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Exercises

Exercise 1: Symmetries in Quantum Mechanics

In this exercise, some systems well-known in quantum mechanics are analyzed with respect to their symme-
tries.

(a) Show that a free particle, described by the Hamilton operator

Ĥ0 =
~̂p 2

2m
, (1)

where ~̂p ≡ −i~~∇ is the momentum operator, is invariant under space-time translations. What are
suitable eigenfunctions |ψ〉 of Ĥ0?

(b) Show that the hydrogen atom, described by the Hamilton operator

Ĥ =
~̂p 2

2m
− e2

r
, (2)

is invariant under rotations.
Hint: Use the representation of the Laplacian ∆ in terms of spherical coordinates and express the

angular part in terms of the angular momentum operator ~̂L ≡ ~r × ~̂p.
How many quantum numbers classify the eigenfunctions of Ĥ? What are suitable eigenfunctions of Ĥ?
Is Ĥ invariant under space translations?

Exercise 2: Matrix Groups

So-called matrix groups play an important role in mathematics and physics. Therefore, some of these groups
will be investigated in more detail in this exercise.

(a) The set of regular (means non-vanishing determinant) real-valued (N × N) matrices is denoted as
GL(N,R). Show that this set together with the standard matrix multiplication forms a group.

(b) The set of unimodular (means determinant equal 1) real-valued (N × N) matrices is denoted as
SL(N,R). Show that this set together with the standard matrix multiplication forms a group. Show
in addition that it is a subgroup of GL(N,R).

Exercise 3: The Groups U(N) and SU(N)

The Lie groups U(N) and SU(N) are very important for physics. Here, U(N) denotes the group of unitary
(N ×N) matrices and SU(N) the group of unitary (N ×N) matrices with determinant 1. It is intuitively
clear that SU(N) is a Lie subgroup of U(N). The exact relation between both Lie groups is

U(N) = SU(N)× U(1)

so that each g ∈ U(N) can be written as

D(g) = D(h) exp

(
− i
~
α0T̂0

)
,

where T̂0 ∝ 1N×N and h ∈ SU(N). Here, D(g) and D(h) are (N × N) matrix representations of elements
g ∈ U(N) and h ∈ SU(N), respectively. The exponential in the above equation is an (N × N) matrix
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representation of an element of U(1).

Since U(N) is a Lie group, its elements can be also written as

Û(α0, α1, . . . , αn(N)) = exp

− i
~

n(N)∑
a=0

αaT̂a

 ,

where T̂a, a = 1, . . . , n(N) denote the generators of SU(N) and T̂0 ∝ 1N×N is the additional generator of
U(1).

The Lie algebra of SU(N) is given by

[T̂a, T̂b] = i~
n(N)∑
c=1

fabcT̂c , (3)

where the structure constants fabc are completely antisymmetric in a basis where Tr(T̂aT̂b) ∝ δab. The
anti-commutator of two SU(N) generators is given by

{
T̂a, T̂b

}
=

~2

N
δab1N×N + ~

n(N)∑
c=1

dabcT̂c . (4)

Here, dabc are the completely symmetric structure constants of SU(N).

(i) Determine the number n(N) of generators of SU(N) as function of N .

(ii) Determine T̂0 such that the orthogonality relation Tr(T̂aT̂b) = ~2

2 δab, a, b = 0, 1, . . . , n(N) is fulfilled.

(iii) Show that

fabc =
2

i~3
Tr
{[
T̂a, T̂b

]
T̂c

}
, dabc =

2

~3
Tr
({
T̂a, T̂b

}
T̂c

)
.

Exercise 4: The Groups U(N) and SU(N) (continued)

(iv) Prove the Jacobi identity

n(N)∑
n=1

(fabndncd + fdbndnca + fcbndnad) = 0 .

(v) Show that

Ĉ1 =

n(N)∑
a,b,c=1

fabcT̂aT̂bT̂c , Ĉ2 =

n(N)∑
a,b,c=1

dabcT̂aT̂bT̂c

are Casimir operators of the Lie group SU(N) and compute Ĉ1 explicitly for SU(2).

(vi) Generalize the commutation and anti-commutation relations (3) and (4) to the generators of U(N)
and determine the additional structure constants fabc and dabc.

