Exercises

Exercise 1: Symmetries in Quantum Mechanics

In this exercise, some systems well-known in quantum mechanics are analyzed with respect to their symmetries.

(a) Show that a free particle, described by the Hamilton operator

$$\hat{H}_0 = \frac{\hat{\vec{p}}^2}{2m} \,, \tag{1}$$

where $\hat{\vec{p}} \equiv -i\hbar\vec{\nabla}$ is the momentum operator, is invariant under space-time translations. What are suitable eigenfunctions $|\psi\rangle$ of \hat{H}_0 ?

(b) Show that the hydrogen atom, described by the Hamilton operator

$$\hat{H} = \frac{\hat{p}^2}{2m} - \frac{e^2}{r} \,, \tag{2}$$

is invariant under rotations.

<u>Hint</u>: Use the representation of the Laplacian Δ in terms of spherical coordinates and express the angular part in terms of the angular momentum operator $\hat{\vec{L}} \equiv \vec{r} \times \hat{\vec{p}}$.

How many quantum numbers classify the eigenfunctions of \hat{H} ? What are suitable eigenfunctions of \hat{H} ? Is \hat{H} invariant under space translations?

Exercise 2: Matrix Groups

So-called matrix groups play an important role in mathematics and physics. Therefore, some of these groups will be investigated in more detail in this exercise.

- (a) The set of regular (means non-vanishing determinant) real-valued $(N \times N)$ matrices is denoted as $GL(N, \mathbb{R})$. Show that this set together with the standard matrix multiplication forms a group.
- (b) The set of unimodular (means determinant equal 1) real-valued $(N \times N)$ matrices is denoted as $SL(N,\mathbb{R})$. Show that this set together with the standard matrix multiplication forms a group. Show in addition that it is a subgroup of $GL(N,\mathbb{R})$.

Exercise 3: The Groups U(N) and SU(N)

The Lie groups U(N) and SU(N) are very important for physics. Here, U(N) denotes the group of unitary $(N \times N)$ matrices and SU(N) the group of unitary $(N \times N)$ matrices with determinant 1. It is intuitively clear that SU(N) is a Lie subgroup of U(N). The exact relation between both Lie groups is

$$U(N) = SU(N) \times U(1)$$

so that each $g \in U(N)$ can be written as

$$D(g) = D(h) \exp\left(-\frac{i}{\hbar}\alpha_0 \hat{T}_0\right) ,$$

where $\hat{T}_0 \propto \mathbb{1}_{N \times N}$ and $h \in SU(N)$. Here, D(g) and D(h) are $(N \times N)$ matrix representations of elements $g \in U(N)$ and $h \in SU(N)$, respectively. The exponential in the above equation is an $(N \times N)$ matrix

representation of an element of U(1).

Since U(N) is a Lie group, its elements can be also written as

$$\hat{U}(\alpha_0, \alpha_1, \dots, \alpha_{n(N)}) = \exp\left(-\frac{i}{\hbar} \sum_{a=0}^{n(N)} \alpha_a \hat{T}_a\right) ,$$

where \hat{T}_a , a = 1, ..., n(N) denote the generators of SU(N) and $\hat{T}_0 \propto \mathbb{1}_{N \times N}$ is the additional generator of U(1).

The Lie algebra of SU(N) is given by

$$[\hat{T}_a, \hat{T}_b] = i\hbar \sum_{c=1}^{n(N)} f_{abc} \hat{T}_c , \qquad (3)$$

where the structure constants f_{abc} are completely antisymmetric in a basis where $\text{Tr}(\hat{T}_a \hat{T}_b) \propto \delta_{ab}$. The anti-commutator of two SU(N) generators is given by

$$\left\{\hat{T}_{a},\hat{T}_{b}\right\} = \frac{\hbar^{2}}{N}\delta_{ab}\mathbb{1}_{N\times N} + \hbar\sum_{c=1}^{n(N)}d_{abc}\hat{T}_{c} .$$

$$\tag{4}$$

Here, d_{abc} are the completely symmetric structure constants of SU(N).

