of momentum and coordinate-space eigenstates are plane waves,

〈~qn|~pm〉 =
1

√
2π~3 exp

(
i

~
~qn · ~pm

)
. (3.9)

If we insert Eqs. (3.8) and (3.9) into Eq. (3.4), we obtain with

〈~qb|~qN〉 = δ(3)(~qb − ~qN)

the expression

〈~qb, tb|~qa, ta〉 =

∫ N∏
n=1

d3~qn d3~pn
(2π~)3

δ(3)(~qb − ~qN) exp

{
i

~
[(~qN − ~qN−1) · ~pN − τ HN

+ (~qN−1 − ~qN−2) · ~pN−1 − τ HN−1 + · · · + (~q1 − ~qa) · ~p1 − τ H1]
}

=

∫ N−1∏
n=1

d3~qn

N∏
n=1

d3~pn
(2π~)3

exp

[
i

~

N∑
n=1

τ

(
~qn − ~qn−1

τ
· ~pn −Hn

)]
, (3.10)
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3.2 Path integrals in coordinate space

where we have set ~q0 ≡ ~qa and ~qN ≡ ~qb. In the limit N →∞, τ → 0 we have

N∑
n=1

τ −→
∫ tb

ta

dt ,
~qn − ~qn−1

τ
−→ d~q

dt
≡ ~̇q , (3.11)

so that

〈~qb, tb|~qa, ta〉 −→
∫ ~q(tb)=~qb

~q(ta)=~qa

D~qD~p exp

{
i

~

∫ tb

ta

dt
[
~p · ~̇q −H(~q, ~p, t)

]}
. (3.12)

Here we introduced the symbolic notation

D~q ≡ lim
N→∞

N−1∏
n=1

d3~q , D~p ≡ lim
N→∞

N∏
n=1

d3~p

(2π~)3
. (3.13)

Equation (3.12) is the so-called path-integral or functional-integral representation
of the quantum-mechanical transition amplitude. It states that every possible trajectory
(~q(t), ~p(t)) in phase space, which leads from position ~qa = ~q(ta) to position ~qb = ~q(tb)
for arbitrary values of the momenta ~pa = ~p(ta) and ~pb = ~p(tb), is weighted with a phase
factor

exp

{
i

~

∫ tb

ta

dt
[
~p · ~̇q −H(~q, ~p, t)

]}
, (3.14)

and then one sums (integrates) over all trajectories. This situation corresponds to that
which we already encountered in the discussion of the modified Hamilton’s principle
in Sec. 2.1.2. According to Eq. (2.4), the classical trajectory corresponds to that for
which the argument of the phase factor (3.14) becomes stationary (or is extremized).
However, in quantum mechanics also all other possible trajectories are allowed.

3.2 Path integrals in coordinate space

If the Hamilton operator is a quadratic function of the momentum operator,

Ĥ(t) =
~̂p 2

2m
+ V (~̂q, t) , (3.15)

the (infinitely many) momentum integrations in Eq. (3.12) can be performed exactly, since
they are just (shifted) Gaussian integrals. In order to see this, we consider Eq. (3.10) and
insert Eq. (3.15)

Hn = H(~qn, ~pn, tn−1 + λ τ) =
~p 2
n

2m
+ V (~qn, tn−1 + λ τ) .

Completing the square leads to

~p 2
n

2m
− ~qn − ~qn−1

τ
· ~pn =

1

2m

(
~pn −m

~qn − ~qn−1

τ

)2

− m

2

(
~qn − ~qn−1

τ

)2

. (3.16)
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3 Path Integrals

If we substitute the integration variable

~pn −→ ~p ′n = ~pn −m
~qn − ~qn−1

τ
,

we realize that all momentum integrals decouple and, since they are Gaussian integrals,
can be immediately computed with the help of the well-known formula∫ ∞

−∞
dx e−ax

2

=

√
π

a
, a > 0 , (3.17)

resulting in∫
d3~p ′n

(2π~)3
exp

(
−i τ

~
~p ′ 2n
2m

)
=

[∫ ∞
−∞

dp

2π~
exp

(
− i τ

2m~
p2

)]3

=

√
m

2πiτ~

3

. (3.18)

Here a remark is in order. Because of the factor i in the exponent this is actually not
a true Gaussian integral in the sense of Eq. (3.17). However, with the help of Euler’s
formula, some results from integral tables [5], as well as cos π

4
= sin π

4
= 1/

√
2 we obtain

the same result as in Eq. (3.17):∫ ∞
−∞

dx e−iax
2

=

∫ ∞
−∞

dx cos(ax2)− i
∫ ∞
−∞

dx sin(ax2)

=

√
π

2a
(1− i) =

√
π

a

(
cos

π

4
− i sin

π

4

)
=

√
π

a
e−iπ/4 =

√
π

ia
. (3.19)

With the remaining term from completing the square, cf. Eq. (3.16), we obtain for Eq.
(3.10)

〈~qb, tb|~qa, ta〉 =

√
m

2πiτ~

3N ∫ N−1∏
n=1

d3~qn

× exp

{
i

~

N∑
n=1

τ

[
m

2

(
~qn − ~qn−1

τ

)2

− V (~qn, tn−1 + λ τ)

]}
. (3.20)

In the limit N →∞, τ → 0 this becomes with the help of Eq. (3.11)

〈~qb, tb|~qa, ta〉 −→ N
∫ ~q(tb)=~qb

~q(ta)=~qa

D~q exp

{
i

~

∫ tb

ta

dt
[m

2
~̇q 2 − V (~q, t)

]}
≡ N

∫ ~q(tb)=~qb

~q(ta)=~qa

D~q exp

[
i

~

∫ tb

ta

dt L(~q, ~̇q, t)

]
≡ N

∫ ~q(tb)=~qb

~q(ta)=~qa

D~q exp

{
i

~
S[~q(t)]

}
, (3.21)

where we used the Lagrange function

L(~q, ~̇q, t) =
m

2
~̇q 2 − V (~q, t) (3.22)

10



3.2 Path integrals in coordinate space

and the definition (2.2) of the action. The normalization constant

N = lim
N →∞
τ → 0

√
m

2πiτ~

3N

is in principle not well defined, but this does matter since we can always renormalize
the transition amplitude by multiplying with a constant phase factor. Equation (3.21)
is the path-integral representation of the quantum-mechanical transition amplitude
in coordinate space. It tells us that we must weigh every trajectory ~q(t) with the
phase factor eiS[~q(t)]/~ and then sum (integrate) over all possible trajectories in coordinate
space. The situation is illustrated in Fig. 3.1. All possible trajectories connecting the fixed
initial point ~qa at time ta with the fixed final point ~qb at time tb are allowed. According to
Hamilton’s principle (2.1), the classical trajectory corresponds to that which makes the
action stationary (or extremizes it). However, quantum mechanically also all other
possible trajectories are allowed.

b

t

t

ta

b

q q
q

a

Figure 3.1: Visualization of the path integral in the space-time diagram.

Of central importance in weighing the individual trajectories is the question how large
the action on a given trajectory is compared to Planck’s quantum of action ~. In the
limit ~ → 0 the ratio S[~q(t)]/~ becomes arbitrarily large. The phase factors on trajec-
tories away from the classical trajectory, where S[~q(t)] becomes stationary (and usually
assumes a minimum), can thus assume arbitrary (complex) values (of modulus one). The
contributions of these trajectories in the path integral (3.21) mutually cancel. In contrast,
in the vicinity of the classical trajectory the phase factors all assume similar values due to
the stationarity of the action. Thus, only contributions from trajectories near the classical
one “survive”. Therefore, the limit ~→ 0 corresponds to the classical limit.
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3 Path Integrals

3.3 Transition amplitude and Green’s function

Let us consider the free time-dependent Schrödinger equation,

0 =

(
i~

∂

∂t
− Ĥ0

)
ψ(~q, t) , (3.23)

where

Ĥ0 ≡ −
~2

2m
∆q (3.24)

is the free Hamilton operator. This is a homogeneous wave equation, which can be
solved by Fourier decomposition,

ψ(~q, t) =
1

(2π)4

∫
dω d3~k ψ̃(ω,~k) e−i(ωt−

~k·~q) . (3.25)

If we insert this into the Schrödinger equation (3.23), we obtain

0 =
1

(2π)4

∫
dω d3~k

(
~ω − ~2~k 2

2m

)
ψ̃(ω,~k) e−i(ωt−

~k·~q) .

Since plane waves constitute a complete and orthogonal function system, this can only
vanish if the term in parentheses vanishes, i.e., if the dispersion relation

~ω(~k) =
~2~k 2

2m
(3.26)

holds. We take this into account in the Fourier decomposition (3.25) by making the
Ansatz

ψ̃(ω,~k) = ψ̃(~k) δ(ω − ω(~k)) (3.27)

for the Fourier coefficients. We obtain

ψ(~q, t) =
1

(2π)4

∫
dω d3~k ψ̃(~k) δ(ω − ω(~k)) e−i(ωt−

~k·~q) =
1

(2π)4

∫
d3~k ψ̃(~k) e−i(ω(~k)t−~k·~q) .

(3.28)

The coefficients ψ̃(~k) can be determined from the initial conditions,

ψ(~q, 0) =
1

(2π)4

∫
d3~k ψ̃(~k) ei

~k·~q , (3.29)

i.e., after Fourier transformation∫
d3~q e−i~p·~q ψ(~q, 0) =

1

(2π)4

∫
d3~k ψ̃(~k)

∫
d3~q ei(

~k−~p)·~q

=
1

(2π)4

∫
d3~k ψ̃(~k) (2π)3δ(3)(~k − ~p)

=
1

2π
ψ̃(~p) ,

12



3.3 Transition amplitude and Green’s function

or

ψ̃(~k) = 2π

∫
d3~q e−i

~k·~q ψ(~q, 0) . (3.30)

If we insert this into Eq. (3.28), we obtain

ψ(~q, t) =
1

(2π)3

∫
d3~k

∫
d3~r e−iω(~k)t+i~k·(~q−~r) ψ(~r, 0) . (3.31)

We define the function

G(~q, t;~r, 0) ≡ 1

(2π)3

∫
d3~k e−iω(~k)t+i~k·(~q−~r) . (3.32)

Then, Eq. (3.31) can be written as

ψ(~q, t) =

∫
d3~r G(~q, t;~r, 0)ψ(~r, 0) . (3.33)

The physical interpretation of this equation is that the initial condition ψ(~r, 0) is “prop-
agated” to the time t and position ~q via the function G(~q, t;~r, 0). One should note that
one has to integrate over all ~r at initial time t = 0. A graphical visualization is shown in
Fig. 3.2.

r

t

t

0

r q

Figure 3.2: Propagation of the initial condition ψ(~r, 0) at time t = 0 and all positions ~r
with the help of the propagator G(~q, t;~r, 0).

This is very similar to the discussion of wave propagation in Classical Electrodynamics.
For this reason, G(~q, t;~r, 0) is also called propagator. This function is actually a Green’s
function, because if we act with the free Schrödinger operator

i~
∂

∂t
− Ĥ0

13



3 Path Integrals

onto the result (3.33), we obtain(
i~

∂

∂t
− Ĥ0

)
ψ(~q, t) =

∫
d3~r

(
i~

∂

∂t
− Ĥ0

)
G(~q, t;~r, 0)ψ(~r, 0) .

Since ψ(~q, t) is supposed to be a solution of the free Schrödinger equation (3.23) for all
times t > 0, the right-hand side has to vanish. This is fulfilled if(

i~
∂

∂t
− Ĥ0

)
G(~q, t;~r, 0) = δ(t) δ(3)(~q − ~r) , (3.34)

since then (
i~

∂

∂t
− Ĥ0

)
ψ(~q, t) = δ(t)ψ(~q, 0) = 0 ∀ t > 0 .

Equation (3.34) is just the defining equation for the Green’s function of the Schrödinger
equation.

In Eq. (3.33) we can relabel coordinates and times,

ψ(~qb, tb) =

∫
d3~qaG(~qb, tb; ~qa, ta)ψ(~qa, ta) . (3.35)

We now show that the transition amplitude (2.7) is identical to the Green’s function
(3.32) of the Schrödinger equation. To this end, we relate the wave function at position
~qb and time tb to the wave function at position Ort ~qa and time ta by inserting a complete
set of states,

1 =

∫
d3~qa |~qa, ta〉 〈~qa, ta| , (3.36)

to obtain

ψ(~qb, tb) = 〈~qb, tb|ψ〉H =

∫
d3~qa 〈~qb, tb|~qa, ta〉 〈~qa, ta|ψ〉H =

∫
d3~qa 〈~qb, tb|~qa, ta〉ψ(~qa, ta) .

(3.37)
The comparison with Eq. (3.35) yields

G(~qb, tb; ~qa, ta) ≡ 〈~qb, tb|~qa, ta〉 , q.e.d. (3.38)

The transition amplitude is thus nothing but the propagator or the Green’s function
of the Schrödinger equation. In Sec. 4.1, we will also prove this by an explicit calculation
for the free case, V (~q, t) = 0.

3.4 Gauge fields

Lecture 2

Let us consider a particle in an electromagnetic field. As is well-known from the lectures
on Classical Electrodynamics, the electric and magnetic fields can be written as

~E(~q, t) = −~∇ϕ(~q, t)− ∂t ~A(~q, t) , (3.39)

~B(~q, t) = ~∇× ~A(~q, t) , (3.40)

14



3.4 Gauge fields

where ϕ(~q, t) is the so-called “scalar” potential and ~A(~q, t) is the vector potential. A
non-vanishing scalar potential is in principle already included in our previous discussion,
as in this case the potential energy is simply

V (~q, t) ≡ qϕ(~q, t) , (3.41)

where q is the electric charge of the particle. However, a non-vanishing vector potential
~A requires changes to the previous discussion. As is well-known from the lectures on
Classical Mechanics, in this case the Hamilton function reads

H(~q, ~p, t) =
1

2m

[
~p− q ~A(~q, t)

]2

+ V (~q, t) . (3.42)

How does this change the path-integral representation (3.20) of the transition amplitude?
As one can readily convince oneself, the discussion is unaffected until Eq. (3.10). The
modifications occur when integrating out the momenta. Completing the square, cf. Eq.
(3.16), now reads

1

2m

[
~pn − q ~A(~qn, t̄n)

]2

− ~qn − ~qn−1

τ
· ~pn

=
1

2m

[
~pn − q ~A(~qn, t̄n)

]2

− ~qn − ~qn−1

τ
·
[
~pn − q ~A(~qn, t̄n)

]
− q ~A(~qn, t̄n) · ~qn − ~qn−1

τ

=
1

2m

[
~pn − q ~A(~qn, t̄n)−m ~qn − ~qn−1

τ

]2

− m

2

(
~qn − ~qn−1

τ

)2

− q ~A(~qn, t̄n) · ~qn − ~qn−1

τ
, (3.43)

where, for the sake of brevity, we have denoted t̄n ≡ tn−1+λτ . The momentum integration
can now be performed as before, but the substitution of the integration variable reads

~pn −→ ~p ′n = ~pn − q ~A(~qn, t̄n)−m ~qn − ~qn−1

τ
.

Finally, instead of Eq. (3.20) we arrive at

〈~qb, tb|~qa, ta〉 =

√
m

2πiτ~

3N ∫ N−1∏
n=1

d3~qn

× exp

{
i

~

N∑
n=1

τ

[
m

2

(
~qn − ~qn−1

τ

)2

− V (~qn, t̄n) + q ~A(~qn, t̄n) · ~qn − ~qn−1

τ

]}
. (3.44)

In the limit N →∞, τ → 0, the continuous version of this equation reads

〈~qb, tb|~qa, ta〉 −→ N
∫ ~q(tb)=~qb

~q(ta)=~qa

D~q exp

{
i

~

∫ tb

ta

dt
[m

2
~̇q 2 − V (~q, t) + q ~A(~q, t) · ~̇q

]}
.

(3.45)
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Indeed, the argument under the integral in the exponent is the Lagrange function of a
charged particle in the presence of electromagnetic fields, well-known from the lectures
on Classical Mechanics,

L(~̇q, ~q, t) =
m

2
~̇q 2 − V (~q, t) + q ~A(~q, t) · ~̇q . (3.46)

Everything seems to be as expected, however, there is a mistake hiding in the discretized
version (3.44) of the path integral. This goes back to an ambiguity in evaluating the
expectation value (3.6). The attentive reader will have noticed that this expectation value
arose from inserting complete sets of position and momentum states (3.3) between the
various factors of U(tn, tn−1) in Eq. (3.2), leading to Eq. (3.4). However, before inserting
the momentum states, we could have evaluated the expectation value

〈~qn| Û(tn, tn−1) |~qn−1〉

This would have lead to an ambiguity as to whether replace the position operator ~̂q
contained in H(~̂p, ~̂q, t) with the eigenvalue ~qn or ~qn−1. Instead of Eq. (3.6) we could have
taken the “democratic” version

〈~qn| Û(tn, tn−1) |~qn−1〉 = 〈~qn|~qn−1〉 −
i τ

~
〈~qn|H

(
~̂p, ~̂q, t̄n

)
|~qn−1〉+O(τ 2)

= 〈~qn|~qn−1〉 −
i τ

2~
〈~qn|

[
H
(
~̂p, ~qn, t̄n

)
+H

(
~̂p, ~qn−1, t̄n

)]
|~qn−1〉+O(τ 2) , (3.47)

i.e., where the arithmetic mean of Ĥ evaluated at ~qn and at ~qn−1 is used. We could have
re-exponentiated this “average” version of Ĥ and only then inserted the complete set of
momentum states. In Eq. (3.10) we would then have to make the replacement

Hn = H(~pn, ~qn, t̄n) −→ 1

2
[H(~pn, ~qn, t̄n) +H(~pn, ~qn−1, t̄n)] . (3.48)

As we will see in the following, this does not affect the previous discussion with only a
scalar potential V (~q, t), but it does make a difference when a vector potential ~A(~q, t) is
included.

The question is, which one of the prescriptions of including a vector potential is correct,
the discretized version (3.44), or the one where ~A(~qn, t̄n) is replaced by the arithmetic

mean 1
2

[
~A(~qn, t̄n) + ~A(~qn−1, t̄n)

]
(and possibly V (~qn, t̄n) by 1

2
[V (~qn, t̄n) + V (~qn−1, t̄n)])?

This can be decided by checking whether the transition amplitude, which is identical
to the propagator, leads to the correct Schrödinger equation of a charged particle in an
electromagnetic field. Our starting point is Eq. (3.37), where we only take an infinitesimal
step τ in time, i.e.,

ψ(~x, t+ τ) = 〈~x, t+ τ |ψ〉H =

∫
d3~y 〈~x, t+ τ |~y, t〉 〈~y, t|ψ〉H =

∫
d3~y 〈~x, t+ τ |~y, t〉ψ(~y, t) ,

(3.49)
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3.4 Gauge fields

where we have denoted ~qb ≡ ~x, tb ≡ t+ τ , ~qa ≡ ~y, ta ≡ t for the sake of convenience. The
propagator (3.44) for an infinitesimal time step reads

〈~x, t+ τ |~y, t〉 =

√
m

2πiτ~

3

× exp

(
i

~
τ

{
m

2

(
~x− ~y
τ

)2

− 1

2
[V (~x, t̄) + V (~y, t̄)] +

q

2

[
~A(~x, t̄) + ~A(~y, t̄)

]
· ~x− ~y

τ

})
,

(3.50)

where t̄ ≡ t + λτ, λ ∈ [0, 1]. There is no longer an integration over any intermediate
positions, since N = 1 and the product over integrations d3~qn in Eq. (3.44) is empty.
Moreover, there is just a single term in the sum over n in the exponent. For the moment,
we have considered the “democratic” version (3.48) of the Hamilton function, which leads

to the arithmetic means 1
2

[V (~x, t̄) + V (~y, t̄)] and 1
2

[
~A(~x, t̄) + ~A(~y, t̄)

]
. Afterwards we will

investigate what happens when using the original version (3.44), i.e., when only V (~x, t̄)

and ~A(~x, t̄) appear in Eq. (3.50) instead of the arithmetic means. We now insert Eq.

(3.50) into Eq. (3.49), substitute the integration variable ~ξ ≡ ~y − ~x, and Taylor-expand

all quantities which depend on ~y = ~x+ ~ξ to second order in ~ξ around the position ~x (why
up to second order is sufficient will be explained below). The result is

ψ(~x, t+ τ) =

√
m

2πiτ~

3 ∫
d3~ξ exp

(
im

2~τ
~ξ 2

)
× exp

{
− i
~
τ

[
V (~x, t̄) +

1

2
~ξ · ~∇V (~x, t̄) +

1

4

3∑
i,j=1

ξiξj∂i∂jV (~x, t̄) +O(ξ3)

]}

× exp

{
−iq

~
~ξ ·
[
~A(~x, t̄) +

1

2
~ξ · ~∇ ~A(~x, t̄)

]
+O(ξ3)

}
×

[
ψ(~x, t) + ~ξ · ~∇ψ(~x, t) +

1

2

3∑
n,m=1

ξnξm∂n∂mψ(~x, t) +O(ξ3)

]
. (3.51)

In the next step, we also expand all exponential functions involving V and ~A to second
order in ~ξ. We then encounter (complex) Gaussian integrals of the type∫

d3~ξ exp

(
im

2~τ
~ξ 2

)
=

√
2πi~τ
m

3

, (3.52)∫
d3~ξ ξiξj exp

(
im

2~τ
~ξ 2

)
= δij

√
2πi~τ
m

3
i~τ
m

, i, j = 1, 2, 3 . (3.53)

Integrals over odd powers of ξi vanish by symmetry. We now see why an expansion up to
second order in ~ξ was sufficient: each power of ξi under the d3~ξ integral results in a factor
of
√
τ after integration. In the limit τ → 0, only terms which are ∼ τ 3/2, and thus cancel

the τ−3/2 in the prefactor, lead to a non-vanishing result. Higher powers of ξi produce
additional factors of

√
τ , which then vanish when τ → 0.
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Since there is a prefactor τ in the terms involving the potential V , we actually do not
need to keep any but the leading term in the Taylor expansion of V : all (non-vanishing)
higher-order terms lead to factors which are at least ∼ τ 2, and thus vanish in the limit
τ → 0. This also explains why it does not matter whether we take V (~qn, t̄n) in Eq. (3.44)
or the arithmetic mean 1

2
[V (~qn, t̄n) + V (~qn−1, t̄n)]. Collecting all relevant terms, we obtain

ψ(~x, t+ τ) =

[
1− i

~
τV (~x, t̄)

]√
m

2πiτ~

3 ∫
d3~ξ exp

(
im

2~τ
~ξ 2

)
×

{
1− iq

~

3∑
i=1

ξiAi(~x, t̄)−
iq

2~

3∑
i,j=1

ξiξj [∂jAi(~x, t̄)]−
q2

2~2

3∑
i,j=1

ξiξjAi(~x, t̄)Aj(~x, t̄)

}

×

[
ψ(~x, t) +

3∑
n=1

ξn∂nψ(~x, t) +
1

2

3∑
n,m=1

ξnξm∂n∂mψ(~x, t)

]

=

[
1− i

~
τV (~x, t̄)

]√
m

2πiτ~

3 ∫
d3~ξ exp

(
im

2~τ
~ξ 2

)
×

{
ψ(~x, t)− iq

~

3∑
i,n=1

ξiξnAi(~x, t̄)∂nψ(~x, t)− iq

2~

3∑
i,j=1

ξiξj [∂jAi(~x, t̄)]ψ(~x, t)

− q2

2~2

3∑
i,j=1

ξiξjAi(~x, t̄)Aj(~x, t̄)ψ(~x, t) +
1

2

3∑
n,m=1

ξnξm∂n∂mψ(~x, t)

}
. (3.54)

Applying the Gaussian integrals (3.52), (3.53), we then obtain

ψ(~x, t+ τ) =

[
1− i

~
τV (~x, t̄)

]{
ψ(~x, t) +

qτ

m
~A(~x, t̄) · ~∇ψ(~x, t) +

qτ

2m

[
~∇ · ~A(~x, t̄)

]
ψ(~x, t)

− iq2τ

2m~
~A 2(~x, t̄)ψ(~x, t) +

i~τ
2m

∆ψ(~x, t)

}
= ψ(~x, t)− i

~
τV (~x, t̄)ψ(~x, t) +

qτ

m
~A(~x, t̄) · ~∇ψ(~x, t) +

qτ

2m

[
~∇ · ~A(~x, t̄)

]
ψ(~x, t)

− iq2τ

2m~
~A 2(~x, t̄)ψ(~x, t) +

i~τ
2m

∆ψ(~x, t) +O(τ 2) , (3.55)

where we kept all terms linear in τ . We can now reorder the terms and employ

lim
τ→0

ψ(~x, t+ τ)− ψ(~x, t)

τ
=

∂

∂t
ψ(~x, t)

to obtain in the limit τ → 0

i~
∂

∂t
ψ(~x, t) = − ~2

2m
∆ψ(~x, t) + V (~x, t)ψ(~x, t) +

i~q
m

~A(~x, t) · ~∇ψ(~x, t)

+
i~q
2m

[
~∇ · ~A(~x, t)

]
ψ(~x, t) +

q2

2m
~A 2(~x, t)ψ(~x, t)

=

{
1

2m

[
~̂p− q ~A(~x, t)

]2

+ V (~x, t)

}
ψ(~x, t) . (3.56)

18
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This is the correct result for the Schrödinger equation of a particle in an electromagnetic
field, since the Hamilton operator is

Ĥ ≡ 1

2m

[
~̂p− q ~A(~x, t)

]2

+ V (~x, t) , (3.57)

which is the quantum-mechanical analogue of the classical Hamilton function (3.42).
Finally, we can answer the question what would have happened if had not used the

arithmetic mean 1
2

[
~A(~x, t̄) + ~A(~y, t̄)

]
, but simply ~A(~x, t̄). Then there would be no need

to Taylor-expand 1
2
~A(~y, t̄) and the term 1

2
~ξ · ~∇A(~x, t̄) in Eq. (3.51) would be absent.