- (i) Determine the number n(N) of generators of SU(N) as function of N.
- (ii) Determine \hat{T}_0 such that the orthogonality relation $\text{Tr}(\hat{T}_a\hat{T}_b) = \frac{\hbar^2}{2}\delta_{ab}, a, b = 0, 1, \dots, n(N)$ is fulfilled.
- (iii) Show that

$$f_{abc} = \frac{2}{i\hbar^3} \operatorname{Tr}\left\{ \left[\hat{T}_a, \hat{T}_b \right] \hat{T}_c \right\} , \qquad d_{abc} = \frac{2}{\hbar^3} \operatorname{Tr}\left(\left\{ \hat{T}_a, \hat{T}_b \right\} \hat{T}_c \right) .$$

Exercise 4: The Groups U(N) and SU(N) (continued)

(iv) Prove the Jacobi identity

$$\sum_{n=1}^{n(N)} (f_{abn} d_{ncd} + f_{dbn} d_{nca} + f_{cbn} d_{nad}) = 0 .$$

(v) Show that

$$\hat{C}_1 = \sum_{a,b,c=1}^{n(N)} f_{abc} \hat{T}_a \hat{T}_b \hat{T}_c , \qquad \hat{C}_2 = \sum_{a,b,c=1}^{n(N)} d_{abc} \hat{T}_a \hat{T}_b \hat{T}_c$$

are Casimir operators of the Lie group SU(N) and compute \hat{C}_1 explicitly for SU(2).

(vi) Generalize the commutation and anti-commutation relations (3) and (4) to the generators of U(N)and determine the additional structure constants f_{abc} and d_{abc} .

Exercise 5: Ladder Operators

Prove the commutation relations (4.22) - (4.37) of the lecture script.

Exercise 6: Fundamental and Antifundamental Representation

In the lecture it was shown that the triplet [3] corresponds to the so-called fundamental representation of the group SU(3). Furthermore, it was shown that there exists a so-called antifundamental representation in the form of the anti-triplet [3]. The latter is also known as conjugate representation. Physical objects that live in the fundamental representation of SU(3) transform (in natural units, where $\hbar = 1$) with the group element (in matrix representation)

$$\hat{U} = \exp\left(-i\sum_{a=1}^{8} \alpha_a \hat{T}_a\right) , \qquad (5)$$

with $\hat{T}_a = \hat{\lambda}_a/2$, where $\hat{\lambda}_a$, a = 1, ..., 8, are the Gell-Mann matrices. The corresponding group element \hat{U} which transforms objects in the conjugate representation can be obtained from the matrix representation (5) of U by complex conjugation.

- (a) Show that the generators in the conjugate representation are given by $\hat{T}_a = -\hat{T}_a^*, a = 1, \dots, 8$.
- (b) Show that $\hat{T}_a = -\hat{T}_a^*$, a = 1, ..., 8, fulfill the Lie algebra of the group SU(3).
- (c) Two representations of a group are called equivalent, if they are related by a similarity transformation. Show that equivalence of \hat{U} und \hat{U} implies that

$$\tilde{T}_a = S \hat{T}_a S^{-1}, \qquad a = 1, \dots, 8.$$
(6)

(d) Show that a similarity transformation of the form $\hat{T}_a = S\hat{T}_aS^{-1}$, $a = 1, \ldots, 8$, exists, iff the eigenvalues of the generators \hat{T}_a appear exclusively in pairs $\{\pm \lambda_a\}$.

<u>Hint</u>: For the case that the generators are matrices of uneven dimension, there exists also null eigenvalues of the generators.

- (e) Show that a similarity transformation of the form (6) requires that the completely symmetric structure constants d_{abc} of the group vanish.
- (f) Show that a similarity transformation of the form (6) exists for the group SU(2).

Exercise 7: Z_2 as Center of SU(2)

(i) Center of a group:

The center Z(G) of a group G is defined as all group elements $z \in G$ which commute with all other group elements,

$$Z(G) = \{ z \in G | z \otimes g = g \otimes z \; \forall \; g \in G \}$$

Show that $(Z(G), \otimes)$ is an Abelian subgroup of (G, \otimes) .

(ii) Cyclic group Z_2 :

The cyclic group of order 2 is denoted as Z_2 . It is defined by the following link table

0	e	a	
e	e	a	
a	a	e	

- (a) Show that Z_2 is an Abelian group and find a one-dimensional representation of Z_2 .
- (b) Find a two-dimensional representation of Z_2 and show that $Z(SU(2)) = Z_2$.