Tracing this all the way to the final result (3.56), the term ∼ ~∇ · ~A(~x, t) would be absent.
This would have prevented us from combining the terms to the correct Hamilton operator
(3.57), i.e., we would not have obtained the correct Schrödinger equation. Therefore,
taking the arithmetic mean of the vector potential in Eq. (3.50) is not a matter of choice: it
is the only choice that reproduces the correct Schrödinger equation. In consequence, the
“democratic” version (3.48) of the Hamilton function is in general the safe, and therefore

better, choice. It is just a coincidence that this choice does not matter if ~A(~q, t) = 0 and
only the scalar potential V (~q, t) 6= 0.

3.5 Midpoint rule, Ito integral, Brownian motion, and
gauge transformations

In the last section, instead of the arithmetic mean 1
2

[
~A(~qn, t̄n) + ~A(~qn−1, t̄n)

]
we could

have also taken the vector potential at the midpoint (~qn + ~qn−1)/2, since its Taylor ex-
pansion around ~qn reads

~A

(
~qn + ~qn−1

2
, t̄n

)
= ~A(~qn, t̄n) +

(
~qn + ~qn−1

2
− ~qn

)
· ~∇q

~A(~qn, t̄n) +O
(
(~qn − ~qn−1)2

)
= ~A(~qn, t̄n)− ~qn − ~qn−1

2
· ~∇q

~A(~qn, t̄n) +O
(
(~qn − ~qn−1)2

)
(3.58)

and is thus to first order in ~qn−~qn−1 identical with the Taylor expansion of the arithmetic
mean around ~qn,

1

2

[
~A(~qn, t̄n) + ~A(~qn−1, t̄n)

]
= ~A(~qn, t̄n) +

1

2
(~qn−1 − ~qn) · ~∇q

~A(~qn, t̄n) +O
(
(~qn − ~qn−1)2

)
.

(3.59)
Since we only needed the first-order term in the calculation of the previous section, the

“midpoint rule”, i.e., replacing ~A(~qn, t̄n) by ~A
(
~qn+~qn−1

2
, t̄n

)
in Eq. (3.44), would have

also given the correct Schrödinger equation.
This observation can be put into a more general context. Let ϕ(q) be an analytic

function (which thus has a Taylor expansion) and let q(t) be a particular trajectory in
one-dimensional coordinate space with t ∈ [a, b]. Consider the time interval [a, b] of length
b − a and divide this into N pieces of length τ = (b − a)/N . This gives the partition of
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the time interval into a set of discrete times tn ≡ a + nτ , n = 0, 1, . . . , N , with t0 = a,
tN = b. The positions of the particle at the times tn are

qn ≡ q(tn) , q0 = q(a) = qa , qN = q(b) = qb . (3.60)

Now consider the identity (the “telescope sum”)

ϕ(qb)− ϕ(qa) =
N−1∑
n=0

[ϕ(qn+1)− ϕ(qn)] . (3.61)

We expand both ϕ(qn) and ϕ(qn+1) into Taylor series around a particular point

un ≡ qn + λ(qn+1 − qn) , λ ∈ [0, 1] , (3.62)

in the interval [qn, qn+1]. These Taylor expansions read up to second order in (qn+1− qn)2:

ϕ(qn) = ϕ(un) + (qn − un)ϕ′(un) +
1

2
(qn − un)2ϕ′′(un) +O

(
(qn − un)3

)
= ϕ(un)− λ(qn+1 − qn)ϕ′(un) +

λ2

2
(qn+1 − qn)2ϕ′′(un) +O

(
(qn+1 − qn)3

)
,

ϕ(qn+1) = ϕ(un) + (qn+1 − un)ϕ′(un) +
1

2
(qn+1 − un)2ϕ′′(un) +O

(
(qn+1 − un)3

)
= ϕ(un) + (1− λ)(qn+1 − qn)ϕ′(un) +

(1− λ)2

2
(qn+1 − qn)2ϕ′′(un)

+O
(
(qn+1 − qn)3

)
. (3.63)

Thus, Eq. (3.61) becomes

ϕ(qb)− ϕ(qa)

=
N−1∑
n=0

[
(qn+1 − qn)ϕ′(un) +

(
1

2
− λ
)

(qn+1 − qn)2ϕ′′(un) +O
(
(qn+1 − qn)3

)]

=
N−1∑
n=0

τ

[
qn+1 − qn

τ
ϕ′(un) +

(
1

2
− λ
)

(qn+1 − qn)2

τ
ϕ′′(un) +O

(
(qn+1 − qn)3

τ

)]
.

(3.64)

In the limit N → ∞, τ → 0, we can convert the sum into an integral and obtain after
some reordering of terms the astonishing result∫ qb

qa

dq
dϕ(q)

dq
=

∫ b

a

dt
dq

dt

dϕ(q)

dq
= ϕ(qb)−ϕ(qa)−

(
1

2
− λ
)∫ b

a

dt
dq2

dt

d2ϕ(q)

dq2
+O(dq3) .

(3.65)
Why is this astonishing? From the “normal” rules of integral calculus we would have
expected that the value of the integral on the left-hand side is the first term, ϕ(qb)−ϕ(qa).
The second term is “anomalous” in the sense that it can only appear if dq2 is of order dt
(or dq ∼

√
dt), because then the integrand is finite and not infinitesimally small. Or in
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other words, if dq is of order dt (such that the velocity q̇ = dq/dt is finite), the second
term is infinitesimally small and can be simply neglected (such as all other higher-order
terms).

Are there physical situations, where the change in position dq is of order
√

dt instead
of dt? In fact, this is the case in diffusion processes such as Brownian motion.
Here, the velocity of the particles is dq/dt ∼ 1/

√
dt → ∞, because the particle motion

is discontinuous when it scatters off other particles. It was precisely in this context that
K. Ito encountered an integral of the type (3.65). In his case, λ = 0 and the “diffusion
constant” is the coefficient 1/2 in front of the second term in Eq. (3.65). That is why we
would like to call the integral (3.65) the generalized Ito integral.

How is this of relevance for our discussion of gauge fields in the previous section? There
we indeed found that the result of the Gaussian integration was that the “displacement”
dq ≡ ξ ∼

√
τ ≡

√
dt ! So the trajectories entering the path integral are actually of

the same type that particles take in Brownian motion! But irrespective of whether the
trajectories are smooth, such that q̇ < ∞, or discontinuous like Brownian motion, such
that dq2/dt is finite, there is actually one case where the anomalous term in Eq. (3.65)
does not appear: if we apply the midpoint rule, i.e., λ = 1/2 in the Taylor expansion
of ϕ(q). This further elucidates the importance of the midpoint rule in the calculation of
path integrals.

Finally, let us discuss the importance of our findings for gauge transformations of
the vector potential,

~A(~q, t) −→ ~A ′(~q, t) = ~A(~q, t) + ~∇qΛ(~q, t) , (3.66)

where Λ(~q, t) is a scalar function. This adds a term

iq

~

∫ tb

ta

dt ~̇q · ~∇qΛ(~q, t) ≡ iq

~

∫ ~qb

~qa

d~q · ~∇qΛ(~q, t) (3.67)

to the exponent in the propagator (3.45). This is the three-dimensional generalization of
the Ito integral (3.65). Applying the midpoint rule (λ = 1/2), there is no term∼ ∆qΛ(~q, t),

iq

~

∫ ~qb

~qa

d~q · ~∇qΛ(~q, t) ≡ iq

~
[Λ(~qb, tb)− Λ(~qa, ta)] , (3.68)

and the gauge-transformed propagator reads

G′(~qb, tb; ~qa, ta) = exp

[
iq

~
Λ(~qb, tb)

]
G(~qb, tb; ~qa, ta) exp

[
−iq

~
Λ(~qa, ta)

]
. (3.69)

This corresponds to an (unobservable) change of the phase of the wave function,

ψ′(~qb, tb) =

∫
d3~qaG

′(~qb, tb; ~qa, ta)ψ
′(~qa, ta)

= exp

[
iq

~
Λ(~qb, tb)

]
×
∫

d3~qaG(~qb, tb; ~qa, ta) exp

[
−iq

~
Λ(~qa, ta)

]
exp

[
iq

~
Λ(~qa, ta)

]
ψ(~qa, ta)

= exp

[
iq

~
Λ(~qb, tb)

]
ψ(~qb, tb) . (3.70)
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4 Applications Lecture 3

In this chapter, we study various applications of path integrals. For a particle obeying
the non-interaction Schrödinger equation, the propagator can be exactly computed. The
simplest application of path integrals is scattering of particles through a double slit. The
path integral (in a very simple approximation) provides an easy way to understand the
emerging interference pattern. We then discuss the semi-classical approximation, which
is based on a Taylor expansion of the potential energy up to second order in derivatives.
For the harmonic oscillator, this approximation becomes exact. As a non-trivial example,
we finally discuss the anharmonic oscillator.

4.1 Propagator of free Schrödinger equation

In this section, we calculate the transition amplitude for the free Schrödinger equation
from the path-integral formulation. Since the kinetic energy is in principle a quadratic
function of the coordinates, cf. Eq. (3.20), the path integral is of Gaussian type and can
therefore be exactly evaluated. The starting point is Eq. (3.20), where we set V (~q, t) ≡ 0,

〈~qb, tb|~qa, ta〉 =

√
m

2πiτ~

3N ∫ [N−1∏
m=1

d3~qm

]
exp

[
im

2~τ

N∑
n=1

(~qn − ~qn−1)2

]
. (4.1)

We integrate successively over the coordinates ~qn. The coordinate ~q1 appears in two terms
in the sum in the exponent, such that the ~q1 integral is∫

d3~q1 exp

{
im

2~τ
[
(~q2 − ~q1)2 + (~q1 − ~q0)2]} . (4.2)

We rewrite the exponent in the form

(~q2 − ~q1)2 + (~q1 − ~q0)2 = ~q 2
2 + ~q 2

0 − 2 ~q1 · (~q2 + ~q0) + 2 ~q 2
1

= 2

(
~q1 −

~q2 + ~q0

2

)2

− 1

2
(~q2 + ~q0)2 + ~q 2

2 + ~q 2
0

= 2 ~q ′ 21 +
1

2
(~q2 − ~q0)2 ,

where we defined

~q ′1 ≡ ~q1 −
~q2 + ~q0

2
.
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If we substitute this variable in the ~q1 integral in Eq. (4.2), we can immediately evaluate
this integral (it is again of Gaussian type),∫

d3~q1 exp

{
im

2~τ
[
(~q2 − ~q1)2 + (~q1 − ~q0)2]}

= exp

[
im

2~(2τ)
(~q2 − ~q0)2

] ∫
d3~q ′1 exp

(
2im

2~τ
~q ′ 21

)
= exp

[
im

2~(2τ)
(~q2 − ~q0)2

] √
πiτ~
m

3

. (4.3)

We observe that the result from the Gaussian integration combines with three of the 3N
roots in the prefactors of the path integral in Eq. (4.1) to give√

m

2πiτ~
πiτ~
m

3

=
1
√

2
3 . (4.4)

Simultaneously, the time interval τ in the exponential function was replaced by 2τ .
We now integrate over ~q2, which also occurs in two terms in the exponent,∫

d3~q2 exp

{
im

2~τ

[
(~q3 − ~q2)2 +

1

2
(~q2 − ~q0)2

]}
. (4.5)

A similar manipulation of the exponent as in the previous case yields

(~q3 − ~q2)2 +
1

2
(~q2 − ~q0)2 = ~q 2

3 +
1

2
~q 2

0 − 2 ~q2 ·
(
~q3 +

1

2
~q0

)
+

3

2
~q 2

2

=
3

2

[
~q2 −

2

3

(
~q3 +

1

2
~q0

)]2

− 2

3

(
~q3 +

1

2
~q0

)2

+ ~q 2
3 +

1

2
~q 2

0

=
3

2
~q ′ 22 +

1

3
(~q3 − ~q0)2 ,

where we defined

~q ′2 ≡ ~q2 −
2

3

(
~q3 +

1

2
~q0

)
.

Inserting this into Eq. (4.5) we obtain∫
d3~q2 exp

{
im

2~τ

[
(~q3 − ~q2)2 +

1

2
(~q2 − ~q0)2

]}
= exp

[
im

2~(3τ)
(~q3 − ~q0)2

] ∫
d3~q ′2 exp

(
3im

4~τ
~q ′ 22

)
= exp

[
im

2~(3τ)
(~q3 − ~q0)2

] √
4πiτ~

3m

3

. (4.6)

The result from the Gaussian integration combines with three of the prefactors from Eq.

(4.1) and with the factor 1/
√

2
3

from Eq. (4.4) to give√
m

2πiτ~
4πiτ~

3m

1

2

3

=
1
√

3
3 .
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4.1 Propagator of free Schrödinger equation

We now continue to integrate over the variables ~qm. When integrating over the variable
~qj the time interval jτ in the denominator of the exponent increases by τ , i.e., it becomes
(j+ 1)τ . Simultaneously, three of the 3N prefactors in Eq. (4.1) partially cancel with the

result of the ~qj integration, and we obtain a factor 1/
√
j + 1

3
. If we continue to do this

until j = N − 1, we obtain with ~q0 ≡ ~qa, ~qN ≡ ~qb, and Nτ ≡ tb − ta the final result

〈~qb, tb|~qa, ta〉 =

√
m

2πi~(tb − ta)

3

exp

[
im

2~(tb − ta)
(~qb − ~qa)2

]
. (4.7)

We now show that this expression is identical with the propagator (3.32) of the Schrödin-
ger equation. To this end we just need to realize that also the integral in that equation is
a (shifted) Gaussian integral (at least after analytic continuation into the complex plane,
in order to guarantee convergence). With the dispersion relation (3.26) we obtain

G(~q, t;~r, 0) =
1

(2π)3

∫
d3~k exp

[
− i~t

2m
~k 2 + i~k · (~q − ~r)

]
=

1

(2π)3

∫
d3~k exp

{
− i~t

2m

[
~k − m

~t
(~q − ~r)

]2

+
im

2~t
(~q − ~r)2

}
=

1

(2π)3

√
2πm

i~t

3

exp

[
im

2~t
(~q − ~r)2

]
=

√
m

2πi~t

3

exp

[
im

2~t
(~q − ~r)2

]
. (4.8)

With the obvious replacements ~q → ~qb, ~r → ~qa, and t→ tb − ta this is identical with Eq.
(4.7), q.e.d.

In order to understand the effect of the propagator (4.8), we consider a particle which
is localized at the origin, ~r = 0, at t = 0. The corresponding wave function is a delta
function,

ψ(~r, 0) = δ(3)(~r) . (4.9)

According to Eq. (3.33) the wave function at a later time t > 0 is then

ψ(~q, t) =

∫
d3~r G(~q, t;~r, 0) δ(3)(~r) = G(~q, t; 0, 0) =

√
m

2πi~t

3

exp

(
im

2~t
~q 2

)
, (4.10)

where we have used Eq. (4.8). Apparently, for this initial condition the wave function
only depends on the distance q = |~q| from the origin (the location of the particle at
t = 0), ψ(~q, t) ≡ ψ(q, t), it is a spherical wave. In addition, the particular initial
condition ensures that wave function and propagator are identical. We decompose the
wave function into its real and imaginary part,

ψ(q, t) = − 1√
2

√
m

2π~t

3

(1 + i)

[
cos

(
mq2

2~t

)
+ i sin

(
mq2

2~t

)]
(4.11)

= − 1√
2

√
m

2π~t

3{[
cos

(
mq2

2~t

)
− sin

(
mq2

2~t

)]
+ i

[
cos

(
mq2

2~t

)
+ sin

(
mq2

2~t

)]}
.
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Figure 4.1: Real and imaginary part of the wave function (4.11) (in units of

[m2/(2π)]3/2/
√

2) for times t = 1 (black), 2 (red), 3 (blue) (in units of 1/(~m))
as a function of spatial distance q (in units of 1/m) from the origin.

Real and imaginary part are shown in Fig. 4.1 for a few exemplary values of t as function
of q. One observes that the oscillation frequency increases with increasing distance q from
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4.1 Propagator of free Schrödinger equation

the origin and decreases with increasing time t. The amplitude decreases ∼ t−3/2.
The probability density

|ψ(~q, t)|2 =
( m

2π~t

)3

(4.12)

to locate a particle somewhere in space is constant. At first sight, this is a surprising
result, but it can be explained by the fact that the particle was exactly localized at
t = 0. According to Heisenberg’s uncertainty relation its momentum is then completely
undetermined, i.e., all momenta ~p occur with the same probability. This also applies to
arbitrarily large values of ~p, which instantaneously transport the particle from ~q = 0 to
a spatial point which can be arbitrarily far away from the origin. (Causality problems
are of no concern in a non-relativistic treatment.) On the other hand, the probability
density (4.12) decreases at each point in space with time as t−3. At first sight, this seems
to contradict the normalization of the wave function. However, we have not yet properly
normalized the latter. The wave function is normalized to one after an integration over
the whole space, ∫

V

d3~q |ψ(~q, t)|2 = V
( m

2π~t

)3

.

Therefore, the correctly normalized wave function still needs to be multiplied with a factor√
1

V

(
2π~t
m

)3

.

Then, the wave function is normalized to one, and the probability density no longer decays
with time.

To have an exactly localized particle (which can then in principle have an arbitrarily
large momentum) is, of course, hardly a realistic situation. Therefore, we consider the
initial condition

ψ(~r, 0) =
1

√
2πσ

3 exp

(
−~r

2

2σ

)
, (4.13)

i.e., a Gaussian wave packet of width σ. For σ → 0 the wave packet becomes the delta
function (4.9). Since the Fourier transform of a Gauss function is again a Gauss func-

tion, we can again have in principle arbitrarily large momenta ~p = ~~k, but they become
exponentially less probable with increasing ~p,

ψ̃(~k, 0) = 2π

∫
d3~r e−i

~k·~r ψ(~r, 0)

=
1√

2πσ3

∫
d3~r exp

(
−~r

2

2σ
− i~k · ~r

)
=

1√
2πσ3

exp
(
−σ

2
~k 2
)∫

d3~r exp

[
− 1

2σ

(
~r + iσ~k

)2
]

= 2π exp
(
−σ

2
~k 2
)
≡ 2π exp

(
− σ

2~2
~p 2
)
. (4.14)

According to Eq. (3.33) the wave function at a time t > 0 is

ψ(~q, t) =

√
m

(2π)2i~tσ

3

exp

(
im

2~t
q2

)∫
d3~r exp

[
− 1

2σ

(
1− imσ

~t

)
~r 2 − im

~t
~q · ~r

]
.

(4.15)
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Completing the square yields

− 1

2σ

(
1− imσ

~t

)
~r 2 − im

~t
~q · ~r

= − 1

2σ

(
1− imσ

~t

)[(
~r +

imσ

~t− imσ
~q

)2

−
(

imσ

~t− imσ

)2

q2

]

= − 1

2σ

(
1− imσ

~t

)
~r ′ 2 − m2

2~t
σ

~t− imσ
q2 ,

where we have employed the substitution

~r ′ ≡ ~r +
imσ

~t− imσ
~q .

The Gaussian integral over ~r ′ has the value√
2π~tσ

~t− imσ

3

.

Inserting this into Eq. (4.15) gives

ψ(q, t) =

√
m

2πi

1

~t− imσ

3

exp

[
− m

2~t

(
mσ

~t− imσ
− i
)
q2

]
=

√
m

2πi

1

~t− imσ

3

exp

[
im

2(~t− imσ)
q2

]
. (4.16)

In the limit σ → 0 we again obtain the result (4.10). The decomposition into real and
imaginary part is again possible, but yields a rather unwieldy expression. We therefore
just show the result in Fig. 4.2. One observes very clearly how the initial Gaussian wave
packet (dashed line in the plot for the real part) “dissolves” on account of the momentum
uncertainty.

The probability density is

|ψ(~q, t)|2 =

(
m

2π
√

(~t)2 + (mσ)2

)3

exp

(
− m2σ

(~t)2 + (mσ)2
q2

)
. (4.17)

It is not yet correctly normalized, since∫
d3~q |ψ(~q, t)|2 =

1
√

4πσ
3 .

The correctly (to unity) normalized probability density is shown in Fig. 4.3. Also here
one observes a “dissolving” of the wave function as time evolves.
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4.1 Propagator of free Schrödinger equation
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Figure 4.2: Real and imaginary part of the wave function (4.16) (in units of

[m2/(2π)]3/2/
√

2) for times t = 1 (black), 2 (red), 3 (blue) (in units of 1/(~m))
as a function of spatial distance q (in units of 1/m) from the origin. The initial
width of the wave packet is σ = 1 (in units of 1/m2).
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Figure 4.3: Probability density (in units of [m2/(2π)]3) for times t = 1 (black), 2 (red),
3 (blue) (in units of 1/(~m)) as a function of spatial distance q (in units of
1/m) from the origin. The initial width of the wave function is σ = 1 (in units
of 1/m2).

4.2 The double-slit experiment

The path-integral representation of the transition amplitude or propagator is a very nat-
ural and intuitive way to understand the interference pattern observed in the famous
double-slit experiment. We first observe the following important convolution property
of the transition amplitude,

〈~qb, tb|~qa, ta〉 =

∫
d3~q 〈~qb, tb|~q, t〉 〈~q, t|~qa, ta〉 , (4.18)

which simply follows from inserting a complete set of states (3.36). In terms of the
propagator, this reads

G(~qb, tb; ~qa, ta) =

∫
d3~q G(~qb, tb; ~q, t)G(~q, t; ~qa, ta) , (4.19)

Here, t is an arbitrary intermediate time in the interval [ta, tb]. The situation is envisaged
in Fig. 4.4. One should note that one has to integrate over all possible positions ~q at the
intermediate time t, since the particle is can take any possible trajectory from its initial
position ~qa at time ta to its final position ~qb at time tb.

The proof of the convolution property in terms of the path-integral representation of
the transition amplitude is trivial. We start from Eq. (3.20) and select an intermediate
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Figure 4.4: Visualization of the convolution property of the propagator in the space-time
diagram.

spatial integral, say d3~qj, pertaining to the intermediate time tj ∈ [ta, tb]. We pull this
particular spatial integration out of the product in Eq. (3.20) and factorize the remaining
terms,

〈~qb, tb|~qa, ta〉 =

∫
d3~qj

×
√

m

2πiτ~

3(N−j)∫ N−1∏
m=j+1

d3~qm exp

{
i

~

N∑
m=j+1

τ

[
m

2

(
~qm − ~qm−1

τ

)2

− V (~qm, tm−1 + λ τ)

]}

×
√

m

2πiτ~

3j∫ j−1∏
n=1

d3~qn exp

{
i

~

j∑
n=1

τ

[
m

2

(
~qn − ~qn−1

τ

)2

− V (~qn, tn−1 + λ τ)

]}
. (4.20)

In the limit N →∞, τ → 0, this becomes

〈~qb, tb|~qa, ta〉 =

∫
d3~qj 〈~qb, tb|~qj, tj〉 〈~qj, tj|~qa, ta〉 . (4.21)

Relabelling ~qj → ~q, tj → t, this is identical with Eq. (4.18).

Finally, we can prove by a direct calculation that also the free propagator (4.7) fulfills
the convolution property (4.18). We start from the right-hand side of this equation and
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insert Eq. (4.7),∫
d3~q 〈~qb, tb|~q, t〉 〈~q, t|~qa, ta〉

=

∫
d3~q

√
m

2πi~(tb − t)

3

exp

[
im

2~(tb − t)
(~qb − ~q)2

]
×
√

m

2πi~(t− ta)

3

exp

[
im

2~(t− ta)
(~q − ~qa)2

]

=

[
m

2πi~
√

(tb − t)(t− ta)

]3

exp

[
im

2~

(
~q 2
b

tb − t
+

~q 2
a

t− ta

)]
×
∫

d3~q exp

{
im(tb − ta)

2~(tb − t)(t− ta)

[
~q 2 − 2~q · ~qb(t− ta) + ~qa(tb − t)

tb − ta

]}
. (4.22)

Completing the square in the exponent,[
~q − ~qb(t− ta) + ~qa(tb − t)

tb − ta

]2

−
[
~qb(t− ta) + ~qa(tb − t)

tb − ta

]2

, (4.23)

and performing a substitution of the integration variable

~q −→ ~q ′ = ~q − ~qb(t− ta) + ~qa(tb − t)
tb − ta

, (4.24)

which has a Jacobi determinant of modulus unity, we can evaluate the (complex) Gauss
integral over d3~q ′ with the help of Eq. (3.19),∫

d3~q 〈~qb, tb|~q, t〉 〈~q, t|~qa, ta〉

=

[
m

2πi~
√

(tb − t)(t− ta)

]3√
2πi~(tb − t)(t− ta)

m(tb − ta)

3

× exp

{
im

2~

[
~q 2
b

tb − t

(
1− t− ta

tb − ta

)
+

~q 2
a

t− ta

(
1− tb − t

tb − ta

)
− 2~qa · ~qb
tb − ta

]}
=

√
m

2πi~(tb − ta)

3

exp

[
im

2~
(~qb − ~qa)2

tb − ta

]
≡ 〈~qb, tb|~qa, ta〉 , (4.25)

as it should be.
Armed with the convolution property, we now discuss what happens in the double-slit

experiment. The situation is depicted in Fig. 4.5. A source at (~qa, ta) emits particles.
We assume that they all have the same velocity. Then, at time t (which is supposed to
be the one appearing in Eq. (4.19)) the particles hit the double slit. Finally, they reach
the screen at time tb. If we assume that the particles travel in z direction, both slits are
supposed to have the same area ∆F = ∆x∆y. Furthermore, the thickness of the blind is
∆z, such that the slits form a volume ∆V = ∆F∆z. The particles cannot pass the blind,
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Figure 4.5: The double-slit experiment.

if they do not hit one of the two slits, either the one at ~qA or the one at ~qB. Therefore,
the volume integral in Eq. (4.19) reduces to

G(~qb, tb; ~qa, ta) ' ∆V [G(~qb, tb; ~qA, t)G(~qA, t; ~qa, ta) +G(~qb, tb; ~qB, t)G(~qB, t; ~qa, ta)] .
(4.26)

Here we have assumed that the product G(~qb, tb; ~qA, t)G(~qA, t; ~qa, ta) does not change ap-
preciably over the volume ∆V of the slit at ~qA, such that one can pull this factor out of
the integral over d3~q, and similarly for the contribution of the slit at ~qB to the integral.
The quantum-mechanical probability for a particle emitted at the source at space-time
point (~qa, ta) to reach a point ~qb at the screen at time tb is then

P (~qb, tb; ~qa, ta) = |G(~qb, tb; ~qa, ta)|2 (4.27)

= ∆V 2
{
|G(~qb, tb; ~qA, t)G(~qA, t; ~qa, ta))|2 + |G(~qb, tb; ~qB, t)G(~qB, t; ~qa, ta)|2

+ 2 Re [G(~qb, tb; ~qA, t)G(~qA, t; ~qa, ta)G
∗(~qb, tb; ~qB, t)G

∗(~qB, t; ~qa, ta)]} .

The last term is not positive semi-definite. It is the origin of the well-known quantum-
mechanical interference effects, which lead to a diffraction pattern with maxima (con-
structive interference) and minima (destructive interference) on the screen.

Using the expression (4.7) of the free propagator, we can evaluate Eq. (4.27) explicitly,

P (~qb, tb; ~qa, ta) =
2∆V 2m6

(2π~)6(tb − t)3(t− ta)3

×
{

1 + cos

[
m

2~
(~qA − ~qB) ·

(
~qA + ~qB − 2~qb

tb − t
+
~qA + ~qB − 2~qa

t− ta

)]}
. (4.28)

Further simplification is possible by assuming that the source is located in the origin of
the coordinate system, ~qa = 0, that the particles are emitted at ta = 0, and that the two
slits have the same distance from the origin, |~qA| = |~qB|. Then,

P (~qb, tb; 0, 0) =
2∆V 2m6

(2π~)6(tb − t)3t3

{
1 + cos

[
m

~(tb − t)
(~qA − ~qB) · ~qb

]}
. (4.29)
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Introducing the quantities defined in Fig. 4.6, we now have |~qA−~qB| ≡ a and x = qb sin β =
l tan β = d tanα. From this we compute

(~qA − ~qB) · ~qb = aqb cos
(π

2
− β

)
= aqb sin β = ad tanα .

Furthermore, if v is the velocity of the particles, the distance from the double slit to

dq

q

q

B

A

b

β α

x

a

l

Figure 4.6: Geometry of the double-slit experiment.

the screen travelled by the particles is v(tb − t). If the screen is very far from the double
slit, one can neglect the difference between the distance travelled from the slit at ~qA and
that travelled from the slit of ~qB. The average distance is then v(tb − t) ' d/ cosα. The
argument of the cosine in Eq. (4.29) becomes

m

~(tb − t)
(~qA − ~qB) · ~qb =

mv

~v(tb − t)
ad tanα ' k

d
ad sinα = ka sinα ,

where we used that the momentum p = mv = ~k, where k ≡ 2π/λ is the wave number
associated with the de Broglie wave length λ of the particle. With 1 + cos(2ϕ) = cos2 ϕ,
the final result for the interference pattern is then

P (~qb, tb; 0, 0) ∼ cos2
(π
λ
a sinα

)
, (4.30)

which is shown in Fig. 4.7. Equation (4.30) is the standard result and is valid also for
diffraction of light (massless photons) at the double slit. If we also consider the diffraction
across the single slits, there is an additional modulation factor. For light waves, the result
is

P (~qb, tb; 0, 0) ∼ cos2
(π
λ
a sinα

) sin2
(
π
λ
∆x sinα

)(
π
λ
∆x sinα

)2 , (4.31)

where ∆x is the width of the slit in the direction of ~qA−~qB. However, for massive particles
the result is more complicated and involves the so-called Fresnel integrals.
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x

P

Figure 4.7: Diffraction pattern in the double-slit experiment, according to Eq. (4.30)
(blue), the modulation factor alone (black), and the result (4.31) including
the modulation factor (red).

4.3 Semiclassical approximation Lecture 4

For an arbitrary potential V (~q, t) the path integral (3.21) can in general no longer be
explicitly computed. An exception are potentials which are quadratic in ~q, since then
path integral over ~q is again a Gaussian integral (or more precisely, infinitely many of
them). However, one can always apply the so-called semiclassical approximation,
i.e., one expands the action S[~q(t)] up to quadratic order in ~q(t) around the classical
trajectory ~qcl(t). This then leads to exactly solvable path integrals. We will make this
observation more precise in the following.

The classical trajectory ~qcl(t) is given by the solution of the Euler–Lagrange equations
(2.3) and the corresponding action is

Scl ≡ S[~qcl(t)] =

∫ tb

ta

dt L(~qcl, ~̇qcl, t) .

We introduce the variation around the classical trajectory via

~r(t) ≡ ~q(t)− ~qcl(t) . (4.32)

Obviously,

~r(ta) = ~r(tb) ≡ 0 ,

since for all trajectories in the path integral the initial point ~qa = ~q(ta) and the final
point ~qb = ~q(tb) are identical, i.e., they are not subjected to a variation. We expand the
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Lagrange function up to order O(~r 2) around the classical trajectory,

L(~q, ~̇q, t) ' L(~qcl, ~̇qcl, t) +
∑
i

(
ri
∂L

∂qi

∣∣∣∣
~q=~qcl

+ ṙi
∂L

∂q̇i

∣∣∣∣
~q=~qcl

)

+
1

2

∑
i,j

(
ri rj

∂2L

∂qi∂qj

∣∣∣∣
~q=~qcl

+ 2 ri ṙj
∂2L

∂qi∂q̇j

∣∣∣∣
~q=~qcl

+ ṙi ṙj
∂2L

∂q̇i∂q̇j

∣∣∣∣
~q=~qcl

)
, (4.33)

where we denoted the components of ~r(t) by ri(t), i = x, y, z. In the following we use
the fact that the mixed second derivatives of L vanish for Lagrange functions of the type
(3.22). If we then insert Eq. (4.33) into the action, we obtain

S[~q(t)] '
∫ tb

ta

dt

[
L(~qcl, ~̇qcl, t) +

∑
i

(
ri
∂L

∂qi

∣∣∣∣
~q=~qcl

+ ṙi
∂L

∂q̇i

∣∣∣∣
~q=~qcl

)

+
1

2

∑
i,j

(
ri rj

∂2L

∂qi∂qj

∣∣∣∣
~q=~qcl

+ ṙi ṙj
∂2L

∂q̇i∂q̇j

∣∣∣∣
~q=~qcl

)]

= Scl +

∫ tb

ta

dt
∑
i

ri

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
~q=~qcl

+

∫ tb

ta

dt

[
m

2
~̇r 2 − 1

2
~r TV ′′(~qcl, t)~r

]
, (4.34)

where we have performed an integration by parts in the term ∼ O(~r) and used the fact
that the variation of ~r(t) vanishes at ta and tb. Furthermore, due to Eq. (3.22) we have
used

∂2L

∂q̇i∂q̇j

∣∣∣∣
~q=~qcl

= mδij ,

∂2L

∂qi∂qj

∣∣∣∣
~q=~qcl

= − ∂2V (~q, t)

∂qi∂qj

∣∣∣∣
~q=~qcl

≡ −V ′′ij (~qcl, t) .

The last equation represents the (ij) element of the matrix V ′′ of second derivatives of
the potential V with respect to the coordinates. The second term in Eq. (4.34) vanishes
on account of the Euler–Lagrange equations (2.3) and we obtain

S[~q(t)] ' Scl +

∫ tb

ta

dt

[
m

2
~̇r 2 − 1

2
~r TV ′′(~qcl, t)~r

]
. (4.35)

When inserting this into the path integral (3.21), we can factor out the contribution of
the classical action from the integral, since it does not depend on the integration variables
~qn. Furthermore, we can substitute the latter by the variables ~rn on account of Eq. (4.32).
This substitution of variables has a Jacobi determinant which is unity, and it immediately
follows that

〈~qb, tb|~qa, ta〉 ' N eiScl/~
∫ ~r(tb)=0

~r(ta)=0

D~r exp

{
i

~

∫ tb

ta

dt

[
m

2
~̇r 2 − 1

2
~r TV ′′(~qcl, t)~r

]}
. (4.36)
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4.3 Semiclassical approximation

The path integral is again of the type of a(n infinitely dimensional) Gaussian integral and
can be exactly computed. We demonstrate this explicitly for the case of one spatial
dimension. To this end we first write the path integral in Eq. (4.36) (including the
normalization factor N ) in the form of Eq. (3.20), i.e., where integrate over N−1 variables
rn,

I(tb, ta) ≡
√

m

2πiτ~

N ∫ N−1∏
n=1

drn exp

{
i

~

N∑
n=1

τ

[
m

2

(
rn − rn−1

τ

)2

− 1

2
V ′′n r

2
n

]}
, (4.37)

where we abbreviated
V ′′n ≡ V ′′(qcl,n, tn−1 + λτ) .

The exponent in Eq. (4.37) has the following form:

−
N∑
n=1

[
m

2iτ~
(rn − rn−1)2 +

iτ

2~
V ′′n r

2
n

]
= − m

2iτ~
(
r2

0 − 2r0r1 + r2
1 + r2

1 − 2r1r2 + r2
2 + · · ·

+ r2
N−2 − 2rN−2rN−1 + r2

N−1 + r2
N−1 − 2rN−1rN + r2

N

)
− iτ

2~
(
V ′′1 r

2
1 + V ′′2 r

2
2 + · · ·+ V ′′Nr

2
N

)
≡ − m

2iτ~
(
2r2

1 − 2r1r2 + 2r2
2 + · · ·+ 2r2

N−2 − 2rN−2rN−1 + 2r2
N−1

)
− iτ

2~
(
V ′′1 r

2
1 + V ′′2 r

2
2 + · · ·+ V ′′N−1r

2
N−1

)
, (4.38)

where we have used the fact that r0 ≡ ra = 0, rN ≡ rb = 0. The result can be written as
a product of row vector, matrix, and column vector,

− m

2iτ~

N∑
n=1

[
(rn − rn−1)2 − τ 2

m
V ′′n r

2
n

]
≡ − m

2iτ~
~r TA~r , (4.39)

where ~r ≡ (r1, r2, r3, . . . , rN−1)T and

A =



2 + c1 −1 0 · · · 0

−1 2 + c2 −1 0 · · · ...
0 −1 2 + c3 −1 0 0
...

. . .
...

0 · · · 0 −1 2 + cN−2 −1
0 · · · 0 −1 2 + cN−1


, (4.40)

with cn ≡ −τ 2V ′′n /m. Equation (4.37) thus assumes the compact form

I(tb, ta) =

√
m

2πiτ~

N ∫
dN−1~r exp

(
− m

2iτ~
~r TA~r

)
.

The [(N − 1) × (N − 1)]−Matrix A is symmetric, therefore one can diagonalize it by
means of an orthogonal transformation O, OT ≡ O−1 and detO = +1,

D ≡ diag (a1, a2, . . . , aN−1) ≡ OAOT , (4.41)
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where an are the eigenvalues of A. Multiplying from the left with OT and from the right
with O yields

OTDO = A ,

i.e.,

I(tb, ta) =

√
m

2πiτ~

N ∫
dN−1~r exp

(
− m

2iτ~
~r TOTDO~r

)
≡

√
m

2πiτ~

N ∫
dN−1~s exp

(
− m

2iτ~
~s TD~s

)
≡

√
m

2πiτ~

N ∫ N−1∏
n=1

dsn exp

(
− m

2iτ~

N−1∑
n=1

an s
2
n

)
, (4.42)

where we have substituted variables according to

~s ≡ O~r , ~s T ≡ ~r TOT .

The corresponding Jacobi determinant is J ≡ detO = +1, so that the integration mea-
sure does not change. The N − 1 Gaussian integrals in Eq. (4.42) can again be computed
with the formula (3.17), so that

I(tb, ta) =

√
m

2πiτ~

N√
2πiτ~
m

N−1 N−1∏
n=1

a−1/2
n ≡

√
m

2πi~
(τ det A)−1/2 , (4.43)

where, on account of Eq. (4.41) and detO ≡ detOT = +1, we employed the identity

det D =
N−1∏
n=1

an = det
(
OAOT

)
= detO det A detOT = det A . (4.44)

We now compute the determinant of the matrix (4.40) with the help of Laplace’s theorem,

ϕN−1 ≡ τ det A = (2 + cN−1)ϕN−2 − ϕN−3 , (4.45)

where

ϕN−2 = τ

∣∣∣∣∣∣∣∣∣∣∣∣∣

2 + c1 −1 0 · · · 0

−1 2 + c2 −1 0 · · · ...
0 −1 2 + c3 −1 0 0
...

. . .
...

0 · · · 0 −1 2 + cN−3 −1
0 · · · 0 −1 2 + cN−2

∣∣∣∣∣∣∣∣∣∣∣∣∣
,
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4.3 Semiclassical approximation

ϕN−3 = −τ

∣∣∣∣∣∣∣∣∣∣∣∣∣

2 + c1 −1 0 · · · 0

−1 2 + c2 −1 0 · · · ...
0 −1 2 + c3 −1 0 0
...

. . .
...

0 · · · 0 −1 2 + cN−3 0
0 · · · 0 −1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣

≡ τ

∣∣∣∣∣∣∣∣∣∣∣

2 + c1 −1 0 · · · 0

−1 2 + c2 −1 0
...

0 −1 2 + c3 −1 0
...

. . .
...

0 · · · 0 −1 2 + cN−3

∣∣∣∣∣∣∣∣∣∣∣
.

From this follows the recursion formula

ϕn+1 = (2 + cn+1)ϕn − ϕn−1 , n = 1, . . . , N − 2 , (4.46)

where we set ϕ1 = τ(2 + c1) and ϕ0 = τ . Using the definition of the cn, we can write this
recursion formula as

ϕn+1 − 2ϕn + ϕn−1

τ 2
=
cn+1

τ 2
ϕn ≡ −

V ′′n+1

m
ϕn . (4.47)

In the limit τ → 0 this becomes the differential equation

d2ϕ(t)

dt2
= −V

′′(t)

m
ϕ(t) . (4.48)

In order to solve this equation, we need initial conditions, which read

ϕ(ta) ≡ lim
τ→0

ϕ0 = lim
τ→0

τ ≡ 0 ,

dϕ(ta)

dt
≡ lim

τ→0

ϕ1 − ϕ0

τ
= lim

τ→0

τ(2 + c1)− τ
τ

= lim
τ→0

(
1− τ 2 V ′′1

m

)
≡ 1 . (4.49)

At this point, we can only proceed further if the potential V (~q, t) is known. Then, the
differential equation (4.48) can be explicitly solved until time tb. This yields a function

f(tb, ta) ≡ ϕ(tb) ≡ lim
N →∞
τ → 0

ϕN = lim
N →∞
τ → 0

ϕN−1 = lim
N →∞
τ → 0

(τ det A) , (4.50)

which depends on the initial conditions (4.49) at time ta. These will be determined for
the example of the one-dimensional harmonic oscillator in the next section.

Let us summarize the results of this section. With Eqs. (4.36), (4.43), and (4.50) the
transition amplitude (resp. the propagator) in the semiclassical approximation
reads

〈~qb, tb|~qa, ta〉 ≡ G(~qb, tb; ~qa, ta) '
√

m

2πi~ f(tb, ta)
exp

(
i

~
Scl

)
. (4.51)
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4.4 Propagator of the one-dimensional harmonic
oscillator

The potential of the one-dimensional harmonic oscillator reads

V (q) =
1

2
mω2 q2 , (4.52)

where ω is the eigenfrequency of the oscillator. For this potential the semiclassical approx-
imation discussed in the previous section is exact, because the expansion of the potential
automatically terminates after the second order,

V ′′ = mω2 = const. , V ′′′ ≡ 0 .

The differential equation (4.48) is simply the equation of motion of the harmonic oscillator,

d2ϕ(t)

dt2
+ ω2 ϕ(t) = 0 , (4.53)

with the well-known solution

ϕ(t) = A cos(ωt) +B sin(ωt) . (4.54)

The initial conditions (4.49) yield

ϕ(ta) = A cos(ωta) +B sin(ωta) ≡ 0 ,

dϕ(ta)

dt
= −ω A sin(ωta) + ωB cos(ωta) = 1 ,

from which we can determine the constants A and B:

A = −B tan(ωta) ,

B =
cos(ωta)

ω
,

so that the solution at time tb reads

f(tb, ta) ≡ ϕ(tb) = −B tan(ωta) cos(ωtb) +B sin(ωtb)

=
cos(ωta)

ω
[sin(ωtb)− tan(ωta) cos(ωtb)]

=
1

ω
[sin(ωtb) cos(ωta)− cos(ωtb) sin(ωta)]

≡ sin[ω(tb − ta)]
ω

. (4.55)

In order to determine the propagator (4.51) we still need to compute the action along the
classical trajectory. This is possible without major difficulties, albeit a bit cumbersome.
First, the classical trajectory is of course a solution of the Euler–Lagrange equation for
the harmonic oscillator,

0 =
d

dt

∂L

∂q̇
− ∂L

∂q
= m q̈ +mω2q ,
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4.4 Propagator of the one-dimensional harmonic oscillator

or
q̈ + ω2q = 0 .

The solution is well known,

qcl(t) = C cos(ωt) +D sin(ωt) . (4.56)

The constants A and B are determined by the given initial and final conditions (which of
course hold also for the classical trajectory)

qa ≡ qcl(ta) = C cos(ωta) +D sin(ωta) ,

qb ≡ qcl(tb) = C cos(ωtb) +D sin(ωtb) .

One can check that this yields

C =
qa sin(ωtb)− qb sin(ωta)

sin [ω(tb − ta)]
,

D =
qb cos(ωta)− qa cos(ωtb)

sin [ω(tb − ta)]
. (4.57)

Inserting this into Eq. (4.56) we obtain

qcl(t) =
qa sin [ω(tb − t)] + qb sin [ω(t− ta)]

sin [ω(tb − ta)]
. (4.58)

The time derivative is

q̇cl(t) = ω
qb cos [ω(t− ta)]− qa cos [ω(tb − t)]

sin [ω(tb − ta)]
. (4.59)

If we insert this into the Lagrange function, we get

L(qcl, q̇cl, t) =
m

2
q̇2

cl −
m

2
ω2 q2

cl

=
mω2

2 sin2 [ω(tb − ta)]

{
q2
b cos2 [ω(t− ta)] + q2

a cos2 [ω(tb − t)]

− 2 qa qb cos [ω(t− ta)] cos [ω(tb − t)]
− q2

b sin2 [ω(t− ta)]− q2
a sin2 [ω(tb − t)]

− 2 qa qb sin [ω(t− ta)] sin [ω(tb − t)]
}

=
mω2

2 sin2 [ω(tb − ta)]

{
q2
b cos [2ω(t− ta)] + q2

a cos [2ω(tb − t)]

− 2 qa qb cos [ω(tb + ta − 2t)]
}
. (4.60)

Inserting this into the action integral, we need to compute the following three integrals:∫ tb

ta

dt cos [2ω(t− ta)] =

∫ tb−ta

0

dz cos(2ωz) =
1

2ω
sin [2ω(tb − ta)] ,∫ tb

ta

dt cos [2ω(tb − t)] = −
∫ 0

tb−ta
dz cos(2ωz) =

1

2ω
sin [2ω(tb − ta)] ,∫ tb

ta

dt cos [ω(tb + ta − 2t)] = −1

2

∫ ta−tb

tb−ta
dz cos(ωz) =

1

ω
sin [ω(tb − ta)] .
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Thus, the classical action reads

Scl =

∫ tb

ta

dt L(qcl, q̇cl, t)

=
mω

2 sin2 [ω(tb − ta)]

{
q2
a + q2

b

2
sin [2ω(tb − ta)]− 2 qa qb sin [ω(tb − ta)]

}
=

mω

2 sin [ω(tb − ta)]
{

(q2
a + q2

b ) cos [ω(tb − ta)]− 2 qa qb
}
. (4.61)

With this and with Eq. (4.55) the propagator of the one-dimensional harmonic
oscillator reads

〈~qb, tb|~qa, ta〉 ≡ G(~qb, tb; ~qa, ta)

=

√
mω

2πi~ sin [ω(tb − ta)]
exp

{
imω

2~
(q2
a + q2

b ) cos [ω(tb − ta)]− 2 qa qb
sin [ω(tb − ta)]

}
. (4.62)

4.5 The anharmonic oscillator

Lecture 5

The potential of the anharmonic oscillator contains an additional quartic term besides
the quadratic term of the harmonic-oscillator potential (4.52),

V (q) =
1

2
mω2 q2 +

1

4
λ q4 . (4.63)

In order to have potential which is bounded from below at large q, we have to choose
λ > 0. For small q, this potential is very close to that of the harmonic oscillator, but
for large q it increases more rapidly than the latter, i.e., it has “stiffer” walls than the
harmonic oscillator, cf. Fig. 4.8.

The existence of a potential energy implies that the system is conservative, so the total
energy

E =
1

2
mq̇2 + V (q) =

1

2
mq̇2 +

1

2
mω2 q2 +

1

4
λ q4 (4.64)

is conserved and a constant of motion along the classical path. The turning points
±q̄ of the motion are determined by the condition q̇ = 0. Using Eq. (4.64), we can then
express q̄ as a function of the available energy E of the particle by solving

E = V (q̄) =
1

2
mω2 q̄2 +

1

4
λ q̄4 (4.65)

for q̄. For a given energy E = const., the turning points can thus be determined from

q̄2 =
mω2

λ

(√
1 +

4λE

(mω2)2
− 1

)
. (4.66)
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0

q

harm. osc.
anharm. osc.

V(q)

-q q

E

Figure 4.8: The anharmonic-oscillator potential (red) in comparison to the harmonic-
oscillator potential (black).