Let $p, q \in \mathbb{N}$ be positive natural numbers with the property p + q = N. Define the matrix $\eta_p = (\eta_{ij})$ with

$$\eta_{ij} = \begin{cases} 1, & \text{for } i = j \le p \ ,\\ -1, & \text{for } i = j > p \ ,\\ 0, & \text{for } i \ne j \ . \end{cases}$$

(i) Show that the set of $(N \times N)$ matrices M with the property

$$M^T \boldsymbol{\eta}_p M = \boldsymbol{\eta}_p , \qquad (7)$$

forms a group with respect to the standard matrix multiplication. To this end, first show that det $M = \pm 1$ and check all group axioms.

This group is called pseudo-orthogonal group O(p,q). If we demand in addition that det M = 1, we obtain the so-called special pseudo-orthogonal group SO(p,q). In the case p = 1, q = 3 the matrix η corresponds to the metric tensor of Minkowski space, $\eta_{\mu\nu} = \text{diag}(+1, -1, -1, -1)$. From the theory of special relativity one knows that Lorentz transformations Λ fulfill relation (7) and thus the Lorentz group corresponds to the group O(1,3). If we demand in addition that det $\Lambda = 1$ and $\Lambda_0^0 \ge 1$, we obtain a subgroup of the Lorentz group, the so-called proper orthochronous Lorentz group $SO^+(1,3)$, which contains Lorentz boosts and rotations in space. The latter can be written (in natural units, where $\hbar = 1$) as

$$R(\vec{\phi}) = \exp\left(-i\vec{\phi}\cdot\hat{\vec{L}}\right) \,, \tag{8}$$

where $\vec{\phi} = (\phi_x, \phi_y, \phi_z)^T$ is a rotation vector and \vec{L} is the angular momentum operator. Alternatively, they can be represented by orthogonal (3×3) matrices with determinant 1. These matrices form the group of special orthogonal (3×3) matrices SO(3). From the lecture we know that these groups are Lie groups, since their group structure is that of a differentiable manifold. Let $G(\vec{\alpha})$ be an element of a Lie group with Nparameters α_i , $i = 1, \ldots, N$, then the generators of this group can be determined by the relation

$$\hat{T}_i = \left. i \frac{\partial G(\vec{\alpha})}{\partial \alpha^i} \right|_{\vec{\alpha} = \vec{0}}$$

- (ii) Determine the generators \hat{L}_i of SO(3) in the representation (8) as well as in their representation as (3×3) matrices.
- (iii) Determine the generators \hat{K}_i of Lorentz boosts in their representation as (4×4) matrices.
- (iv) State the commutation relations of the \hat{L}_i (without proof) and compute $[\hat{K}_i, \hat{K}_j]$ und $[\hat{L}_i, \hat{K}_j]$ by extending the generators \hat{L}_i to (4×4) matrix representation.
- (v) Determine new generators \hat{J}_i^{\pm} as linear combinations of \hat{L}_i and \hat{K}_i , which fulfill the algebra

$$[\hat{J}_i^{\pm}, \hat{J}_j^{\pm}] = i \sum_{k=1}^3 \epsilon_{ijk} \hat{J}_k^{\pm} .$$

Show in addition that

$$[\hat{J}_i^\pm,\hat{J}_j^\mp]=0$$
 .

<u>Remark</u>: Apparently, the generators $\{\hat{J}_i^{\pm}\}$ fulfill the Lie algebra of $SU(2) \times SU(2)$. But one has to be careful: there are several reasons why the groups $SO^+(1,3)$ and $SU(2) \times SU(2)$ cannot be isomorphic. For instance, $SU(2) \times SU(2)$ is a compact Lie group, while $SO^+(1,3)$ is a non-compact Lie group. Indeed, it can be shown that the proper orthochronous Lorentz group $SO^+(1,3)$ and the group of complex (2×2) matrices with det U = 1, $SL(2, \mathbb{C})$ are in an analogous relationship as the groups SO(3) and SU(2). It holds that $SO^+(1,3) \cong SL(2,\mathbb{C})/Z_2$. The reason for the isomorphism of the Lie algebras from part (v) has its origin in the fact that the generators \hat{J}_i^{\pm} , i = 1, 2, 3, are a complexification of the Lie algebra $\mathfrak{so}^+(1,3)$. Then, $SO^+(1,3)_{\mathbb{C}} \cong (SU(2) \times SU(2))/Z_2$.