In the limit λ→ 0, this becomes q̄2 = 2E/(mω2), which corresponds to the turning points
of the harmonic-oscillator potential. As one can see from Fig. 4.8, q̄ is smaller for the
anharmonic-oscillator potential than for the harmonic-oscillator potential: the particle is
“reflected” from the stiffer potential wall of the anharmonic potential at a smaller distance
from the origin. Moreover, the force

mq̈ = F = −dV (q)

dq
= −mω2 q − λ q3 (4.67)

is at any distance q from the origin larger than that for the harmonic oscillator. Thus,
when the particle hits the potential wall at the turning point of the motion, it will be
accelerated more rapidly towards the origin than in the case of the harmonic oscillator.
The semiclassical approximation discussed in the last section is no longer exact for the
potential (4.63), but it is still useful and allows to gain some insights into the problem
that are not possible by, e.g., perturbation theory in the “coupling constant” λ, as will
be explored in the next chapter.

In order to proceed, the first task is to determine the action along the classical path.
Equation (4.64) allows us to express the velocity in terms of the difference of energy and
potential (as for the Kepler problem),

q̇ = ±
√

2

m
[E − V (q)] . (4.68)
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Thus, with u ≡ q/q̄,

E − V (q) = V (q̄)− V (q) =
1

2
mω2q̄2

(
1− u2

)
+

1

4
λ q̄4

(
1− u4

)
=
(
1− u2

) [1

2
mω2q̄2 +

1

4
λ q̄4

(
1 + u2

)]
=

1

4
λ q̄4

(
1− u2

) (
κ2 + u2

)
, (4.69)

where

κ2 ≡ 4E

λ q̄4
= 1 +

2mω2

λ q̄2
> 1 . (4.70)

Using Eq. (4.68), the time tb − ta that it takes the particle to move from q(ta) ≡ qa to
q(tb) ≡ qb ≥ qa is then

tb − ta =

∫ tb

ta

dt =

∫ qb

qa

dq

q̇
= ±

√
2m

λ

1

q̄

∫ ub

ua

du√
(1− u2)(κ2 + u2)

, (4.71)

where ua,b ≡ qa,b/q̄. Now a trajectory starting at ua ∈ [−1, 1] and ending at ub ∈ [−1, 1]
can always be decomposed into a linear combination of pieces starting from the origin,
ua = 0, and ending at some point ub ∈ [−1, 1]. Therefore, for the sake of simplicity let
us now simply consider such a piece starting at ua = 0 at time ta = 0 and ending at
0 < ub ≡ v ≤ 1 at time tb ≡ t > 0 (the case ub < 0 can be treated analogously),

t =

√
2m

λ

1

q̄

∫ v

0

du√
(1− u2)(κ2 + u2)

≡
√

2m

λ

1

q̄

1√
1 + κ2

F

(
arcsin

(
v

√
1 + κ2

v2 + κ2

)
,

1√
1 + κ2

)
, (4.72)

where F (ϕ, k) is the elliptic integral of the first kind (cf. Eq. (3.152.3) of Ref. [5]). If
v = 1, or qb = q̄, the particle has completed one quarter of a period of oscillation, so the
complete period is

T = 4

√
2m

λ

1

q̄

1√
1 + κ2

F

(
π

2
,

1√
1 + κ2

)
≡ 4

√
2m

λ

1

q̄

1√
1 + κ2

K

(
1√

1 + κ2

)
, (4.73)

where K(k) is the complete elliptic integral of the first kind. Two limiting cases are of
interest:

(i) λ→ 0: in this case,

κ2 −→ 2mω2

λq̄2
,

1√
1 + κ2

−→
√

λ

2m

q̄

ω
, K

(
1√

1 + κ2

)
−→ K (0) =

π

2
, (4.74)

and

T −→ 4

ω

π

2
=

2π

ω
(4.75)

becomes identical to the oscillation period of the harmonic oscillator, as it should
be when λ→ 0.
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4.5 The anharmonic oscillator

(ii) λ→∞: in this case, Eqs. (4.66) and (4.70) yield

κ2 −→ 1 , q̄2 −→
√

4E

λ
. (4.76)

The potential walls narrow so much that the turning points approach the origin as
q̄ ∼ λ−1/4. Since

K

(
1√
2

)
=

1

4
√
π

[
Γ

(
1

4

)]2

,

see Eq. (8.129.1) of Ref. [5], we obtain for the period of oscillation

lim
λ→∞

T = lim
λ→∞

4

√
2m

λ

(
λ

4E

)1/4
1√
2

1

4
√
π

[
Γ

(
1

4

)]2

= lim
λ→∞

(
m2

4π2λE

)1/4 [
Γ

(
1

4

)]2

= 0 , (4.77)

The physical interpretation is that in this limit the potential walls become infinitely
narrow so that the period of oscillation vanishes like ∼ λ−1/4. This behavior is in
agreement with the decrease of q̄ in this limit.

Solving Eq. (4.72) for v and computing q̄v(t) = q̄ub(t) = qb(t) in principle gives the
classical trajectory qb(t) ≡ qcl(t) of the particle as a function of time. With this in hand,
one computes V ′′(qcl(t)) ≡ mω2 + 3λ q2

cl(t) on the classical trajectory and can then (in
principle) also solve Eq. (4.48), which determines the prefactor f(tb, ta) of the propagator
(4.51). This is (at least as far as I know) no longer possible in closed analytic form.
However, we can still compute the classical action Scl in the exponent of Eq. (4.51).

To this end, we write with the help of Eqs. (4.64), (4.68) (for the sake of simplicity we
suppress the index “cl” in the following)

S =

∫ tb

ta

dt L(q̇, q, t) =

∫ tb

ta

dt

[
1

2
mq̇2 − V (q)

]
=

∫ qb

qa

dq

q̇
[E − 2V (q)]

= ±
√
m

2

∫ qb

qa

dq

[√
E − V (q)− V (q)√

E − V (q)

]
, (4.78)

where the + sign is for the case qa ≤ qb, while the − sign is for the case qa ≥ qb. Similarly
as in Eq. (4.72) we argue that we can write an arbitrary trajectory as a linear superposition
of pieces starting at qa = 0 and ending at qb ∈ [−q̄, q̄] and, for the sake of simplicity, we
focus on the case qb ∈ [0, q̄] in the following (the case qb ∈ [−q̄, 0] can be treated similarly).
Using the same variables as before (u = q/q̄, v = ub = qb/q̄, and κ2 from Eq. (4.70) and
employing Eqs. (4.63) and (4.69) we obtain

S =
q̄3

2

√
mλ

2

∫ v

0

du

[√
(1− u2)(κ2 + u2)− (κ2 − 1)u2 + u4√

(1− u2)(κ2 + u2)

]
. (4.79)
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4 Applications

The integrals are again standard elliptic integrals (cf. Eqs. (3.153.2), (3.154.2), and
(3.155.4) in Ref. [5]). The final result is

S =
q̄3

6

√
mλ

2

[
κ2(2κ2 − 1)√

1 + κ2
F

(
arcsin

(
v

√
1 + κ2

v2 + κ2

)
,

1√
1 + κ2

)

− 2
√

1 + κ2(κ2 − 1)E

(
arcsin

(
v

√
1 + κ2

v2 + κ2

)
,

1√
1 + κ2

)

+ 2v(v2 + 2κ2 − 1)

√
1− v2

κ2 + v2

]
, (4.80)

where E(ϕ, k) is the elliptic integral of the second kind. Of particular interest is the case
where the particle completes the way from the origin to the turning point. For this case,
the above expression is taken for v = 1,

S =
q̄3

6

√
mλ

2

[
κ2(2κ2 − 1)√

1 + κ2
K

(
1√

1 + κ2

)
− 2
√

1 + κ2(κ2 − 1) E

(
1√

1 + κ2

)]
, (4.81)

where E(k) is the complete elliptic integral of the second kind.
Finally, we can make the following interesting observation. Irrespective of the length

of the trajectory the particle travels in the potential, according to Eq. (4.72) the time
behaves as

t =

√
2m

λ

1

q̄
K1 , (4.82)

where K1 is some numerical factor resulting from evaluating the elliptic integral. Likewise,
from Eq. (4.80) we see that the classical action behaves as

S =
q̄3

6

√
mλ

2
K2 , (4.83)

where K2 is again some numerical factor. Eliminating q̄ by using Eq. (4.82) we see that

S =
2m2

λ t3
K1K

3
2 . (4.84)

The fact that the action scales ∼ 1/λ is a typical non-perturbative feature of the
semiclassical approximation, which will not appear, e.g., in a perturbative treatment of
the problem to be discussed in the next chapter.
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5 Perturbation Theory

Using the path-integral formalism, one obtains a physically intuitive interpretation of
scattering processes. Scattering processes are a typically application for perturbation
theory. In the following, we will first explain the concept of this approach.

5.1 The Born series

Consider the exponential function under the path integral in Eq. (3.21). We can factorize
the part which contains the potential energy,

G(~qb, tb; ~qa, ta) = N
∫ ~q(tb)=~qb

~q(ta)=~qa

D~q exp

(
i

~

∫ tb

ta

dt
m

2
~̇q 2

)
exp

[
− i
~

∫ tb

ta

dt V (~q, t)

]
. (5.1)

We then multiply the potential energy V (~q, t) with a number λ > 0. We first consider
the case λ � 1, in order to mathematically justify to terminate the expansion of the
exponential in powers of λ after a few terms. At the end of the calculation we will set
λ = 1. The Taylor expansion of the exponential factor containing the potential energy
reads

exp

[
− i
~

∫ tb

ta

dt λ V (~q, t)

]
=
∞∑
n=0

λn

n!

[
− i
~

∫ tb

ta

dt V (~q, t)

]n
= 1− i λ

~

∫ tb

ta

dt V (~q, t)− λ2

2~2

∫ tb

ta

dt dt′ V (~q, t)V (~q, t′) + . . . .

(5.2)

If we insert this into the propagator (5.1), we obtain the so-called Born series

G(~qb, tb; ~qa, ta) = G0(~qb, tb; ~qa, ta) +
∞∑
n=1

λnGn(~qb, tb; ~qa, ta) , (5.3)

where

G0(~qb, tb; ~qa, ta) =

∫ ~q(tb)=~qb

~q(ta)=~qa

D~q exp

(
i

~

∫ tb

ta

dt
m

2
~̇q 2

)
=

√
m

2πi~(tb − ta)

3

exp

[
im

2~(tb − ta)
(~qb − ~qa)2

]
(5.4)

is the free propagator, i.e., the propagator in the non-interacting case V (~q, t) ≡ 0,
cf. Eq. (4.7).
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5 Perturbation Theory

In the following, we will restrict ourselves to the case of causal propagation, tb > ta.
To this end, we multiply Eq. (5.4) with Θ(tb − ta),

G0(~qb, tb; ~qa, ta) =

√
m

2πi~(tb − ta)

3

exp

[
im

2~(tb − ta)
(~qb − ~qa)2

]
Θ(tb − ta) . (5.5)

The term of first order in the Born series reads

G1(~qb, tb; ~qa, ta) = − i
~
N
∫
D~q exp

(
i

~

∫ tb

ta

dt
m

2
~̇q 2

)∫ tb

ta

dt V (~q, t) , (5.6)

or in discretized form

G1(~qb, tb; ~qa, ta)

= − i
~

√
m

2π~ iτ

3N N∑
`=1

τ

∫ N−1∏
n=1

d3~qn exp

[
im

2~τ

N∑
n=1

(~qn − ~qn−1)2

]
V (~q`, t`)

= − i
~

N∑
`=1

τ

∫
d3~q`

{√
m

2π~ iτ

3(N−`) ∫ N−1∏
n=`+1

d3~qn exp

[
im

2~τ

N∑
n=`+1

(~qn − ~qn−1)2

]}

× V (~q`, t`)

{√
m

2π~ iτ

3` ∫ `−1∏
n=1

d3~qn exp

[
im

2~τ
∑̀
n=1

(~qn − ~qn−1)2

]}

= − i
~

N∑
`=1

τ

∫
d3~q`G0(~qb, tb; ~q`, t`)V (~q`, t`)G0(~q`, t`; ~qa, ta)

N →∞
−→
τ → 0

− i
~

∫ tb

ta

dt

∫
d3~q G0(~qb, tb; ~q, t)V (~q, t)G0(~q, t; ~qa, ta)

= − i
~

∫ ∞
−∞

dt

∫
d3~q G0(~qb, tb; ~q, t)V (~q, t)G0(~q, t; ~qa, ta) . (5.7)

In the last step we have moved the integration boundaries to ±∞, since the intervals
(−∞, ta) and (tb,∞) do not contribute to integral due to the causality of the free propa-
gator (5.5).

How can the result (5.7) be interpreted? The particle propagates freely from the space-
time point (~qa, ta) to the space-time point (~q, t). There it is influenced by the potential
V (~q, t). Afterwards it again propagates freely to the space-time point (~qb, tb). The
situation is depicted in Fig. 5.1. Note that one integrates over all times t and positions
~q, i.e., the potential can in principle act at any point t in time and at any position ~q on
the particle, but only once. Before and after that instant in space and time, it propagates
freely.

Quite analogously one derives the second term in the Born series,

G2(~qb, tb; ~qa, ta) =

(
− i
~

)2 ∫ ∞
−∞

dt1 dt2

∫
d3~q1 d3~q2G0(~qb, tb; ~q2, t2)V (~q2, t2)

×G0(~q2, t2; ~q1, t1)V (~q1, t1)G0(~q1, t1; ~qa, ta) . (5.8)
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Figure 5.1: Graphical interpretation of the first-order term in the Born series.

Note that the factor 1/2 from the expansion of the exponential function cancels against
a factor 2 which results from the fact that there are two possible orderings of the in-
termediate time points in the integral over t1 and t2: t2 ≥ t1 and t1 ≥ t2. Thus one
obtains a contribution from the product V (~q2, t2)V (~q1, t1) for t2 ≥ t1 and another con-
tribution V (~q2, t2)V (~q1, t1) when t1 ≥ t2. After relabelling the integration variables,
t2 ↔ t1, ~q2 ↔ ~q1 both terms are identical. The second term in the Born series is graphi-
cally illustrated in Fig. 5.2. Now the potential acts twice on the particle, at the space-time
points (~q1, t1) and (~q2, t2), in between it propagates freely. Again one has to integrate over
all possible positions of these space-time points. The causality of the free propagator (5.5)
always ensures that ta ≤ t1 ≤ t2 ≤ tb.

We now consider Eq. (3.37),

ψ(~qb, tb) = 〈~qb, tb|ψ〉H =

∫
d3~qa 〈~qb, tb|~qa, ta〉 〈~qa, ta|ψ〉H

=

∫
d3~qa 〈~qb, tb|~qa, ta〉ψ(~qa, ta) ≡

∫
d3~qaG(~qb, tb; ~qa, ta)ψ(~qa, ta) . (5.9)

In Sec. 3.3 we used it to prove the equivalence of the transition amplitude and the propa-
gator for the free Schrödinger equation. However, as a matter of fact this equation holds
not only for the free Schrödinger equation but also in the interacting case, since we did
not make any further assumption about the complete set of time-evolved states |~qa, ta〉
that was inserted between 〈~qb, tb| and |ψ〉H . Inserting the Born series (5.3) for λ = 1 into
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Figure 5.2: Graphical interpretation of the second-order term in the Born series.

this equation, we obtain

ψ(~qb, tb) =

∫
d3~qaG(~qb, tb; ~qa, ta)ψ(~qa, ta)

=

∫
d3~qaG0(~qb, tb; ~qa, ta)ψ(~qa, ta)

− i

~

∫ ∞
−∞

dt

∫
d3~q G0(~qb, tb; ~q, t)V (~q, t)

∫
d3~qaG0(~q, t; ~qa, ta)ψ(~qa, ta)

+

(
− i
~

)∫ ∞
−∞

dt

∫
d3~q G0(~qb, tb; ~q, t)V (~q, t)

(
− i
~

)∫ ∞
−∞

dt1

∫
d3~q1

×G0(~q, t; ~q1, t1)V (~q1, t1)

∫
d3~qaG0(~q1, t1; ~qa, ta)ψ(~qa, ta)

+ . . .

=

∫
d3~qq G0(~qb, tb; ~qa, ta)ψ(~qa, ta)

− i

~

∫ ∞
−∞

dt

∫
d3~q G0(~qb, tb; ~q, t)V (~q, t)ψ(~q, t) . (5.10)

Here the terms marked in red have been collected into the solution ψ(~q, t) of the Schrödinger
equation.

5.2 The scattering matrix

Let us now consider a scattering process, where the particles are non-interacting at
t = ±∞. For free particles the wave functions are eigenstates of momentum ~p and energy
E, i.e., plane waves. For the initial state, i.e., the incoming particle the wave function
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5.2 The scattering matrix

is then

ψin(~qa, ta) =
1

√
2π~3 exp

[
− i
~

(Eata − ~pa · ~qa)
]
≡ 〈~qa, ta|~pa〉in , (5.11)

where Ea ≡ E(~pa) is the energy of the incoming particle. The index “in” indicates that
this is a state of the incoming particle. For the final state, i.e., the outgoing particle the
respective wave function is

ψout(~qb, tb) =
1

√
2π~3 exp

[
− i
~

(Ebtb − ~pb · ~qb)
]
≡ 〈~qb, tb|~pb〉out , (5.12)

where Eb ≡ E(~pb) is the energy of the outgoing particle. The index “out” indicates that
this is a state of the outgoing particle.

The last equality in Eqs. (5.11), (5.12) warrants some additional explanation. According
to Eq. (3.9),

〈~qa,b|~pa,b〉 =
1

√
2π~3 exp

(
i

~
~pa,b · ~qa,b

)
. (5.13)

The analogous relation for the time-evolved position states (2.10) reads

〈~qa,b, ta,b|~pa,b〉 = 〈~qa,b|Û(ta,b, t0)|~pa,b〉 =

〈
~qa,b

∣∣∣∣exp

[
− i
~
Ĥ0(ta,b − t0)

]∣∣∣∣ ~pa,b〉
=

1
√

2π~3 exp

{
− i
~

[Ea,b(ta,b − t0)− ~pa,b · ~qa,b]
}
. (5.14)

Here we have assumed that the particle is non-interacting in the time interval [t0, ta,b], so

that we can take the non-interacting Hamilton operator Ĥ0 in the time-evolution operator
(2.9). Since Ĥ0 is not explicitly time-dependent, the time integral in the exponent can be

immediately performed and the time-ordering operator is irrelevant. Since Ĥ0 ≡ ~̂p 2

2m
, we

have Ĥ0|~pa,b〉 =
~p 2
a,b

2m
|~pa,b〉 ≡ Ea,b|~pa,b〉, and the exponential can be factored out from the

overlap 〈~qa,b|~pa,b〉. Setting t0 ≡ 0 and using Eq. (5.13) we immediately obtain Eqs. (5.11),
(5.12).

We now want to determine the quantum-mechanical amplitude for the scattering from
the initial state |~pa〉in into the final state |~pb〉out, the so-called scattering matrix,

Sba ≡ out〈~pb|~pa〉in

=

∫
d3~qb out〈~pb|~qb, tb〉〈~qb, tb|~pa〉in

=

∫
d3~qb d3~qa out〈~pb|~qb, tb〉〈~qb, tb|~qa, ta〉〈~qa, ta|~pa〉in

≡
∫

d3~qb d3~qa ψ
∗
out(~qb, tb)G(~qb, tb; ~qa, ta)ψin(~qa, ta)

≡
∫

d3~qb ψ
∗
out(~qb, tb)ψ(~qb, tb) . (5.15)

Here we first inserted two complete sets of time-evolved position states and then used
the equivalence of propagator and transition amplitude, as well as Eq. (5.9) for the time
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5 Perturbation Theory

evolution of the initial wave function ψin(~qa, ta) to the space-time point (~qb, tb),

ψ(~qb, tb) =

∫
d3~qaG(~qb, tb; ~qa, ta)ψin(~qa, ta) . (5.16)

Note that we can now omit the index “in” at ψ(~qb, tb), since the interaction occurring
in the interval [ta, tb] (which is taken into account in the full propagator G(~qb, tb; ~qa, ta))
changes this wave function in a non-trivial manner. In particular, the initial momentum
~pa will be changed due to the scattering processes occurring in this time interval.

The result (5.15) is the quantum-mechanical overlap of the solution ψ(~qb, tb) of the
full scattering problem (with given initial state ψin(~qa, ta), where the particle has the fixed
momentum ~pa) with the outgoing state ψout(~qb, tb), which is an eigenstate of momentum
with eigenvalue ~pb. Or in other words, the scattering matrix Sba measures how much a
plane wave with momentum ~pb contributes to the final state ψ(~qb, tb), which has evolved
out of the initial state with fixed momentum ~pa.

If we insert the Born series (5.3) for the full propagator, we obtain

Sba =

∫
d3~qb d3~qa ψ

∗
out(~qb, tb)G0(~qb, tb; ~qa, ta)ψin(~qa, ta)

− i

~

∫
d3~qb d3~qa dt d3~q ψ∗out(~qb, tb)G0(~qb, tb; ~q, t)V (~q, t)G0(~q, t; ~qa, ta)ψin(~qa, ta)

+ . . . , (5.17)

where we only denoted the zeroth- and first-order terms of the Born series explicitly and
inserted Eq. (5.7) for the latter.

In Exercise 5 one is supposed to prove that a plane wave which propagates without
interaction from (~qa, ta) to (~qb, tb) is still a plane wave,∫

d3~qaG0(~qb, tb; ~qa, ta)ψin(~qa, ta) ≡ ψin(~qb, tb) =
1

√
2π~3 exp

[
− i
~

(Eatb − ~pa · ~qb)
]
.

(5.18)
Therefore, the first term in Eq. (5.17) is∫

d3~qb d3~qa ψ
∗
out(~qb, tb)G0(~qb, tb; ~qa, ta)ψin(~qa, ta) =

∫
d3~qb ψ

∗
out(~qb, tb)ψin(~qb, tb)

=
1

(2π~)3

∫
d3~qb exp

{
i

~
[(Eb − Ea) tb − (~pb − ~pa) · ~qb]

}
= exp

[
i

~
(Eb − Ea) tb

]
δ(3)(~pb − ~pa) = δ(3)(~pb − ~pa) , (5.19)

since on account of the delta function Eb = E(~pb) = E(~pa) = Ea.
We now abbreviate all higher-order terms in Eq. (5.17) with iTba, where the factor

i is pure convention and Tba represents the so-called transition matrix. While the
delta function is the amplitude for the process where no scattering occurs, i.e., where the
initial- and final-state momenta are identical, ~pb = ~pa, the term iTba is the amplitude for
a process where scattering occurs, i.e., where the final-state momentum differs from that
of the initial state, ~pb 6= ~pa. The scattering matrix (5.17) reads in compact notation

Sba = δ(3)(~pb − ~pa) + iTba . (5.20)
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5.3 Feynman diagrams

5.3 Feynman diagrams
Lecture 6

There is a simple diagrammatic notation for the Born series (5.3) of the full propagator,

G(~qb, tb; ~qa, ta) = G0(~qb, tb; ~qa, ta)

− i

~

∫
dt d3~q G0(~qb, tb; ~q, t)V (~q, t)G0(~q, t; ~qa, ta) + . . . , (5.21)

cf. Fig. 5.3.
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Figure 5.3: Diagrammatic representation of the Born series in terms of Feynman diagrams.

This notation was invented by R.P. Feynman, therefore these diagrams are called Feyn-
man diagrams. With the help of the so-called Feynman rules for these diagrams, one
can translate them back into mathematical formulas. The Feynman rules in coordi-
nate space are:

(i) A line between two space-time points (~q1, t1) and (~q2, t2) symbolizes a free propa-
gator,

G0(~q2, t2; ~q1, t1) = q ,t1 1 2 2q ,t

(ii) A vertex at the space-time point (~q, t) symbolizes a factor

− i
~
V (~q, t) =

q,t

An integration over all possible values (~q, t) is implied.

One can formulate the Feynman rules also in momentum space. To this end, all objects
have to be Fourier-transformed. The Fourier representation of the free propagator reads

G̃0(~p2, E2; ~p1, E1) = (2π~)4δ(E2 − E1)δ(3)(~p2 − ~p1)
i~

E2 − ~p 2
2

2m
+ iε

. (5.22)

The proof of this equation is subject of Exercise 6(i). As will become clear in that exercise,
the iε in the denominator arises from the Θ function in Eq. (5.5). Without the Θ function,

the propagator would have a pole on the real energy axis at E2 =
~p 2
2

2m
. The iε shifts this

pole into the lower half of the complex-energy plane, E2 =
~p 2
2

2m
−iε, cf. Fig. 5.4. This should
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5 Perturbation Theory

be familiar from Classical Electrodynamics, where the retarded propagator (or Green’s
function), i.e., the one which leads to causal wave propagation, has poles in the lower half
of the complex-energy (or frequency) plane, while the advanced propagator (or Green’s
function), i.e., the one which leads to anticausal wave propagation, has poles in the upper
half of the complex-energy plane. In general, propagators (or Green’s functions) are only
well-defined once a prescription of how to navigate poles is specified.

2

E

ε

0
2m

p

Figure 5.4: Shifting the pole of the propagator from the real axis into the lower half of
the complex-energy plane leads to the causal propagator (5.5).

Without knowing the exact form of the potential V (~q, t) we can only quote the definition
of the Fourier-transformed vertex,

Ṽ (~p, ω) =

∫
dt d3~q V (~q, t) exp

[
i

~
(ωt− ~p · ~q)

]
. (5.23)

If we insert this into the Born series (5.21) and identify the Fourier coefficients on the
left- and right-hand sides of this equation, we obtain the following Feynman rules in
momentum space:

(i) A line symbolizes a factor

i~
E − ~p 2

2m
+ iε

=
p,E

i.e., essentially the free propagator (5.22) in momentum space.

(ii) A vertex symbolizes a factor

− i
~
Ṽ (~p, ω) =

p ,E1 21 2p ,E

At each vertex we have conservation of energy and momentum, i.e., the sum of all
incoming energies and momenta are identical with those of the outgoing energies
and momenta. This means that in the above expression we should use ω = E2−E1,
~p = ~p2 − ~p1.

The proof of these rules is subject of Exercise 6(ii).
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5.4 Green’s functions revisited

In Sec. 3.3 we have already explained the relationship between transition amplitude,
propagator, and Green’s function. In this section we want to elaborate on this relationship
from a somewhat different angle.

In principle, the method of Green’s functions is applied to derive a special solution for
an inhomogeneous differential equation. However, the Schrödinger equation is first of
all a homogeneous differential equation. Nevertheless, we can put the term containing
the potential energy to the other side,(

i~
∂

∂t
+

~2

2m
∆q

)
ψ(~q, t) = V (~q, t)ψ(~q, t) ≡ j(~q, t) . (5.24)

Formally, this looks like a linear partial differential equation with the “inhomogeneous
term” j(~q, t). Strictly speaking, this term depends by definition on the solution ψ(~q, t) of
the differential equation, so rewriting the Schrödinger equation as in Eq. (5.24) appears
to not gain anything. Nevertheless, let us ignore this for the moment and proceed to-
wards the solution of the differential equation (5.24). The general solution of a linear,
inhomogeneous differential equation is known to be a superposition of the general solu-
tion of the corresponding homogeneous differential equation and a special solution of
the inhomogeneous differential equation. The homogeneous differential equation is
simply the free Schrödinger equation,(

i~
∂

∂t
+

~2

2m
∆q

)
ψ0(~q, t) = 0 , (5.25)

and the general solution is a superposition of plane waves,

ψ0(~q, t) =

∫
d3~p

(2π~)3
ψ̃0(~p) exp

[
− i
~

(Et− ~p · ~q)
]
, (5.26)

cf. Eq. (3.28). In comparison to that equation, we now choose a representation in terms

of momentum ~p = ~~k and energy E = ~ω instead of wave number ~k and frequency ω.
According to Eq. (3.26), the energy is given by the non-relativistic energy-momentum

relation, E = ~p 2

2m
. Furthermore, we absorb the additional factor 1/(2π) in Eq. (3.28) into

the definition of the Fourier coefficients ψ̃0(~p).
As explained in Sec. 3.3, the Fourier coefficients ψ̃0(~p) still need to be adapted to the

initial and boundary conditions. Note that the choice

ψ̃0(~p) ≡
√

2π~
3
δ(3)(~pa − ~p) (5.27)

just yields the incoming plane wave (5.11) with momentum ~pa and energy Ea = E(~pa) in
the discussion of the scattering matrix in Sec. 5.2.

A special solution of the inhomogeneous differential equation can be obtained with
the method of Green’s functions. The Green’s function G0(~q, t; ~q ′, t′) of the homoge-
neous Schrödinger equation (5.25) is defined as the solution of the differential equation(

i~
∂

∂t
+

~2

2m
∆q

)
G0(~q, t; ~q ′, t′) = δ(t− t′) δ(3)(~q − ~q ′) , (5.28)
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and as such fulfills the inhomogeneous Schrödinger equation (5.24) with a (four-dimensio-
nal) delta function as inhomogeneity. A special solution of the inhomogeneous Schrö-
dinger equation (5.24) is then given by

ψS(~q, t) =

∫
dt′ d3~q ′ G0(~q, t; ~q ′, t′) j(~q ′, t′) , (5.29)

since(
i~

∂

∂t
+

~2

2m
∆q

)
ψS(~q, t) =

∫
dt′ d3~q ′

(
i~

∂

∂t
+

~2

2m
∆q

)
G0(~q, t; ~q ′, t′) j(~q ′, t′)

=

∫
dt′ d3~q ′ δ(t− t′) δ(3)(~q − ~q ′) j(~q ′, t′)

≡ j(~q, t) , q.e.d. (5.30)

The general solution of the inhomogeneous Schrödinger equation (5.24) is then

ψ(~qb, tb) = ψ0(~qb, tb) + ψS(~qb, tb)

= ψ0(~qb, tb) +

∫
dt d3~q G0(~qb, tb; ~q, t)V (~q, t)ψ(~q, t) . (5.31)

Compare this result with Eq. (5.10). Suppose that ψ(~qa, ta) in that equation is a super-
position of plane waves, analogous to the general solution (5.26) of the homogeneous
Schrödinger equation. Then, according to Eq. (5.18), this superposition will simply
be transported to the space-time point (~qb, tb) via convolution with the free propaga-
tor G0(~qb, tb; ~qa, ta), but it will stay a superposition of plane waves. Therefore, we can
identify the first term in Eq. (5.10) wiht the first term ψ0(~qb, tb) in Eq. (5.31). But then
also the second term in Eq. (5.10) has to be identical with the second term in Eq. (5.31).
This in turn implies that

G0(~q, t; ~q ′, t′) ≡ i~G0(~q, t; ~q ′, t′) , (5.32)

i.e., up to a factor i~ propagator and Green’s function are identical. In fact, we could
have made them exactly identical, had we included a factor 1/(i~) on the right-hand side
of the defining equation (5.28) for the Green’s function G0.

5.5 The generating functional for correlation functions

Conider the transition amplitude

〈 ~Q ′, T ′| ~Q, T 〉J = N
∫
D~q exp

{
i

~

∫ T ′

T

dτ
[
L(~q, ~̇q, τ) + ~ ~J(τ) · ~q(τ)

]}
, (5.33)

i.e., the well-known transition amplitude (3.21), but now modified by the presence of an

external source ~J(τ), which couples to the position vector ~q(τ). Without loss of generality

we assume that the source ~J(τ) is different from zero only in a time interval [t, t′], where
T < t and t′ < T ′, i.e., [t, t′] ⊂ [T, T ′]. Later we will send T → −∞ and T ′ → +∞.
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5.5 The generating functional for correlation functions

We now insert two complete sets of time-evolved position eigenstates on the left-hand
side of Eq. (5.33),

〈 ~Q ′, T ′| ~Q, T 〉J =

∫
d3~q ′ d3~q 〈 ~Q ′, T ′|~q ′, t′〉〈~q ′, t′|~q, t 〉J〈~q, t | ~Q, T 〉 . (5.34)

Here we have omitted the superscript “J” at the first and the third overlap, since the
source ~J(t) vanishes in the time intervals [T, t] and [t′, T ′].

Using the definition of the time-evolved position eigenstates, we have

〈 ~Q ′, T ′|~q ′, t′〉 = 〈 ~Q ′| Û(T ′, 0) Û(0, t′) |~q ′〉 = 〈 ~Q ′| Û(T ′, t′) |~q ′〉 . (5.35)

Let us assume that the Hamilton operator does not explicitly depend on time in the time
interval [t′, T ′]. Then the time evolution operator assumes the simple form

Û(T ′, t′) = e−
i
~ Ĥ(T ′−t′)

and, after inserting a complete set of eigenfunctions of the Hamilton operator,

1 =

∫∑
m

|m〉〈m| , Ĥ |m〉 = Em |m〉 , (5.36)

it follows from Eq. (5.35) that

〈 ~Q ′, T ′|~q ′, t′〉 =

∫∑
m

〈 ~Q ′| e−
i
~ Ĥ(T ′−t′) |m〉〈m|~q ′〉 =

∫∑
m

〈 ~Q ′|m〉〈m|~q ′〉 e−
i
~ Em(T ′−t′)

≡
∫∑
m

φm( ~Q ′)φ∗m(~q ′) e−
i
~ Em(T ′−t′) . (5.37)

Completely analogously it follows that

〈~q, t | ~Q, T 〉 =

∫∑
n

φn(~q)φ∗n( ~Q) e−
i
~ En(t−T ) . (5.38)

Inserting Eqs. (5.37) and (5.38) into Eq. (5.34) we obtain

〈 ~Q ′, T ′| ~Q, T, 〉J (5.39)

=

∫∑
m,n

∫
d3~q ′ d3~q φm( ~Q ′)φ∗m(~q ′) 〈~q ′, t′|~q, t 〉Jφn(~q)φ∗n( ~Q) e

i
~ [Em(t′−T ′)+En(T−t)] .

Now we “rotate” the time axis by a small angle −δ, δ > 0, in the complex time plane,
cf. Fig. 5.5. This means that all times in the above formula are multiplied with a phase
factor e−iδ, i.e.,

t′ − T ′ −→ (t′ − T ′)e−iδ , T − t −→ (T − t)e−iδ .
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Re t

Im t
t

t

t’ T’

T

0
δ

J = 0

Figure 5.5: Rotation of the time axis in the complex time plane. We assumed without
loss of generality that the origin of the real time axis lies in the interval [t, t′].

Then,

Re
i

~
Em(t′ − T ′) −→ Re

i

~
Em(t′ − T ′)e−iδ =

Em
~

(t′ − T ′) sin δ
T ′→+∞' −Em

~
T ′ sin δ < 0 ,

(5.40)
if we additionally assume that Em > 0 ∀ m. Quite analogously it follows that

Re
i

~
En(T − t) −→ Re

i

~
En(T − t)e−iδ =

En
~

(T − t) sin δ
T→−∞' En

~
T sin δ < 0 . (5.41)

This in turn implies that, in the limit T → −∞, T ′ → +∞, all terms in Eq. (5.39)
become exponentially damped. The dominant term is the one which is damped to
the least extent, i.e., the one with the smallest argument of the exponential function.
This is the term for m = n = 0, the ground state,

lim
T ′ → +∞
T → −∞

〈 ~Q ′, T ′| ~Q, T, 〉J ' φ0( ~Q ′)φ∗0( ~Q) e−
i
~E0(T ′−T )

∫
d3~q ′ d3~q φ∗0(t′, ~q ′) 〈~q ′, t′|~q, t 〉Jφ0(t, ~q) ,

(5.42)
where we have used

e−
i
~E0t φ0(~q) = e−

i
~E0t 〈~q |0〉 = 〈~q | e−

i
~ Ĥt |0〉 = 〈~q |Û(t, 0)|0〉 ≡ 〈~q, t |0〉 ≡ φ0(~q, t) , (5.43)

and analogously

φ∗0(~q ′) e
i
~E0t′ = 〈0|~q ′, t′〉 = φ∗0(~q ′, t′) . (5.44)

Here we have assumed that Ĥ is not explicitly time-dependent. Equation (5.42) can be
rearranged,

lim
T ′ → +∞
T → −∞

〈 ~Q ′, T ′| ~Q, T 〉J

φ0( ~Q ′)φ∗0( ~Q) e−
i
~E0(T ′−T )

=

∫
d3~q ′ d3~q φ∗0(~q ′, t′) 〈~q ′, t′|~q, t 〉Jφ0(~q, t)

=

∫
d3~q ′ d3~q 〈0|~q ′, t′〉 〈~q ′, t′|~q, t 〉J〈~q, t |0〉 ≡ 〈0; t′|0; t〉J . (5.45)

The bra 〈0; t′| is the ground or vacuum state at time t′ and the ket |0; t〉 is the
vacuum state at time t. Therefore, the overlap on the right-hand side is the transition
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amplitude from the ground state or vacuum at t to the vacuum at t′, the so-called
vacuum-to-vacuum transition amplitude. Since t′ can be chosen arbitrarily large
(as long as t′ < T ′) and t arbitrarily small (as long as T < t), we can also write Eq. (5.45)
as

〈0; +∞|0;−∞〉J ∼ lim
T ′ → +∞
T → −∞

〈 ~Q ′, T ′| ~Q, T 〉J . (5.46)

The denominator on the left-hand side of Eq. (5.45) was omitted, since it is just a numer-
ical factor. Finally, we employ the path-integral representation (5.33) of the transition
amplitude on the right-hand side and obtain (after relabelling the integration variable
τ → t)

〈0; +∞|0;−∞〉J ∼
∫
D~q exp

{
i

~

∫ ∞
−∞

dt
[
L(~q, ~̇q, t) + ~ ~J(t) · ~q(t)

]}
≡ Z[ ~J ] . (5.47)

The right-hand side is a functional of the source ~J(t). The functional Z[ ~J ] is the so-
called generating functional for correlation functions. This entails that one can
generate correlation function via functional differentiation of Z[ ~J ] with respect to the

source ~J . This will be explained in more detail in the following.
First, however, we need to remember the definition of a functional and clarify how to

differentiate it. Let us consider the function

f : M −→ N , M,N ⊂ R ,

x 7−→ f(x) , x ∈M , f(x) ∈ N . (5.48)

We denote the space of infinitely often differentiable functions f on the manifold M ⊂ R
as C∞(M). A functional

F : C∞(M) −→ R ,

f 7−→ F [f ] , (5.49)

maps an element f ∈ C∞(M) to a real number F [f ] ∈ R.
The functional derivative of F [f ] with respect to the function f (at the value y of

its argument) is defined as

δF [f(x)]

δf(y)
= lim

ε→0

F [f(x) + ε δ(x− y)]− F [f(x)]

ε
. (5.50)

In words, one calculates the functional F for a function, which is differs from f only by a
delta function at x = y, multiplied by ε, and subtracts the functional F [f ]. Subsequently
one divides by ε and sends ε to zero. This definition of the functional derivative is very
similar to the definition of the standard derivative of functions.

To practice functional differentiation, let us consider a few examples:

(i) F [f ] =
∫∞
−∞ dx f(x).

=⇒ δF [f(x)]

δf(y)
= lim

ε→0

1

ε

{∫ ∞
−∞

dx [f(x) + ε δ(x− y)]−
∫ ∞
−∞

dx f(x)

}
=

∫ ∞
−∞

dx δ(x− y) ≡ 1 . (5.51)
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(ii) Fx[f ] =
∫∞
−∞ dy G(x, y) f(y). Besides the function f , this functional also depends

on the variable x. Therefore it is a functional of f and a function of x.

=⇒ δFx[f(y)]

δf(z)
= lim

ε→0

1

ε

{∫ ∞
−∞

dy G(x, y) [f(y) + ε δ(y − z)]−
∫ ∞
−∞

dy G(x, y) f(y)

}
=

∫ ∞
−∞

dy G(x, y) δ(y − z) ≡ G(x, z) . (5.52)

(iii) For the special choice G(x, y) ≡ δ(x− y) in the previous example we obtain Fx[f ] =∫∞
−∞ dy δ(x− y) f(y) ≡ f(x), from which follows

=⇒ δFx[f(y)]

δf(z)
≡ δf(x)

δf(z)
≡ δ(x− z) . (5.53)

A normal function f at the value x of its argument, f(x), can therefore be func-
tionally differentiated with respect to the same function at another value of its
argument, say f(z). The result is a delta function with support at x = z. This
result generalizes the standard formula for the normal derivative of the ith with re-
spect to the jth coordinate, dxi/dxj ≡ δij. For functions, which can be considered
as “variables with continuous index”, the delta function plays the same role as the
Kronecker delta for variables with discrete index.

Let us now consider

δZ[ ~J ]

δJk(t1)
= lim

ε→0

1

ε

[∫
D~q exp

(
i

~

∫ ∞
−∞

dt
{
L(~q, ~̇q, t) + ~ [Jj(t) + ε δkj δ(t− t1)] qj(t)

})
−
∫
D~q exp

(
i

~

∫ ∞
−∞

dt
{
L(~q, ~̇q, t) + ~ Jj(t)qj(t)

})]
= lim

ε→0

1

ε

{
∞∑
n=0

(i ε)n

n!

∫
D~q

[∫ ∞
−∞

dt qk(t) δ(t− t1)

]n
e

i
~
∫∞
−∞ dt[L(~q,~̇q,t)+~ ~J(t)·~q(t)]

−
∫
D~q e

i
~
∫∞
−∞ dt[L(~q,~̇q,t)+~ ~J(t)·~q(t)]

}
= i

∫
D~q qk(t1) e

i
~
∫∞
−∞ dt[L(~q,~̇q,t)+~ ~J(t)·~q(t)] . (5.54)

From the first to the second equality we have expanded in terms of a Taylor series the
part of the exponential function in the first path integral which is proportional to ε. The
term n = 0 of this series cancels the second path integral. In the remaining series the
term of order n is (after division by the factor ε in the denominator) proportional to εn−1.
Thus, in the limit ε→ 0 only the n = 1 term of the Taylor series survives.

Quite analogously one shows that

δnZ[ ~J ]

δJk1(t1) · · · δJkn(tn)
= in

∫
D~q qk1(t1) · · · qkn(tn) e

i
~
∫∞
−∞ dt[L(~q,~̇q,t)+~ ~J(t)·~q(t)] , (5.55)

where the indices k1, . . . , kn = x, y, or z.
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Let us now consider the transition amplitude

〈~qb, tb| q̂k(tj) |~qa, ta〉 , ta < tj < tb , k = x, y or z . (5.56)

We repeat the steps which we have taken in Sec. 3.1 to derive Eq. (3.12). First we partition
the time interval [ta, tb] in N pieces of length τ and insert complete sets of time-evolved
position states,

〈~qb, tb| q̂k(tj) |~qa, ta〉 =

∫ N−1∏
n=1

d3~qn〈~qb, tb|~qN−1, tN−1〉〈~qN−1, tN−1|~qN−2, tN−2〉 · · · (5.57)

×〈~qj+1, tj+1, | q̂k(tj) |~qj, tj〉〈~qj, tj|~qj−1, tj−1〉 · · · 〈~q1, t1|~qa, ta〉 .

The set

1 =

∫
d3~qj |~qj, tj〉〈~qj, tj| ,

is the one which consists of eigenstates of the operator q̂k(tj),

q̂k(tj) |~qj, tj〉 = qk(tj) |~qj, tj〉 . (5.58)

This set will be inserted directly behind the operator q̂k(tj) in Eq. (5.57), such that
the operator can be simply replaced by its eigenvalue. This eigenvalue is then just a
numerical factor and can be pulled out of the overlap. The following steps mirror those
of the derivation of Eq. (3.12). We obtain the final result

〈~qb, tb| q̂k(tj) |~qa, ta〉 =

∫
D~qD~p qk(tj) e

i
~
∫ tb
ta

dt [~p·~̇q−H(~p,~q,t)] . (5.59)

The object on the left-hand side is called one-point correlation function.
In complete analogy one derives for ta < t1 < t2 < tb

〈~qb, tb| q̂k2(t2) q̂k1(t1) |~qa, ta〉 =

∫
D~qD~p qk1(t1) qk2(t2) e

i
~
∫ tb
ta

dt [~p·~̇q−H(~p,~q,t)] . (5.60)

Here we have to note that the operator q̂k2(t2), which belongs to the later point in time
t2, is placed to the left of the operator q̂k1(t1), which belongs to the earlier point in time
t1. The successive insertion of complete sets of time-evolved position states can therefore
be performed without problems. However, this would not work if t2 < t1, since then the
set which belongs to the earlier time would be inserted to the left of that belonging to the
later time. This problem does not occur for the following amplitude for ta < t2 < t1 < tb,

〈~qb, tb| q̂k1(t1) q̂k2(t2) |~qa, ta〉 =

∫
D~qD~p qk1(t1) qk2(t2) e

i
~
∫ tb
ta

dt [~p·~̇q−H(~p,~q,t)] . (5.61)

Obviously, the order of the factors qk1(t1) and qk2(t2) under the path integral on the
right-hand side plays no role, therefore Eqs. (5.60) and (5.61) are identical. In order
to summarize the left-hand sides of these equations in a single expression, we use the
time-ordering operator,

T̂ [q̂k1(t1) q̂k2(t2)] =

{
q̂k1(t1) q̂k2(t2) for t1 > t2 ,
q̂k2(t2) q̂k1(t1) for t2 > t1 ,

(5.62)
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such that we can write Eqs. (5.60) and (5.61) in the compact form

〈~qb, tb| T̂ [q̂k1(t1) q̂k2(t2)] |~qa, ta〉 =

∫
D~qD~p qk1(t1) qk2(t2) e

i
~
∫ tb
ta

dt [~p·~̇q−H(~p,~q,t)] . (5.63)

This is the two-point correlation function. This result can be generalized to n points
in time tj, j = 1, . . . , n,

〈~qb, tb| T̂ [q̂k1(t1) · · · q̂kn(tn)] |~qa, ta〉 =

∫
D~qD~p qk1(t1) · · · qkn(tn) e

i
~
∫ tb
ta

dt [~p·~̇q−H(~p,~q,t)] .

(5.64)
This is the n–point correlation function. For Hamilton functions which are quadratic
in the momenta, cf. Eq. (3.15), one can again explicitly compute the path integral over
the momenta and obtains

〈~qb, tb| T̂ [q̂k1(t1) · · · q̂kn(tn)] |~qa, ta〉 = N
∫
D~q qk1(t1) · · · qkn(tn) e

i
~
∫ tb
ta

dt L(~q,~̇q,t) . (5.65)

If we now send ta → −∞ and tb → +∞, we can shown in analogy to the derivation of
Eq. (5.46) that

lim
tb → +∞
ta → −∞

〈~qb, tb| T̂ [q̂k1(t1) · · · q̂kn(tn)] |~qa, ta〉 = N
∫
D~q qk1(t1) · · · qkn(tn) e

i
~
∫∞
−∞ dt L(~q,~̇q,t)

∼ 〈0; +∞| T̂ [q̂k1(t1) · · · q̂kn(tn)] |0;−∞〉 . (5.66)

If we compare this with Eq. (5.55), we observe that Z[ ~J ] is the generating functional
for n–point correlation functions in the ground state,

δnZ[ ~J ]

δJk1(t1) · · · δJkn(tn)

∣∣∣∣∣
~J=0

∼ in〈0; +∞| T̂ [q̂k1(t1) · · · q̂kn(tn)] |0;−∞〉 , (5.67)

i.e., via functional differentiation of Z[ ~J ] with respect to the source ~J (which is set to zero
afterwards) we generate the n–point correlation functions.

5.6 Addendum: Ehrenfest’s theorem, canonical
commutation relation

Lecture 7

The concept of the functional derivative allows us to draw conclusions on how Ehren-
fest’s theorem and the canonical commutation relation appear in the path-integral
formalism. We will restrict our considerations to one spatial dimension, the generalization
to three spatial dimensions is straightforward. We first prove the following

Proposition: Let G[q(s)] be a functional of the function q(s). Then∫
Dq δG[q(s)]

δq(t)
= 0 . (5.68)
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Proof: According to the definition (5.50), we have∫
Dq δG[q(s)]

δq(t)
=

∫
Dq lim

ε→0

1

ε
{G[q(s) + εδ(s− t)]−G[q(s)]}

= lim
ε→0

1

ε

{∫
Dq G[q(s) + εδ(s− t)]−

∫
Dq G[q(s)]

}
, (5.69)

where we assumed that we can exchange the order of the path integration and the limit
ε → 0. In the path integral we integrate over all functions q(s), in particular also
over the function q(s) + εδ(s − t). We may therefore substitute the integration variable,
q′(s) = q(s) + εδ(s − t) in the first path integral in Eq. (5.69). The Jacobi determinant
of this substitution is equal to one, Dq = Dq′. Then, the first path integral in Eq. (5.69)
is exactly equal to the second, and they cancel, even prior to taking the limit ε→ 0, q.e.d.

Now let F [q(s)] be a functional of a trajectory q(s) of a quantum-mechanical particle in
one dimension, and S[q(s)] the corresponding action. If we use Eq. (5.68) for the particular
choice G[q(s)] ≡ F [q(s)] exp

{
i
~S[q(s)]

}
, we obtain with the product rule (which is also

valid for functional derivatives)

0 =

∫
Dq
{
δF [q(s)]

δq(t)
+
i

~
F [q(s)]

δS[q(s)]

δq(t)

}
e

i
~S[q(s)] . (5.70)

Let us introduce the short-hand notation

〈A(q)〉S ≡
∫
Dq A(q) e

i
~S[q(s)] , (5.71)

which has the meaning of an average of the quantity A(q) over the ensemble of quantum-
mechanical trajectories represented by the path integral. Then, Eq. (5.70) assumes the
compact form 〈

δF [q(s)]

δq(t)

〉
S

= − i
~

〈
F [q(s)]

δS[q(s)]

δq(t)

〉
S

. (5.72)

This is also valid for discretized variables, i.e., when the time interval [sa, sb] is discretized,
sb − sa = Nτ , sa ≡ s0, sj = sa + jτ , j = 1, . . . , N − 1, sb ≡ sN , and the trajectory q(s)
is replaced by a discrete set of variables, qa ≡ q0, q1, . . . , qN ≡ qb, where qj ≡ q(sj), j =
0, . . . , N . In this case, the functionals F [q(s)] and S[q(s)] become ordinary functions
of the variables q0, q1, . . . , qN ,

F [q(s)] −→ F (q0, q1, . . . , qN) ,

S[q(s)] −→ S(q0, q1, . . . , qN) ≡
N∑
n=1

τ

[
m

2

(
qn − qn−1

τ

)2

− V (qn, sn)

]
. (5.73)

The functional derivative with respect to q(t) simply becomes the partial derivative
with respect to the spatial coordinate q` at the particular time slice t` corresponding to
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the time t in the continuum, i.e., δ/δq(t)→ ∂/∂q`. Then, Eq. (5.72) reads〈
∂F (q0, . . . , qN)

∂q`

〉
S

= − i
~

〈
F (q0, . . . , qN)

∂S(q0, . . . , qN)

∂q`

〉
S

= − i
~

〈
F (q0, . . . , qN)

[
m

(
q` − q`−1

τ
− q`+1 − q`

τ

)
− τ ∂V (q`, t`)

∂q`

]〉
S

=
i

~
τ

〈
F (q0, . . . , qN)

[
m
q`+1 − 2q` + q`−1

τ 2
+
∂V (q`, t`)

∂q`

]〉
S

.

(5.74)

Interesting relations emerge by making various choices of F :

(i) F = 1. In this case, Eq. (5.74) becomes (omitting overall factors)〈
m
q`+1 − 2q` + q`−1

τ 2

〉
S

= −
〈
∂V (q`, t`)

∂q`

〉
S

, (5.75)

or, in the continuum limit, where τ → 0 and q` → q(t) ≡ q,

〈m q̈〉S = −
〈
∂V (q, t)

∂q

〉
S

. (5.76)

This is the path-integral version of Ehrenfest’s theorem: on average (symbol-
ized by the angular brackets 〈·〉S) the particle obeys Newton’s equation of motion
(remember that F ≡ −∂V/∂q).

(ii) F = q`. In this case, Eq. (5.74) becomes

〈1〉S = − i
~

〈[
m

(
q`
q` − q`−1

τ
− q`+1 − q`

τ
q`

)
− τq`

∂V (q`, t`)

∂q`

]〉
S

. (5.77)

In the limit τ → 0, the last term can be omitted, while q` → q(t) and

q` − q`−1

τ
−→ q̇(t−) ,

q`+1 − q`
τ

−→ q̇(t+) . (5.78)

Here q̇(t±) ≡ limτ→0 q̇(t ± τ). Introducing the momentum p(t) ≡ mq̇(t), we then
have

〈i~〉S =
〈
q(t)p(t−)− p(t+)q(t)

〉
S
. (5.79)

This is the path-integral version of the standard canonical commutation relation

i~ = q̂p̂− p̂q̂ ≡ [q̂, p̂] . (5.80)

One has to note that, in order to translate this relation into the path-integral version,
one has to assume that the operators are time-ordered, i.e., the operator on the
right belongs to a (slightly) earlier time than the one on the left.

64



5.6 Addendum: Ehrenfest’s theorem, canonical commutation relation

We close this section with a remark on a related problem. Suppose we would like to
calculate the average of the kinetic energy,〈

p2

2m

〉
S

=
〈m

2
q̇2
〉
S
. (5.81)

Here we run into the same “time-ordering” problem as before. In fact, the discretized
expressions 〈

m

2

(
q` − q`−1

τ

)2
〉
S

or

〈
m

2

(
q`+1 − q`

τ

)2
〉
S

(5.82)

give the wrong answer. The reason is that the squared displacement on a “Brownian
motion-like” trajectory is (q` − q`−1)2 ∼ τ , as explained in Sec. 3.5. Therefore,(

q` − q`−1

τ

)2

∼ 1

τ
, (5.83)

which diverges in the limit τ → 0. The correct way to calculate the kinetic energy is
therefore〈

m

2

q`+1 − q`
τ

q` − q`−1

τ

〉
S

−→
〈m

2
q̇(t+)q̇(t−)

〉
S
≡
〈
p(t+)p(t−)

2m

〉
S

. (5.84)

Why does this solve the divergence problem of Eq. (5.82)? Naively, one would think that
both displacements q`+1 − q` ∼

√
τ and q` − q`−1 ∼

√
τ , so that we get the same 1/τ

divergence as before. However, this argument is incorrect, because the displacements on
successive time steps are uncorrelated. In one dimension this means that it is as likely
that the displacement q`+1−q` of the next time step happens in the same direction as the
one q` − q`−1 of the previous time step, as that it happens in the opposite direction. In
three dimensions, it is even highly unlikely that the displacement ~q`+1 − ~q` happens in
exactly the same direction as that in the previous time step. Only if it did, the product
(q`+1 − q`)(q` − q`−1) displaces the particle by a much larger distance ∼ τ than the τ 2

behavior expected for “normal” smooth trajectories. If it does not, in one dimension it
is as likely that the displacement q`+1 − q` reverts the displacement q` − q`−1 from the
previous time step, and in three dimensions it is very likely that it reverts this displacement
at least to some extent. Therefore (q`+1−q`)(q`−q`−1) ∼ τ 2, and the kinetic energy (5.84)
is well-defined.
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6 From Classical Particles to Classical
Fields

In Chap. 2 we have considered the Classical Mechanics of a single particle. By extending
this to a system of N particles, and then sending N → ∞, we would like to generalize
classical mechanics to a continuous system, i.e., we aim at deriving continuum me-
chanics in the Lagrange formalism, which is equivalent to the Lagrange formalism for
fields.

6.1 The longitudinally oscillating chain

The most simple N–particle system which allows to make the transition to a continuum
of degrees of freedom is the longitudinally oscillating chain. Consider a chain of N
particles of (identical) mass m aligned along the x–direction, which are connected via
(identical) springs with spring constant k and perform longitudinal oscillations, i.e.,
oscillations along the extension of the chain, cf. Fig. 6.1. Note that it is not necessary
to assume that all masses and spring constants are equal, but it simplifies the following
calculations.

a a
i+1i−1 i

ϕ ϕϕ
ii−1 i+1

m m m

x

Figure 6.1: The longitudinally oscillating chain.

In their positions at rest the masses are supposed to be a distance a apart. When
oscillating, the ith mass will be displaced by a distance ϕi from its position at rest. The
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kinetic energy of the system is obviously

T =
1

2
m

N∑
i=1

ϕ̇2
i . (6.1)

The potential energy is

V =
1

2
k

N−1∑
i=1

(ϕi+1 − ϕi)2 . (6.2)

We convince ourselves that this expression is correct by calculating the force which acts
onto the jth mass,

Fj = − ∂V
∂ϕj

= −k (ϕj − ϕj−1) + k(ϕj+1 − ϕj) , j = 2, . . . , N − 1 . (6.3)

The first term on the right-hand side corresponds to Hooke’s law for the spring on the
left-hand side of the jth mass. When this spring is extended, i.e., when ϕj − ϕj−1 > 0,
it will pull the jth mass back in the −x direction. On the other hand, if the spring is
compressed, ϕj − ϕj−1 < 0, it will push the mass in the +x direction. Therefore, this
term has to have a negative sign. The second term on the right-hand side of Eq. (6.3)
corresponds to Hooke’s law for the spring on the right-hand side of the jth mass. Here
one argues quite analogously, but since an elongation of this spring pulls the mass in +x
direction and a compression pushes it in −x direction, the sign of the second term is just
the opposite of that of the first. For j = 1 resp. j = N we obtain the force by omitting
the first resp. the last term in Eq. (6.3).

With Eqs. (6.1) and (6.2) the Lagrange function of the system reads

L = T − V =
1

2

N−1∑
i=1

[
mϕ̇2

i − k (ϕi+1 − ϕi)2]
=

1

2

N−1∑
i=1

a

[
m

a
ϕ̇2
i − ka

(
ϕi+1 − ϕi

a

)2
]

=
1

2

N−1∑
i=1

a

[
µ ϕ̇2

i − κ
(
ϕi+1 − ϕi

a

)2
]
≡

N−1∑
i=1

aLi , (6.4)

where we have introduced the mass per unit of length µ ≡ m/a, the modulus of
elasticity κ ≡ ka, and the Lagrange function per unit of length Li. Furthermore,
we have neglected the kinetic energy of the Nth mass. If N � 1, this is approximation is
well justified, since the motion of a single mass cannot substantially influence the motion
of the whole system.

The displacements ϕi of the masses from their positions at rest represent the degrees
of freedom of the system. The Euler–Lagrange equations for these degrees of freedom
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read

0 =
d

dt

∂L

∂ϕ̇j
− ∂L

∂ϕj

⇐⇒ 0 = µ ϕ̈j − κ
(
ϕj+1 − ϕj

a2
− ϕj − ϕj−1

a2

)
= µ ϕ̈j − κ

ϕj+1 − 2ϕj + ϕj−1

a2
. (6.5)

Let us now consider the limit N →∞ and a→ 0. Then, the chain of one-dimensional
harmonic oscillators becomes a continuous elastic rod. When all of the (infinitely many)
oscillators are in their rest positions, the length of the rod assumes the value `. This
value can change when the oscillators move: the rod can be elongated or compressed in
x direction. The index i specifying the position of a mass assumes continuous values;
we can replace it by the x coordinate,

ϕj(t) −→ ϕ(x, t) .

The distance a between the masses is replaced by the infinitesimal differential dx, such
that

lim
a→0

ϕj+1(t)− ϕj(t)
a

= lim
dx→0

ϕ(x+ dx, t)− ϕ(x, t)

dx
≡ ∂ϕ(x, t)

∂x
,

lim
a→0

ϕj+1(t)− 2ϕj(t) + ϕj−1(t)

a2
= lim

dx→0

ϕ(x+ dx, t)− 2ϕ(x, t) + ϕ(x− dx, t)

dx2

≡ ∂2ϕ(x, t)

∂x2
.

Note that we now have partial derivatives, due to the dependence of the displacement
field ϕ(t, x) on time and space. Thus, the usual differentiation of ϕi with respect to time
must also be replaced by a partial derivative,

ϕ̇j −→
∂ϕ(x, t)

∂t
, ϕ̈j −→

∂2ϕ(x, t)

∂t2
.

The Lagrange function (6.4) becomes

L = lim
a→0

N−1∑
i=1

aLi ≡
∫ `

0

dx L , (6.6)

where ` is the length of the rod (as mentioned above, this is not necessarily constant,
since the oscillations can lead to elongation or compression of the system) and

L =
µ

2

(
∂ϕ

∂t

)2

− κ

2

(
∂ϕ

∂x

)2

(6.7)

is the so-called Lagrange density or Lagrangian. The equation of motion (6.5) assumes
the form

0 = µ
∂2ϕ

∂t2
− κ ∂

2ϕ

∂x2
. (6.8)
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This equation is of a type well-known from Classical Electrodynamics: it is a wave
equation. Here, however, only a single spatial dimension appears (the one along the rod).
In consequence, Eq. (6.8) describes the one-dimensional, i.e., longitudinal propagation
of sound waves along the rod. These waves correspond to local maxima (compression of
springs) or minima (elongation of springs) in mass density, which travel along the direction
of the rod. If we divide Eq. (6.8) by κ, we can read off the sound velocity, which is the
analogue of the velocity of light in the wave equation for electromagnetic fields,

cS ≡
√
κ

µ
. (6.9)

6.2 Continuum Lagrange mechanics in three space and
one time dimension

The consideration of the previous section can be easily generalized to a three-dimensional
system. Equation (6.6) then reads

L ≡
∫
V

d3~xL , (6.10)

where V is the spatial volume of the system under consideration. A closer inspection
of Eq. (6.7) reveals that the Lagrangian L is not only a function of ∂ϕ/∂t, but also
depends on the spatial derivatives ∂ϕ/∂x. In general, in three dimensions also partial
derivatives with respect to y and z may appear. Furthermore, the Lagrangian can also
depend on the field ϕ itself and may depend explicitly on time and space (i.e., not only
implicitly through the dependence of ϕ on t and ~x). Therefore, in general the Lagrangian
can possess the following dependences:

L = L
(
ϕ(~x, t),

∂ϕ(~x, t)

∂t
, ~∇ϕ(~x, t); ~x, t

)
. (6.11)

Note that, in comparison to the Lagrange function L(q, q̇; t), in the Lagrange density

the field ϕ assumes the role of the generalized coordinate q, its derivatives ∂ϕ
∂t
, ~∇ϕ the

role of the generalized velocity q̇, and the explicit dependence on time t is extended to
one on time t and spatial position ~x. The spatial variable has no longer the meaning of a
coordinate (or position) of a particle, it is simply a continuous index, similar to the index
i enumerating the generalized coordinates (if one has a system with more than one such
coordinate, q → {q1, q2, . . .}). In the Lagrange function, q, q̇ were independent degrees of
freedom of the system. In the Lagrangian the degrees of freedom are the field ϕ and its
derivatives ∂ϕ

∂t
, ~∇ϕ. Since these functions can assume distinct and (in principle) mutually

independent values at each point (~x, t) in space-time, this is a system with infinitely
many degrees of freedom.

For continuous systems the Lagrange density or Lagrangian plays the same role as
the Lagrange function for discrete systems. Therefore, it should in principle be possible
to derive the equation of motion (e.g., Eq. (6.8) for the previous example of the one-
dimensional chain) for the field ϕ(t, ~x) from the Lagrangian itself. This will be elaborated
in the following.
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Using Eq. (6.10) the action is defined as

S[ϕ(~x, t)] =

∫ tb

ta

dt

∫
V

d3~xL
(
ϕ(~x, t), ∂tϕ(~x, t), ~∇ϕ(~x, t); ~x, t

)
. (6.12)

In principle, the equations of motion should follow from Hamilton’s principle, which
reads with Eq. (6.11)

0 = δS[ϕ] = S[ϕ+ δϕ]− S[ϕ] (6.13)

=

∫ tb

ta

dt

∫
V

d3~x
[
L
(
ϕ+ δϕ, ∂tϕ+ δ(∂tϕ), ~∇ϕ+ δ(~∇ϕ); ~x, t

)
− L

(
ϕ, ∂tϕ, ~∇ϕ; ~x, t

)]
,

where we have omitted the arguments (~x, t) of the fields for the sake of brevity. Quite
similar to the trajectory q(t), which is not varied at the initial and final point in time, the
field ϕ(~x, t) will not be varied at the surface ∂V4 of the space-time volume V4 ≡ V×[ta, tb],

δϕ(~x, t) |(~x,t)∈ ∂V4 = 0 . (6.14)

However, this constraint does not apply to the partial derivatives ∂tϕ, ~∇ϕ of the field,
similar to the generalized velocity q̇ which must not be held fixed at ta and tb (or like the
generalized momentum p in the modified Hamilton’s principle, which can vary freely at
ta and tb, cf. Sec. 2.1.2).

If we assume infinitesimal variations of the field, |δϕ(~x, t)| � |ϕ(~x, t)|, we can terminate
the Taylor expansion of the first term under the integral in Eq. (6.13) after the order

O(δϕ, δ∂tϕ, δ~∇ϕ) and obtain

0 =

∫ te

ta

dt

∫
V

d3~x

[
∂L
∂ϕ

δϕ+
∂L

∂ (∂tϕ)
δ (∂tϕ) +

∂L
∂(~∇ϕ)

· δ(~∇ϕ)

]
. (6.15)

It furthermore holds that

δ(∂tϕ) ≡ ∂t(ϕ+ δϕ)− ∂tϕ ≡ ∂tδϕ , δ(~∇ϕ) ≡ ~∇(ϕ+ δϕ)− ~∇ϕ ≡ ~∇δϕ . (6.16)

The second and third term in Eq. (6.15) can then be written as follows,

0 =

∫ te

ta

dt

∫
V

d3~x

[
∂L
∂ϕ
− ∂t

∂L
∂(∂tϕ)

− ~∇ · ∂L
∂(~∇ϕ)

]
δϕ

+

∫ te

ta

dt

∫
V

d3~x

{
∂t

[
∂L

∂(∂tϕ)
δϕ

]
+ ~∇ ·

[
∂L

∂(~∇ϕ)
δϕ

]}
. (6.17)

The argument of second integral over the space-time volume V × [ta, tb] is basically a
four-dimensional divergence

∂t

[
∂L

∂(∂tϕ)
δϕ

]
+ ~∇ ·

[
∂L

∂(~∇ϕ)
δϕ

]
≡ ∂µ

[
∂L

∂(∂µϕ)
δϕ

]
, (6.18)
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where ∂µ = (∂t, ~∇) is the four-dimensional gradient operator and a sum over µ is im-
plied. The second integral can thus be converted with the help of Gauss’ theorem in four
dimensions into an integral over the closed surface ∂V4 of that space-time volume,∫ te

ta

dt

∫
V

d3~x ∂µ

[
∂L

∂(∂µϕ)
δϕ

]
=

∮
∂V4

dσµ
∂L

∂(∂µϕ)
δϕ ≡ 0 , (6.19)

since δϕ vanishes on ∂V4, cf. Eq. (6.14). Here dσµ is the µth component of the four-
dimensional vector normal on ∂V4.

Since the variation δϕ(~x, t) of the field is arbitrary at each space-time point (~x, t), the
term in brackets in the first integral in Eq. (6.17) must vanish,

0 =
∂L
∂ϕ
− ∂t

∂L
∂(∂tϕ)

− ~∇ · ∂L
∂(~∇ϕ)

. (6.20)

This is the Euler–Lagrange equation for continuous systems, i.e., for the field ϕ,
which represents the (infinitely many) degrees of freedom of such a continuous system.
Equation (6.20) is a classical equation of motion for the field ϕ and as such exclusively
determines the classical field configuration. According to Hamilton’s principle (6.13),
this configuration extremizes (minimizes) the action. We will see in the next chapter that
in quantum field theory also all other possible field configurations appear and, similar
to the path integral in quantum mechanics of a single particle, contribute with a weight
exp{iS[ϕ(~x, t)]/~}) to physical observables.

We now convince ourselves that Eq. (6.20) gives the correct equation of motion for the
field ϕ when applying it to the example of the elastic rod. In other words, we calculate
the equation of motion (6.20) using the Lagrangian (6.7) and show that in this way we
obtain the equation of motion (6.8).

The Lagrangian (6.7) contains only derivatives of the field, thus ∂L/∂ϕ ≡ 0. The
derivative of L with respect to the partial derivative of the field with respect to time gives

∂L
∂ (∂tϕ)

= µ
∂ϕ

∂t
,

and the derivative with respect to the partial derivative of the field with respect to the
spatial coordinate x is

∂L
∂ (∂xϕ)

= −κ ∂ϕ
∂x

.

Since it is a one-dimensional problem, no dependences on, or derivatives with respect to,
y or z appear. Inserting the above into the Euler–Lagrange equation (6.20) we obtain

0 =
∂

∂t

(
µ
∂ϕ

∂t

)
+

∂

∂x

(
−κ ∂ϕ

∂x

)
≡ µ

∂2ϕ

∂t2
− κ ∂

2ϕ

∂x2
,

which agrees with the previously derived equation of motion (6.8).
If we consider a system where not only one, but many fields appear, we enumerate

them with an additional index,

ϕa(~x, t) , a = 1, 2, . . . .
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Then each of these fields fulfills an Euler–Lagrange equation of the type (6.20),

0 = ∂t
∂L

∂ (∂tϕa)
+ ~∇ · ∂L

∂(~∇ϕa)
− ∂L
∂ϕa

, a = 1, 2, . . . . (6.21)
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7 Path Integrals in Quantum Field
Theory

Lecture 8

As we have seen in the previous discussion, the path-integral formalism provides an
alternative approach to solving the Schrödinger equation for the wave function of a
quantum-mechanical particle. However, so far the discussion of path integrals was re-
stricted to the dynamics of a single particle. This is still completely equivalent to solving
a classical wave equation: the Schrödinger equation. Although the wave function result-
ing from the solution of this equation describes the quantum dynamics of a single particle,
it is itself a purely classical object. If we want to describe the quantum mechanics of a
system with (in principle) infinitely many degrees of freedom, such as contained in a
field (as we have seen in the previous chapter), we have to devise a quantum-mechanical
description for such a field. This leads to quantum field theory.

In principle, there are two different approaches to reach this goal. The first one is
similar to the “second-quantization” approach known from the discussion of the harmonic
oscillator in the introductory Quantum Mechanics lecture. There one introduces operators
which allow to create and annihilate excitation quanta. The “second-quantization”, or
canonical quantization approach for quantum field theory extends this idea to a system
of infinitely many degrees of freedom, which can be created or annihilated. Typically one
formulates this in momentum space and introduces creation and annihilation operators
for particles with a definite momentum, on-shell energy, as well other quantum numbers
(e.g. spin, flavor, color, etc.). Since the momenta run over an uncountable infinite set of
values, one deals with a system of infinitely many degrees of freedom.

The second approach is based on the path-integral formalism extended to fields, then
sometimes also called functional-integral formalism. In the following, we will given
an introduction to the latter. As an example, we consider the simplest possibility: a real
scalar field.

7.1 The classical non-interacting Klein–Gordon field

The first attempt to establish a relativistic theory for the electron was made by Oskar
Klein and Walter Gordon. It was bound to fail, since Klein and Gordon assumed the
electron to be described by a real scalar field φ. As we know today, such a field
describes bosons with spin zero, while the electron is a fermion with spin 1/2. The
correct relativistic theory for the electron was found by Paul Adrien Maurice Dirac, but
will not be subject of this lecture course.

The Lagrangian of Klein–Gordon theory has a striking similarity to that of the
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elastic rod, cf. Eq. (6.7),

L =
1

2

[
1

c2

(
∂φ

∂t

)2

− (~∇φ) · (~∇φ)−
(mc

~

)2

φ2

]
. (7.1)

The difference is that the velocity of light c appears instead of the sound velocity (6.9).
Does this mean that waves of the Klein–Gordon field travel with light velocity? No, since
there is also a so-called mass term ∼ (mc/~)2φ2, which is absent in Eq. (6.7). As we
will see below, points of constant phase travel with the phase velocity vphase(p) = E~p/p,
while the group velocity is

vgroup(p) =
dE~p
dp

=
pc2

E~p
, (7.2)

where E~p = c
√
~p 2 + (mc)2 is the relativistic energy of a particle with momentum ~p. The

group velocity of the Klein–Gordon field is then simply the velocity of a particle with
energy E~p and momentum ~p.

What is the classical equation of motion of the Klein–Gordon field? In order to deter-
mine this, we employ Eq. (6.20). From Eq. (7.1) we obtain

∂L
∂(∂tφ)

=
1

c2

∂φ

∂t
,

∂L
∂(~∇φ)

= −~∇φ , ∂L
∂φ

= −
(mc

~

)2

φ , (7.3)

so that the equation of motion, the so-called Klein–Gordon equation, reads[
1

c2

∂2

∂t2
−∆ +

(mc
~

)2
]
φ ≡

[
� +

(mc
~

)2
]
φ = 0 , (7.4)

where ∆ ≡ ~∇· ~∇ is the Laplace operator and where we defined the d’Alembert or wave
operator

� ≡ 1

c2

∂2

∂t2
−∆ . (7.5)

Like the Schrödinger equation (3.23), the Klein–Gordon equation (7.4) is a linear, homo-
geneous differential equation and the solution can be written as a superposition of plane
waves. Thus, we make an Ansatz similar to Eq. (3.25),

φ(~x, t) =

∫
dE d3~p

(2π~)4
φ̃(E, ~p) e−

i
~ (Et−~p·~x) . (7.6)

Inserting this Ansatz into Eq. (7.4), we obtain

0 =

[
1

c2

∂2

∂t2
−∆ +

(mc
~

)2
]
φ(~x, t)

=

∫
dE d3~p

(2π~)4
φ̃(E, ~p)

[
1

c2

∂2

∂t2
−∆ +

(mc
~

)2
]
e−

i
~ (Et−~p·~x)

=

∫
dE d3~p

(2π~)4
φ̃(E, ~p)

[
− E2

(~c)2
+
~p 2 +m2c2

~2

]
e−

i
~ (Et−~p·~x)

= − 1

(~c)2

∫
dE d3~p

(2π~)4
φ̃(E, ~p)

[
E2 − c2

(
~p 2 +m2c2

)]
e−

i
~ (Et−~p·~x) . (7.7)
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7.1 The classical non-interacting Klein–Gordon field

Obviously, this is fulfilled if the energy fulfills the relativistic energy-momentum
relation

E = ±E~p , E~p = c
√
~p 2 + (mc)2 . (7.8)

The fact that there are also solutions of negative energy is not a mathematical curiosity, it
bears physical significance and is a hallmark of a relativistic theory. While positive-energy
solutions describe particles, negative-energy solutions correspond to antiparticles. As
we did for the Schrödinger equation in Eq. (3.27), we can incorporate the dispersion
relation (7.8) into the Ansatz (7.6) by taking the Fourier coefficients as

φ̃(E, ~p) = 2π~ δ(E − E~p) a+
~p + 2π~ δ(E + E~p) a

−
~p , (7.9)

such that the general solution of the Klein–Gordon equation (7.4) becomes

φ(~x, t) =

∫
d3~p

(2π~)3

[
a+
~p e
− i

~ (E~pt−~p·~x) + a−~p e
i
~ (E~pt+~p·~x]

]
. (7.10)

Changing the integration variable ~p→ −~p in the last term yields

φ(~x, t) =

∫
d3~p

(2π~)3

[
a+
~p e
− i

~ (E~pt−~p·~x) + a−−~p e
i
~ (E~pt−~p·~x)

]
. (7.11)

Finally, we need to incorporate the fact that φ(~x, t) is real-valued, which gives the condi-
tion

φ∗(~x, t) =

∫
d3~p

(2π~)3

[(
a+
~p

)∗
e

i
~ (E~pt−~p·~x) +

(
a−−~p

)∗
e−

i
~ (E~pt−~p·~x)

]
≡ φ(~x, t) . (7.12)

The plane waves constitute a complete and orthogonal set of functions. Therefore, the
Fourier coefficients in Eqs. (7.11) and (7.12) have to match,(

a+
~p

)∗
= a−−~p ,

(
a−−~p

)∗
= a+

~p . (7.13)

Therefore, a+
~p and a−~p are not independent. It suffices to use a+

~p ≡ a~p and one can write
Eq. (7.11) in the final form

φ(~x, t) =

∫
d3~p

(2π~)3

[
a~p e

− i
~ (E~pt−~p·~x) + a∗~p e

i
~ (E~pt−~p·~x)

]
. (7.14)

This is actually the starting point for the second-quantization procedure: one promotes
the Fourier coefficients a~p, a

∗
~p to annihilation and creation operators â~p, â

†
~p for particles

with momentum ~p. This also makes the field operator-valued, φ(~x, t) → φ̂(~x, t). We will
not follow this approach further in this lecture series.

Let us also discuss phase and group velocity. For the sake of simplicity we consider
a plane wave travelling in x direction, e−

i
~ (E~pt−px), where ~p = (p, 0, 0)T . The space-time

points where the phase of the exponential function stays constant are given by E~pt−px =
const.. If we are sitting on a maximum of the wave at x = t = 0, i.e., where E~pt− px = 0,
this maximum will move with phase velocity vphase(p) = x/t = E~p/p to the right. While
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7 Path Integrals in Quantum Field Theory

this velocity is larger than the velocity of light, it is not the velocity of a Klein–Gordon
particle. The latter is determined from the group velocity of a wave packet. Consider
a wave packet, which is a superposition of plane waves,

φ(x, t) =

∫
dp

2π~
φ̃(p) e−

i
~ (E~pt−px) + c.c. . (7.15)

Furthermore, take the momentum spectrum φ̃(p) to be sharply peaked around a certain
momentum p0. In this case, we may linearize E~p around p0,

E~p = Ep0 + (p− p0)vgroup(p0) +O((p− p0)2) , (7.16)

where the group velocity was introduced in Eq. (7.2). Inserting this into Eq. (7.15) we
obtain

φ(x, t) = e−
i
~ (Ep0 t−p0x)

∫
dp

2π~
φ̃(p) e

i
~ (p−p0)[x−vgroup(p0)t] + c.c. . (7.17)

The integral is the envelope of the wave packet. It only depends on the combination
x− vgroup(p0)t, which means that the peak of the envelope moves with velocity vgroup(p0),
which is slower than the velocity of light.

For later use, we compute the canonically conjugate field

Π(~x, t) ≡ c
∂L

∂[∂tφ(~x, t)]
=

1

c

∂φ(~x, t)

∂t
. (7.18)

This field plays a role analogous to the canonical momentum p ≡ ∂L/∂q̇ in classical
mechanics. We will also need the Hamilton density, which is the Legendre transform
of the Lagrangian with respect to ∂tφ/c,

H(φ,Π, ~∇φ; ~x, t) ≡ Π
1

c

∂φ

∂t
− L(φ, ∂tφ, ~∇φ; ~x, t)

∣∣∣∣
Π=∂tφ/c

= Π2 − 1

2

[
Π2 − (~∇φ) · (~∇φ)−

(mc
~

)2

φ2

]
=

1

2

[
Π2 + (~∇φ) · (~∇φ) +

(mc
~

)2

φ2

]
. (7.19)

This is the analogue of the Legendre transform (2.5) in Classical Mechanics.

7.2 The generating functional for correlation functions of
the Klein–Gordon field

In this section we derive the quantum field-theoretical analogue of the quantum-mechanical
vacuum-to-vacuum transition amplitude, or the generating functional for correlation func-
tions, cf. Eq. (5.47). We will do this at hand of the example of the non-interacting Klein–
Gordon field. For the sake of convenience, in this section we will use natural units,
~ = c = 1.

In fact, there are only a few obvious changes to be made in comparison to the quantum-
mechanical case:
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7.2 The generating functional for correlation functions of the Klein–Gordon field

(i) coordinates ~q(t) become fields φ(~x, t).

(ii) momenta ~p(t) become canonically conjugate fields Π(~x, t) ≡ ∂L/∂[∂tφ(t, ~x)], cf.
Eq. (7.18).

(iii) position states |~q〉 become field states |φ(~x)〉. These are eigenstates of the (time-
independent) Schrödinger–picture field operator φ̂(~x) at some arbitrary point
in time, say t = 0,

φ̂(~x) |φ(~x)〉 = φ(~x) |φ(~x)〉 . (7.20)

Like the position states |~q〉, these states are complete,

1 =

∫ ∏
~x

dφ(~x) |φ(~x)〉〈φ(~x)| . (7.21)

Here, the integration measure
∏

~x dφ(~x) is a symbolic notation. The meaning is
the following. We first discretize space as shown in Fig. 7.1. Then we obtain a
set of discrete points {~x1, ~x2, . . . , ~xr, . . .}, which is countable and, in a finite volume
V < ∞, also finite. Eventually we may take the continuum limit by sending the
grid spacing to zero, and finally we may also send the volume V → ∞. However,
as long as we stay with a countable, finite set of points, the integration measure is
well-defined: we have to integrate at each discrete point ~xr in space over all values
of the field φr ≡ φ(~xr). This gives the integration measure in the completeness
relation (7.21). (For the sake of notational convenience, we omitted the index r.)
For the sake of simplicity and convenience, we use the symbol

∏
~x dφ(~x) also in

the continuum limit, i.e., when the grid spacing is sent to zero and, eventually, the
spatial volume V →∞.

φ
δr
Vr

Figure 7.1: Discretization of the spatial volume.

The field states are also orthonormal,

〈φa(~x)|φb(~x)〉 =
∏
~x

δ(φa(~x)− φb(~x)) ≡ δ [φa − φb] . (7.22)

The delta function with argument in brackets is a functional delta function, i.e.,
the functions φa(~x) and φb(~x) must be identical at all points ~x.
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(iv) momentum states |~p〉 become canonically conjugate-field states |Π(~x)〉, which are
eigenstates of the Schrödinger–picture field operator Π̂(~x) at time t = 0,

Π̂(~x) |Π(~x)〉 = Π(~x) |Π(~x)〉 . (7.23)

Also these states are complete,

1 =

∫ ∏
~x

dΠ(~x)

2π
|Π(~x)〉〈Π(~x)| , (7.24)

and orthonormal,

〈Πa(~x)|Πb(~x)〉 =
∏
~x

δ(Πa(~x)− Πb(~x)) ≡ δ [Πa − Πb] . (7.25)

The factor 2π in the denominator of the integration measure in Eq. (7.24) is purely
conventional.

(v) The generalization of the quantum-mechanical overlap (3.9) is

〈φ(~x)|Π(~x)〉 =
∏
~x

exp
[
id3~xΠ(~x)φ(~x)

]
= exp

[
i

∫
d3~xΠ(~x)φ(~x)

]
. (7.26)

We now evolve the Schrödinger–picture state |φ(~x)〉 from time t = 0 to some later time t.
In analogy to Eq. (2.10) we obtain

Û(0, t) |φ(~x)〉 = |φ(~x), t〉 ≡ |φ(~x, t)〉 . (7.27)

As was the case for the time-evolved position states |~q, t〉, also these time-evolved states
are complete,

1 = Û(0, tj) Û(tj, 0) = Û(0, tj)

∫ ∏
~x

dφj(~x) |φj(~x)〉〈φj(~x)| Û(tj, 0)

=

∫ ∏
~x

dφj(~x) Û(0, tj) |φj(~x)〉〈φj(~x)| Û(tj, 0)

=

∫ ∏
~x

dφj(~x) |φj(~x), tj〉〈φj(~x), tj| ≡
∫ ∏

~x

dφj(~x) |φj(~x, tj)〉〈φj(~x, tj)| . (7.28)

We now consider the quantum field-theoretical transition amplitude

〈φf (~x), tf |φi(~x), ti〉 ≡ 〈φf (~x, tf )|φi(~x, ti)〉 , (7.29)

and again partition the time interval [ti, tf ] into N pieces of equal length τ . We then
insert N − 1 complete sets (7.28) of field states, one each for the times tj = ti + jτ ,
j = 1, . . . , N − 1,

〈φf (~x, tf )|φi(~x, ti)〉 =

∫ N−1∏
j=1

∏
~x

dφj(~x) 〈φf (~x, tf )|φN−1(~x, tN−1)〉

× 〈φN−1(~x, tN−1)|φN−2(~x, tN−2)〉 · · · 〈φ1(~x, t1)|φi(~x, ti)〉 (7.30)
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Now we consider the factor

〈φj+1(~x, tj+1)|φj(~x, tj)〉 = 〈φj+1(~x)| Û(tj+1, 0) Û(0, tj) |φj(~x)〉
= 〈φj+1(~x)| Û(tj+1, tj) |φj(~x)〉 . (7.31)

Here,

Û(tj+1, tj) = T̂ exp

[
−i
∫ tj+1

tj

dt Ĥ(t)

]
≡ T̂ exp

[
−i
∫ tj+1

tj

dt

∫
V

d3~x Ĥ(~x, t)

]
(7.32)

is the time-evolution operator for the quantum field-theoretical system, cf. Eq. (2.9) for
the quantum-mechanical analogue, with the Hamilton–density operator Ĥ(~x, t). The
latter operator depends on field operators and canonically conjugate field operators (and
potentially also explicitly on space and time),

Ĥ(~x, t) ≡ H(φ̂(~x), Π̂(~x), ~∇φ̂(~x); ~x, t) . (7.33)

In order to get rid of the dependence on operator-valued quantities, it is convenient to also
insert complete sets (7.24) of canonically conjugate field states. Analogous steps which
have lead to Eq. (3.10) then yield

〈φf (~x, tf )|φi(~x, ti)〉 =

∫ [N−1∏
j=1

∏
~x

dφj(~x)

][
N∏
j=1

∏
~x

dΠj(~x)

2π

]

× exp

{
i
N∑
j=1

τ

∫
V

d3~x

[
Πj(~x)

φj(~x)− φj−1(~x)

τ
−H(φj(~x),Πj(~x), ~∇φj(~x); ~x, tj)

]}
.

(7.34)

We now denote φj(~x) ≡ φ(~x, tj), Πj(~x) ≡ Π(~x, tj). In the limit N → ∞, τ → 0 we then
obtain the final result

〈φf (~x, tf )|φi(~x, ti)〉 (7.35)

=

∫
Dφ(~x, t)DΠ(~x, t) exp

{
i

∫ tf

ti

dt

∫
V

d3~x
[
Π(~x, t) ∂tφ(~x, t)−H(φ,Π, ~∇φ; ~x, t)

]}
.

For the Klein–Gordon field, we have Π = ∂L/∂(∂tφ) ≡ ∂tφ. The Hamilton density for
the Klein–Gordon field was already calculated in Eq. (7.19). In natural units,

H(φ,Π, ~∇φ) =
1

2

[
Π2 + (~∇φ) · (~∇φ) +m2φ2

]
. (7.36)

Therefore,

Π∂tφ−H = −1

2
(Π− ∂tφ)2 +

1

2

[
(∂tφ)2 − (~∇φ) · (~∇φ)−m2φ2

]
= −1

2
(Π− ∂tφ)2 + L .

(7.37)
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The functional integral over the canonically conjugate fields in Eq. (7.35) is now simply a
shifted Gaussian integral and can be immediately performed. The result is a normalization
constant, such that Eq. (7.35) reads

〈φf (~x, tf )|φi(~x, ti)〉 = N
∫
Dφ(~x, t) exp

[
i

∫ tf

ti

dt

∫
V

d3~xL(φ, ∂tφ, ~∇φ; ~x, t)

]
. (7.38)

The very same considerations which have lead to Eq. (5.47) now allow to derive the
generating functional for n–point correlation functions for the Klein–Gordon field,

Z[J ] =

∫
Dφ(~x, t) exp

{
i

∫ ∞
−∞

dt

∫
d3~x

[
L(φ, ∂tφ, ~∇φ; ~x, t) + J(~x, t)φ(~x, t)

]}
∼ 〈0; +∞|0;−∞〉J . (7.39)

7.3 The generating functional of the non-interacting
Klein–Gordon field

For the non-interacting Klein–Gordon field, the Lagrangian in the exponent in Eq. (7.39)
is just that of Eq. (7.1). Apparently, this is quadratic in the field, so Eq. (7.39) is in
essence a shifted Gaussian integral, which can be computed exactly. This calculation will
be elaborated on in this section.

We first insert Eq. (7.1) into Eq. (7.39),

Z[J ] =

∫
Dφ exp

(
i

∫ ∞
−∞

dt

∫
d3~x

{
1

2

[
(∂tφ)2 − (~∇φ) · (~∇φ)−m2φ2

]
+ Jφ

})
,

(7.40)
and integrate the partial derivatives by parts,∫ ∞

−∞
dt

∫
d3~x

[
(∂tφ)2 − (~∇φ) · (~∇φ)

]
= −

∫ ∞
−∞

dt

∫
d3~x φ�φ + surface terms .

The surface terms vanish if we assume that the field vanishes at infinity. This then yields

Z[J ] =

∫
Dφ exp

{
−i
∫

d4X

[
1

2
φ
(
� +m2

)
φ− Jφ

]}
, (7.41)

where we have abbreviated the integration measure d4X ≡ dtd3~x. As already mentioned,
this is a shifted Gaussian integral and has an analytic solution in closed form.

There is a very useful generalization of Eq. (4.43) for the case of shifted Gaussian
integrals. Let A be a symmetric, positive definite, non-singular (N × N) matrix and let

~r, ~b be N dimensional vectors. Then∫
dN~r exp

(
−1

2
~r TA~r +~bT~r

)
= (2π)N/2(detA)−1/2 exp

(
1

2
~bTA−1~b

)
. (7.42)

Here we have used a compact notation, i.e., ~r TA~r =
∑N

i,j=1 ri Aij rj and ~bT~r =
∑N

i=1 bi ri.
We now apply Eq. (7.42) to Eq. (7.41). We have to note that we should first discretize
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space-time to obtain a finite, countable set of space-time points Xi, i = 1, . . . , N , The
integration variables φi ≡ φ(Xi) at these space-time points then correspond to the compo-
nents of the vector ~r in Eq. (7.42). At the end of the calculation we perform the continuum
limit by sending the grid spacing (in space and time) to zero and the space-time volume
to infinity.

Another point that one has to note is that the argument of the exponential function in
Eq. (7.41) is purely imaginary. Although we know that Gaussian integrals also converge
for complex-valued integrands, it is not immediately obvious that we can identify a matrix
A with the properties necessary to apply Eq. (7.42). This problem will be solved by
analytically continuing the real-valued time variable t to imaginary time.

We first insert a spurious four-dimensional delta function

δ(4)(X − Y ) ≡ δ(tx − ty)δ(3)(~x− ~y)

into the integrand in the argument of the exponential function in Eq. (7.41),

Z0[J ] =

∫
Dφ(X) exp

[
− i

2

∫
d4X d4Y φ(X)

(
�x +m2

)
δ(4)(X − Y )φ(Y )

+ i

∫
d4X J(X)φ(X)

]
(7.43)

≡
∫
Dφ(X) exp

[
1

2

∫
d4X d4Y φ(X)A(X, Y )φ(Y ) + i

∫
d4X J(X)φ(X)

]
,

with
A(X, Y ) ≡ −i

(
�x +m2

)
δ(4)(X − Y ) . (7.44)

Now we introduce the imaginary time variable τ , by analytic continuation of the
real-valued time t,

t −→ −iτ , it −→ τ . (7.45)

It is advantageous to collect this imaginary time variable together with the spatial position
vector ~x into a four-dimensional vector

X̄ ≡ (X̄µ) = (τ, ~x) . (7.46)

The infinitesimal space-time volume element becomes

i d4X = i dt d3~x −→ dτ d3~x = d4X̄ , (7.47)

from which follows
d4X d4Y −→ −d4X̄ d4Ȳ . (7.48)

The four-dimensional gradient operator with respect to the coordinates X̄µ reads(
∂

∂X̄µ

)
=

(
∂

∂τ
, ~∇
)
. (7.49)

The analytic continuation of the d’Alembert operator is therefore

�x =
∂2

∂t2
−∆x −→ − ∂2

∂τ 2
−∆x ≡ −�x . (7.50)
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The analytic continuation of the delta function in time is

−i δ(tx − ty) = −i
∫

dk0

2π
e−ik0(tx−ty) =

∫
d(−ik0)

2π
e−i(−ik0)(itx−ity)

−→
∫

dκ

2π
e−iκ(τx−τy) ≡ δ(τx − τy) . (7.51)

Here we have also analytically continued the energy variable k0,

k0 −→ iκ , −ik0 −→ κ . (7.52)

Note that the analytic continuation of the energy requires the opposite sign as that of the
time, cf. Eq. (7.45). From Eq. (7.51) now follows

− i δ(4)(X − Y ) −→ δ(4)(X̄ − Ȳ ) . (7.53)

Now we can also analytically continue the matrix (7.44). With Eqs. (7.50) and (7.51) this
reads

A(X, Y ) −→ A(X̄, Ȳ ) = (−�x +m2) δ(4)(X̄ − Ȳ ) =

∫
d4K̄

(2π)4
e−iK̄·(X̄−Ȳ ) (K̄2 +m2) .

(7.54)
Here we have introduced the four-dimensional momentum vector

(K̄µ) = (κ,~k) , (7.55)

with the energy variable κ from Eq. (7.52), the short notation K̄2 ≡ K̄ · K̄ = κ2 + ~k 2,
and the scalar product

K̄ · X̄ = κτx + ~k · ~x , (7.56)

and used the Fourier representation of the four-dimensional delta function

δ(4)(X̄ − Ȳ ) =

∫
d4K̄

(2π)4
e−iK̄·(X̄−Ȳ ) =

∫
dκ d3~k

(2π)4
e−iκ(τx−τy)−i~k·(~x−~y) . (7.57)

Since κ ∈ R, we have K̄2 = κ2 + ~k 2 ≥ 0 and the Fourier transform of the matrix
A(X̄, Ȳ ) is positive definite, Ã(K̄) = K̄2 + m2 > 0 (for m > 0). Therefore A(X̄, Ȳ )
is also positive definite. Furthermore, A(X̄, Ȳ ) is symmetric, A(X̄, Ȳ ) = A(Ȳ , X̄), as
one immediately observes from Eq. (7.54) (substitute K̄µ → −K̄µ). Finally, A(X̄, Ȳ ) is

non-singular (at least in discretized space-time, where δ(4)(X̄− Ȳ )→ a−4δ
(4)

X̄,Ȳ
, with the

grid spacing a and the four-dimensional Kronecker delta). Therefore, all requirements are
fulfilled to apply Eq. (7.42). With the identification

ri −→ φ(X̄) , Aij −→ A(X̄, Ȳ ) , bi −→ J(X̄) , (7.58)

and using Eqs. (7.47) and (7.48), Eq. (7.43) becomes

Z[J ] =

∫
Dφ(X̄) exp

[
−1

2

∫
d4X̄ d4Ȳ φ(X̄)A(X̄, Ȳ )φ(Ȳ ) +

∫
d4X̄ J(X̄)φ(X̄)

]
= N (detA)−1/2 exp

[
1

2

∫
d4X̄ d4Ȳ J(X̄)A−1(X̄, Ȳ ) J(Ȳ )

]
. (7.59)
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We now determine A−1(X̄, Ȳ ). With Eq. (7.54) it holds that

δ(4)(X̄ − Z̄) =

∫
d4Ȳ A(X̄, Ȳ )A−1(Ȳ , Z̄)

=

∫
d4Ȳ (−�x +m2) δ(4)(X̄ − Ȳ )A−1(Ȳ , Z̄)

= (−�x +m2)A−1(X̄, Z̄) , (7.60)

i.e., A−1(X̄, Z̄) is the Green’s function of the non-interacting Klein–Gordon equation
(in imaginary time)!

The Fourier transform of A−1(X̄, Z̄) reads

A−1(X̄, Z̄) =

∫
d4K̄ d4Q̄

(2π)8
e−iK̄·X̄ Ã−1(K̄, Q̄) eiQ̄·Z̄ . (7.61)

Note that we employed the Fourier transformation with respect to the second argument
with the opposite sign in the argument of the exponential function. This is pure conven-
tion; also the usual choice of sign works, but would lead to respective changes of signs in
the following. If we insert Eq. (7.61) into Eq. (7.60) we obtain∫

d4K̄ d4Q̄

(2π)8
e−iK̄·X̄ (K̄2 +m2) Ã−1(K̄, Q̄) eiQ̄·Z̄ =

∫
d4Q̄

(2π)4
e−iQ̄·(X̄−Z̄) . (7.62)

This equation is fulfilled if

Ã−1(K̄, Q̄) = (2π)4 δ(4)(K̄ − Q̄)
1

K̄2 +m2
. (7.63)

If we insert this into Eq. (7.61) we obtain

A−1(X̄, Z̄) =

∫
d4K̄

(2π)4
e−iK̄·(X̄−Z̄) 1

K̄2 +m2
. (7.64)

Now we can revert the analytic continuation. With Eqs. (7.45) and (7.52), the abbrevia-

tion d4K = dk0d3~k, as well as K̄2 = κ2 + ~k 2 −→ −k2
0 + ~k 2 we obtain

A−1(X̄, Ȳ ) −→ A−1(X, Y ) = −i
∫

d4K

(2π)4
e−i(−ik0)(itx−ity)−i~k·(~x−~y) 1

−k2
0 + ~k 2 +m2

= i

∫
d4K

(2π)4
e−i[k0(tx−ty)+~k·(~x−~y)] 1

k2
0 − E2

~k

≡ i∆(X − Y ) . (7.65)

Using Eqs. (7.44) and (7.65), the thus defined A−1(X, Y ) fulfills∫
d4Y A(X, Y )A−1(Y, Z) =

=

∫
d4Y (−i)

(
�x +m2

)
δ(4)(X − Y )

∫
d4K

(2π)4
e−i[k0(ty−tz)+~k·(~y−~z)] 1

k2
0 − E2

~k

=
(
�x +m2

) ∫ d4K

(2π)4
e−i[k0(tx−tz)+~k·(~x−~z)] 1

k2
0 − E2

~k

≡ −δ(4)(X − Z) , (7.66)
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i.e., it has the opposite sign compared to the corresponding relation (7.60) in imaginary
time.

The generating functional (7.59) reads with Eq. (7.65)

Z[J ] = N ′(det∆)1/2 exp

[
− i

2

∫
d4X d4Y J(X) ∆(X − Y ) J(Y )

]
, (7.67)

where we again Eq. (7.48) and absorbed factors of i in the normalization constant (there-
fore now denoted with N ′).

Lecture 9

We had seen that A−1(X, Y ) ≡ i∆(X−Y ) is the Green’s function of the non-interacting
Klein–Gordon equation. The Fourier transform

∆̃(k0, ~k) =
1

k2
0 − E2

~k

(7.68)

of the Green’s function ∆(X − Y ) has poles on the real k0 axis at

k0 = ±
√
~k 2 +m2 = ±E~k . (7.69)

As usual for any Green’s function, one needs to give a prescription how to circumvent
these poles in the complex k0 plane, cf. the discussion of the causal propagator (5.22).
We choose the so-called Feynman prescription:

∆̃F (k0, ~k) =
1

k2
0 − E2

~k
+ iη

. (7.70)

The poles will then be shifted into the complex k0 plane, such that integrals along the
real k0 axis are well-defined. The poles are now at

k2
0 = E2

~k
− iη =⇒ k0 = ±

√
E2
~k
− iη ' ±E~k ∓ i

η

2E~k
≡ ±E~k ∓ iδ , (7.71)

cf. Fig. 7.2.
We had clarified in Sec. 5.4 that Green’s function are (up to constant factors) identical

with propagators. Thus,

∆F (X − Y ) =

∫
d4K

(2π)4
e−i[k0(tx−ty)+~k·(~x−~y)] 1

k2
0 − E2

~k
+ iη

(7.72)

is called the Feynman propagator for the non-interacting Klein–Gordon field.
We now compute correlation functions from the generating functional (7.67). First we

choose the normalization constant N ′ such that

Z[0] = 1 , (7.73)

i.e.,

Z[J ] = exp

[
− i

2

∫
d4X d4Y J(X) ∆F (X − Y ) J(Y )

]
. (7.74)
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Im k

Re k

k
0
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δ
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Figure 7.2: Feynman prescription for the shift of the poles into the complex k0 plane.

On the other hand, from Eq. (7.39) follows that

Z[J ] ∼ 〈0; +∞|0;−∞〉J . (7.75)

We now show that the choice (7.73) implies that

Z[J ] ≡ 〈0; +∞|0;−∞〉J . (7.76)

First, because of Eq. (7.75) we obviously have

Z[J ] = N 〈0; +∞|0;−∞〉J , (7.77)

with a yet to be determined normalization constant N . In absence of external sources,
J(X) = 0, this equation reads

Z[0] = N 〈0; +∞|0;−∞〉 . (7.78)

But without external sources and without interactions nothing happens and the incoming
vacuum is identical with the outgoing vacuum,

|0;−∞〉 ≡ |0; +∞〉 ≡ |0〉 =⇒ 〈0; +∞|0;−∞〉 ≡ 〈0|0〉 = 1 , (7.79)

i.e.,

Z[0] = N . (7.80)

But we had agreed upon that Z[0] = 1, cf. Eq. (7.73), therefore N ≡ 1. This proves Eq.
(7.76), q.e.d.
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According to Eq. (5.67) the one-point correlation function

〈0; +∞| φ̂(X) |0;−∞〉 = −i δZ[J ]

δJ(X)

∣∣∣∣
J=0

= −i δ

δJ(X)
e−(i/2)

∫
d4U d4V J(U) ∆F (U−V ) J(V )

∣∣∣∣
J=0

= −i
[
− i

2

∫
d4U d4V

δJ(U)

δJ(X)
∆F (U − V ) J(V )

− i
2

∫
d4U d4V J(U) ∆F (U − V )

δJ(V )

δJ(X)

]
Z[J ]

∣∣∣∣
J=0

= −i
[
− i

2

∫
d4V ∆F (X − V ) J(V )− i

2

∫
d4U J(U) ∆F (U −X)

]
Z[J ]

∣∣∣∣
J=0

= (−i)2

∫
d4V ∆F (X − V ) J(V ) Z[J ]

∣∣∣∣
J=0

= 0 . (7.81)

Here we have made use of the four-dimensional generalization of Eq. (5.53),

δJ(U)

δJ(X)
= δ(4)(U −X) , (7.82)

and we employed the symmetry of the Feynman propagator, ∆F (X − Y ) ≡ ∆F (Y −X).

The two-point correlation function reads according to Eq. (5.67)

〈0; +∞| T̂
[
φ̂(X) φ̂(Y )

]
|0;−∞〉 = (−i)2 δ2Z[J ]

δJ(X) δJ(Y )

∣∣∣∣
J=0

= −i δ

δJ(X)
(−i)2

∫
d4V ∆F (Y − V ) J(V ) Z[J ]

∣∣∣∣
J=0

= (−i)3

[
∆F (Y −X)− i

∫
d4V ∆F (Y − V ) J(V )

∫
d4U ∆F (X − U) J(U)

]
Z[J ]

∣∣∣∣
J=0

= i∆F (X − Y ) = Y X , (7.83)

where from the first to the second and from the second to the third line we made use of the
intermediate result in the next-to-last line in Eq. (7.81). We also repeatedly employed the
symmetry of the Feynman propagator. Apparently, the two-point correlation function
is identical with the Green’s function of the non-interacting Klein–Gordon equation,
and (up to a factor of i) also identical with the Feynman propagator!

7.4 Interacting field theory: λφ4 theory in perturbation
theory

We now add a local four-point interaction to the Lagrangian of the Klein–Gordon
field, Eq. (7.1), i.e., a term which is proportional to the fourth power of the field
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φ(~x, t),

L = L0 + Lint ,

L0 =
1

2

[
(∂tφ)2 − (~∇φ) · (~∇φ)−m2φ2

]
,

Lint = − λ
4!
φ4 . (7.84)

Here, λ is the coupling constant which determines the strength with which the field
φ interacts with itself. The 4! in the denominator is purely conventional and simplifies
the following expressions. Note that this theory looks rather similar to the anharmonic
oscillator discussed in Sec. 4.5.

How does the generating functional for n–point correlation functions look like? Per
definition, cf. Eq. (7.39), we would immediately write

Z[J ] = N
∫
Dφ exp

{
iS[φ] + i

∫
d4X J(X)φ(X)

}
, (7.85)

with the classical action

S[φ] =

∫
d4X L . (7.86)

J(X) is the source term and the normalization constant N is chosen such that

Z[0] = 1 , (7.87)

i.e.,

N−1 =

∫
Dφ exp {iS[φ]} . (7.88)

Using the classical action of the non-interacting Klein–Gordon field

S0[φ] =

∫
d4X L0 , (7.89)

we can factorize the part of the action which contains the interaction term in the
generating functional (7.85),

Z[J ] = N
∫
Dφ exp

[
i

∫
d4X Lint(φ)

]
exp

{
iS0[φ] + i

∫
d4X J(X)φ(X)

}
. (7.90)

The first exponential function has the Taylor–series expansion

exp

[
i

∫
d4X Lint(φ)

]
=
∞∑
n=0

in

n!

[∫
d4X Lint(φ)

]n
=
∞∑
n=0

in

n!

[
− λ

4!

∫
d4X φ4(X)

]n
,

(7.91)
where we have used Eq. (7.84). If we insert this into Eq. (7.90) we obtain

Z[J ] = N
∫
Dφ

∞∑
n=0

(−iλ)n

(4!)nn!

[∫
d4X φ4(X)

]n
eiS0[φ]+i

∫
d4X J(X)φ(X) (7.92)

= N
∞∑
n=0

(−iλ)n

(4!)nn!

∫
d4X1 · · · d4Xn

∫
Dφφ4(X1) · · ·φ4(Xn) eiS0[φ]+i

∫
d4X J(X)φ(X) .
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It seems that we are now stuck with an unmanageably complicated expression. However,
because of the source term in the exponent, each factor φ(Xi) in front ot the exponential
function can be replaced by a functional derivative with respect to J(Xi),

φ(Xi) e
iS0[φ]+i

∫
d4X J(X)φ(X) ≡ 1

i

δ

δJ(Xi)
eiS0[φ]+i

∫
d4X J(X)φ(X) . (7.93)

If we use this in Eq. (7.92) and pull the functional derivatives with respect to the sources
out of the functional integral over the fields φ, we obtain

Z[J ] = N
∞∑
n=0

(−iλ)n

(4!)nn!

∫
d4X1 · · · d4Xn

×
[

1

i

δ

δJ(X1)

]4

· · ·
[

1

i

δ

δJ(Xn)

]4 ∫
Dφ eiS0[φ]+i

∫
d4X J(X)φ(X)

= N ′
∞∑
n=0

in

n!

{
− λ

4!

∫
dX

[
1

i

δ

δJ(X)

]4
}n

N ′′
∫
Dφ eiS0[φ]+i

∫
d4X J(X)φ(X)

≡ N ′ exp

[
i

∫
d4X Lint

(
1

i

δ

δJ(X)

)]
Z0[J ] , (7.94)

whereN ≡ N ′N ′′, where we wrote the Taylor–series again as an exponential function, and
where we introduced the generating functional for the non-interacting Klein–Gordon
field,

Z0[J ] = N ′′
∫
Dφ exp

{
iS0[φ] + i

∫
d4X J(X)φ(X)

}
, N ′′ −1 =

∫
Dφ exp {iS0[φ]} ,

(7.95)
which is normalized to one in the absence of sources. The latter we had already calculated
in Eq. (7.74),

Z0[J ] = exp

[
− i

2

∫
d4X d4Y J(X) ∆F (X − Y ) J(Y )

]
, (7.96)

with the Feynman propagator (7.72) for the non-interacting Klein–Gordon field. The
normalization constant N ′ ensures that Z[0] = 1, i.e.,

N ′ −1 = exp

[
i

∫
d4X Lint

(
1

i

δ

δJ(X)

)]
Z0[J ]

∣∣∣∣
J=0

. (7.97)

Equation (7.94) with Eq. (7.96) suggest a calculation method for the generating func-
tional, which we had already encountered in other form in Chap. 5: we can expand the
exponential in terms of a Taylor series and compute the individual terms in this series
explicitly, at least up to some given order. Formally, this is equivalent to an expansion
in powers of the coupling constant λ, i.e., to perturbation theory. Of course, we
have to terminate the calculation of the series after a finite number of terms. However,
if λ � 1 one may hope that the terms of higher order become successively smaller than
those of lower order and the perturbation series in λ converges.
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In the following we want to perform an exemplary calculation of the perturbation series
in λ up to first order in λ. The Taylor series of the exponential function in Eq. (7.94)
reads up to this order

exp

[
i

∫
d4X Lint

(
1

i

δ

δJ(X)

)]
= 1− iλ

4!

∫
d4X

[
1

i

δ

δJ(X)

]4

+O(λ2) . (7.98)

Inserting this into Eq. (7.94) and acting with it on Z0[J ], the zeroth-order term in λ, the
1, just reproduces the generating functional Z0[J ] of the non-interacting theory. To first
order in λ we now have to compute the fourth functional derivative of Z0[J ] with respect
to the source term J(X). We have

1

i

δ

δJ(X)
Z0[J ] =

1

i

δ

δJ(X)
exp

[
− i

2

∫
d4Y d4Z J(Y ) ∆F (Y − Z) J(Z)

]
=

[
−1

2

∫
d4Z ∆F (X − Z) J(Z)− 1

2

∫
d4Y J(Y ) ∆F (Y −X)

]
Z0[J ]

= −
∫

d4Z ∆F (X − Z) J(Z)Z0[J ] , (7.99)

where we used the symmetry of the Feynman propagator, ∆F (X − Y ) ≡ ∆F (Y − X),
and renamed the integration variable in the second term, Y → Z. The second functional
derivative is[

1

i

δ

δJ(X)

]2

Z0[J ] =
1

i

δ

δJ(X)

{
−
∫

d4Z ∆F (X − Z) J(Z)Z0[J ]

}
=

{
−1

i
∆F (0)−

∫
d4Z ∆F (X − Z) J(Z)

[
−
∫

d4U ∆F (X − U) J(U)

]}
Z0[J ]

=

[
i∆F (0) +

∫
d4Z d4U ∆F (X − Z) ∆F (X − U) J(Z) J(U)

]
Z0[J ] . (7.100)

The third functional derivative is then[
1

i

δ

δJ(X)

]3

Z0[J ]

=
1

i

δ

δJ(X)

{[
i∆F (0) +

∫
d4Z d4U ∆F (X − Z) ∆F (X − U) J(Z) J(U)

]
Z0[J ]

}
=

1

i

[∫
d4U ∆F (0) ∆F (X − U) J(U) +

∫
d4Z ∆F (X − Z) ∆F (0) J(Z)

]
Z0[J ]

+

[
i∆F (0) +

∫
d4Z d4U ∆F (X − Z) ∆F (X − U) J(Z) J(U)

]
×
[
−
∫

d4V ∆F (X − V ) J(V )

]
Z0[J ]

=

[
−3 i∆F (0)

∫
d4Z ∆F (X − Z) J(Z) (7.101)

−
∫

d4Z d4U d4V ∆F (X − Z) ∆F (X − U) ∆F (X − V ) J(Z) J(U) J(V )

]
Z0[J ] ,
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where we renamed several integration variables in order to collect the terms in a suitable
manner. Finally, we also compute the fourth functional derivative,[

1

i

δ

δJ(X)

]4

Z0[J ]

=
1

i

δ

δJ(X)

{[
−3 i∆F (0)

∫
d4Z ∆F (X − Z) J(Z)

−
∫

d4Z d4U d4V ∆F (X − Z) ∆F (X − U) ∆F (X − V ) J(Z) J(U) J(V )

]
Z0[J ]

}
=

1

i

[
−3 i [∆F (0)]2 − 3

∫
d4Z d4U ∆F (X − Z) ∆F (X − U) ∆F (0) J(Z) J(U)

]
Z0[J ]

+

[
−3 i∆F (0)

∫
d4Z ∆F (X − Z) J(Z)

−
∫

d4Z d4U d4V ∆F (X − Z) ∆F (X − U) ∆F (X − V ) J(Z) J(U) J(V )

]
×
[
−
∫

d4W ∆F (X −W ) J(W )

]
Z0[J ]

=

{
− 3 [∆F (0)]2 + 6 i∆F (0)

∫
d4Z d4U ∆F (X − Z) ∆F (X − U) J(Z) J(U)

+

∫
d4Z d4U d4V d4W ∆F (X − Z) ∆F (X − U) ∆F (X − V ) ∆F (X −W )

× J(Z) J(U) J(V ) J(W )
}
Z0[J ] . (7.102)

With the help of the following Feynman rules in space-time,

i∆F (X − Y ) = Y X , (7.103)

i∆F (0) = , (7.104)

−iλ
∫

d4X = X , (7.105)

i

∫
d4X J(X) = , (7.106)

the space-time integral of Eq. (7.102), multiplied with −iλ/4!, can be written in terms of
Feynman diagrams in the following way:

∫
d4X

{
−iλ

4!

[
1

i

δ

δJ(X)

]4
}
Z0[J ] =

1

4!

 ++ 63
X

X

Z U

Z U

WV

Z0[J ] .

(7.107)
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8 Path Integrals in Statistical Field
Theory

In the final chapter of this lecture series, we would like to give an outlook to the application
of path integrals in Statistical Field Theory. Statistical Field Theory is the generalization
of Statistical Mechanics of particles to that of fields, just like Quantum Field Theory is
the generalization of Quantum Mechanics of particles to that of fields. The central object
of Statistical Mechanics, as well as Statistical Field Theory, is the partition function,
from which one can derive all thermodynamical properties of the system. We explain in
this chapter how the partition function can be expressed in terms of a functional integral.

In Statistical Mechanics, the partition function of the so-called canonical ensemble,
i.e., an ensemble of N particles in a given volume V , which is immersed in a heat bath that
allows energy exchange with the system and keeps the system at a constant temperature
T , is given by

Z = Tr e−βĤ . (8.1)

Here, Ĥ is the Hamilton operator of the system and β ≡ 1/(kBT ), where kB is Boltzmann’s
constant. The trace runs over a complete set of states of the system. For instance, if we
choose the set of eigenstates φ0(~x) of the Schrödinger–picture field operator φ̂(~x), cf. Eq.
(7.20),

Z = Tr e−βĤ =

∫ ∏
~x∈V

dφ0(~x) 〈φ0| e−βĤ |φ0〉 . (8.2)

Note that the spatial coordinates of the fields must lie inside the volume V of the system.
The matrix elements in the trace remind of the quantum field-theoretical transition
amplitude

〈φf (~x, tf )|φi(~x, ti)〉 = 〈φf | Û(tf , 0)Û(0, ti) |φi〉 = 〈φf | Û(tf , ti) |φi〉 = 〈φf | e−iĤ(tf−ti) |φi〉 ,
(8.3)

cf. Eq. (7.30), with the following obvious replacements:

(i) φi = φf = φ0, initial and final state in the transition amplitude are identical,

(ii) tf − ti −→ −iβ, the real time interval [ti, tf ] for the quantum-mechanical time
evolution is replaced by an interval [0, β] in imaginary time.

Because of the second point one also speaks of Statistical Field Theory in imaginary-
time formalism. (There is also a version of Statistical Field Theory in the so-called
real-time formalism, which is out of the scope of the present lecture.)

Point (ii) can be also be formulated as

93



8 Path Integrals in Statistical Field Theory

(ii’) Û(tf , ti) ≡ e−iĤ(tf−ti) −→ e−βĤ , the quantum-mechanical time-evolution operator
is replaced by the so-called Gibbs operator of the canonical ensemble.

Just as demonstrated in Sec. 7.2, the matrix element (8.3) can be written in the form of
a functional integral. We repeat the respective derivation, but immediately for the matrix
element in Eq. (8.2). First we partition the interval [0, β] into N pieces of length τ ,

β ≡ Nτ ,

where we have in mind that, at the end of the calculation, we will perform the limit
N → ∞, τ → 0, with Nτ = β = const. The Gibbs operator can then be written as
follows,

e−βĤ ≡ e−ĤτN ≡
N∏
j=1

e−Ĥτ . (8.4)

We insert this expression into the transition amplitude in Eq. (8.2) and insert in front

of each factor e−Ĥτ a complete set of eigenfunctions of the field operator, Eq. (7.21),
and behind each factor a complete set of eigenfunctions of the canonically conjugate field
operator, Eq. (7.24),

〈φ0| e−βĤ |φ0〉 = 〈φ0|
N∏
j=1

e−Ĥτ |φ0〉

=

∫ N∏
j=1

∏
~x∈V

dΠj(~x)dφj(~x)

2π
〈φ0|φN〉〈φN | e−Ĥτ |ΠN〉〈ΠN |φN−1〉〈φN−1| e−Ĥτ |ΠN−1〉 · · ·

· · · 〈Π2|φ1〉〈φ1| e−Ĥτ |Π1〉〈Π1|φ0〉 . (8.5)

Here we have enumerated the various complete sets of eigenfunctions with an index j, in
order to mutually distinguish them. We now use

(i) for the first factor under the integral the orthonormality (7.22) of the eigenstates
|φj〉,

〈φ0|φN〉 = δ[φ0 − φN ] , (8.6)

(ii) for the factors 〈Πj|φj−1〉 Eq. (7.26), i.e.,

〈Πj|φj−1〉 = exp

[
−i
∫
V

d3~xΠj(~x)φj−1(~x)

]
, (8.7)

(iii) for the factors 〈φj| e−Ĥτ |Πj〉 the following consideration: in the limit τ → 0 we may
terminate the Taylor–series expansion of the exponential function after the term
linear in the (infinitesimally) small quantity τ ,

〈φj| e−Ĥτ |Πj〉 = 〈φj| 1− Ĥτ |Πj〉+O(τ 2) . (8.8)
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The Hamilton operator Ĥ can be written as a spatial integral over the Hamilton
density,

Ĥ ≡
∫
V

d3~x Ĥ . (8.9)

According to Eq. (7.33) Ĥ is a function of the field φ̂ and Π̂ (as well as gradients
of φ̂; an explicit space and time dependence can be excluded for a system in global
thermodynamical equilibrium). Between eigenstates 〈φj| and |Πj〉 we can replace
the field operators by their respective eigenvalues, i.e.,

〈φj| Ĥ |Πj〉 =

∫
V

d3~x 〈φj|H(φ̂, Π̂, ~∇φ̂)|Πj〉

=

∫
V

d3~x 〈φj|H(φj,Πj, ~∇φj)|Πj〉 ≡ Hj〈φj|Πj〉 , (8.10)

where

Hj ≡
∫
V

d3~xH(φj,Πj, ~∇φj) (8.11)

is the value of the Hamilton operator for the field eigenvalues φj, Πj. If we insert
Eq. (8.10) into Eq. (8.8) and reverse the expansion of the exponential function, we
obtain

〈φj| e−Ĥτ |Πj〉 = e−Hjτ 〈φj|Πj〉

≡ exp

{∫
V

d3~x
[
iΠj(~x)φj(~x)− τ H(φj, πj, ~∇φj)

]}
, (8.12)

where we have used Eq. (8.7).

Now we insert Eqs. (8.6), (8.7), and (8.12) into Eq. (8.5) and obtain

〈φ0| e−βĤ |φ0〉 =

∫ N∏
j=1

∏
~x∈V

dΠj(~x)dφj(~x)

2π
δ[φ0 − φN ]

× exp

{
N∑
k=1

τ

∫
V

d3~x

[
iΠk(~x)

φk(~x)− φk−1(~x)

τ
−H(φk,Πk, ~∇φk)

]}
. (8.13)

In the limit N →∞, τ → 0 the sum over k in the exponent becomes an integral over the
variable τ . The finite difference of the fields becomes

lim
τ→0

φk(~x)− φk−1(~x)

τ
=
∂φ(~x, τ)

∂τ
.

With the definitions

Dφ(~x, τ) ≡ lim
N→∞

N∏
j=1

∏
~x∈V

dφj(~x) , DΠ(~x, τ) ≡ lim
N→∞

N∏
j=1

∏
~x∈V

dΠj(~x)

2π
, (8.14)

95



8 Path Integrals in Statistical Field Theory

we obtain from Eq. (8.13) in the limit N →∞, τ → 0,

〈φ0| e−βĤ |φ0〉 =

∫
DΠ(~x, τ)

∫ φ(~x,β)=φ0(~x)

φ(~x,0)=φ0(~x)

Dφ(~x, τ)

× exp

{∫ β

0

dτ

∫
V

d3~x

[
Π(~x, τ) i

∂φ(~x, τ)

∂τ
−H(φ,Π, ~∇φ)

]}
. (8.15)

Here we have indicated at the boundaries of the functional integral over the fields φ(~x, τ)
that both the “initial state” at τ = 0 as well as, due to the functional delta function
δ[φ0 − φN ], the “final state” at τ = β are given by the field eigenvalue φ0(~x).

If we insert Eq. (8.15) into Eq. (8.2) we also integrate over all possible field eigenvalues
φ0(~x). The only restriction of the functional integral over the fields φ is then that one
has to integrate over all fields φ(~x, τ) which are periodic in the interval [0, β]. Thus, the
canonical partition function has the following representation as a functiona linte-
gral,

Z = N

∫
DΠ(~x, τ)

∫
periodic

Dφ(~x, τ)

× exp

{∫ β

0

dτ

∫
V

d3~x

[
Π(~x, τ) i

∂φ(~x, τ)

∂τ
−H(φ,Π, ~∇φ)

]}
. (8.16)

Here we have also introduced a normalization constant N, which accounts for the fact
that the partition function must be a dimensionless number. This normalization is
necessary because the fields Π(~x, τ) and φ(~x, τ) in the integration measure are usually not
dimensionless.

For Hamilton densities which are quadratic in Π, the functional integration over this
field is again a shifted Gaussian integral and can be immediately performed. The result
will then again be a functional integral over φ only, with the Lagrangian appearing in
the argument in the exponent. For non-interacting field theories, the Lagrangian is a
quadratic function of φ, i.e., the functional integral is again a Gaussian integral and can
be explicitly computed. And here is where the fun starts: in contrast to Quantum Field
Theory, where many prefactors could be neglected in the generating functional for n–point
correlation functions, since the latter was normalized to one in the absence of sources,
the partition function (8.16), which at first glance looks very similar to the generating
functional in the absence of sources, is not one, but a number which determines the
thermodynamics of the system. All factors resulting from the evaluation of the Gaussian
integrals have to be carefully kept in order to obtain the correct result. But this is subject
of a dedicated course on Statistical Field Theory and will not be elaborated further here.
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