Exercise 5: Ladder Operators

Prove the commutation relations (4.22) – (4.37) of the lecture script.
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Exercise 6: Fundamental and Antifundamental Representation

In the lecture it was shown that the triplet [3] corresponds to the so-called fundamental representation of
the group SU(3). Furthermore, it was shown that there exists a so-called antifundamental representation in
the form of the anti-triplet [3̄]. The latter is also known as conjugate representation. Physical objects that
live in the fundamental representation of SU(3) transform (in natural units, where ~ = 1) with the group
element (in matrix representation)

Û = exp

(
−i

8∑
a=1

αaT̂a

)
, (5)

with T̂a = λ̂a/2, where λ̂a, a = 1, . . . , 8, are the Gell-Mann matrices. The corresponding group element ˆ̄U
which transforms objects in the conjugate representation can be obtained from the matrix representation
(5) of U by complex conjugation.

(a) Show that the generators in the conjugate representation are given by ˆ̄Ta = −T̂ ∗
a , a = 1, . . . , 8.

(b) Show that ˆ̄Ta = −T̂ ∗
a , a = 1, . . . , 8, fulfill the Lie algebra of the group SU(3).

(c) Two representations of a group are called equivalent, if they are related by a similarity transformation.

Show that equivalence of Û und ˆ̄U implies that

ˆ̄Ta = ST̂aS
−1 , a = 1, . . . , 8 . (6)

(d) Show that a similarity transformation of the form ˆ̄Ta = ST̂aS
−1, a = 1, . . . , 8, exists, iff the eigenvalues

of the generators T̂a appear exclusively in pairs {±λa}.
Hint: For the case that the generators are matrices of uneven dimension, there exists also null eigen-
values of the generators.

(e) Show that a similarity transformation of the form (6) requires that the completely symmetric structure
constants dabc of the group vanish.

(f) Show that a similarity transformation of the form (6) exists for the group SU(2).

Exercise 7: Z2 as Center of SU(2)

(i) Center of a group:

The center Z(G) of a group G is defined as all group elements z ∈ G which commute with all other
group elements,

Z(G) = {z ∈ G|z ⊗ g = g ⊗ z ∀ g ∈ G} .

Show that (Z(G),⊗) is an Abelian subgroup of (G,⊗).

(ii) Cyclic group Z2:

The cyclic group of order 2 is denoted as Z2. It is defined by the following link table

◦ e a
e e a
a a e

.

(a) Show that Z2 is an Abelian group and find a one-dimensional representation of Z2.

(b) Find a two-dimensional representation of Z2 and show that Z(SU(2)) = Z2.
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Exercise 8: The Groups O(p, q), SO(p, q), and SO+(1, 3)

Let p, q ∈ N be positive natural numbers with the property p+ q = N . Define the matrix ηp = (ηij) with

ηij =


1, for i = j ≤ p ,

−1, for i = j > p ,

0, for i 6= j .

(i) Show that the set of (N ×N) matrices M with the property

MTηpM = ηp , (7)

forms a group with respect to the standard matrix multiplication. To this end, first show that detM =
±1 and check all group axioms.

This group is called pseudo-orthogonal group O(p, q). If we demand in addition that detM = 1, we obtain
the so-called special pseudo-orthogonal group SO(p, q). In the case p = 1, q = 3 the matrix η corresponds to
the metric tensor of Minkowski space, ηµν = diag(+1,−1,−1,−1). From the theory of special relativity one
knows that Lorentz transformations Λ fulfill relation (7) and thus the Lorentz group corresponds to the group
O(1, 3). If we demand in addition that det Λ = 1 and Λ0

0 ≥ 1, we obtain a subgroup of the Lorentz group,
the so-called proper orthochronous Lorentz group SO+(1, 3), which contains Lorentz boosts and rotations
in space. The latter can be written (in natural units, where ~ = 1) as

R(~φ) = exp
(
−i~φ · ~̂L

)
, (8)

where ~φ = (φx, φy, φz)
T is a rotation vector and ~̂L is the angular momentum operator. Alternatively, they

can be represented by orthogonal (3 × 3) matrices with determinant 1. These matrices form the group of
special orthogonal (3× 3) matrices SO(3). From the lecture we know that these groups are Lie groups, since
their group structure is that of a differentiable manifold. Let G(~α) be an element of a Lie group with N
parameters αi, i = 1, . . . , N , then the generators of this group can be determined by the relation

T̂i = i
∂G(~α)

∂αi

∣∣∣∣
~α=~0

.

(ii) Determine the generators L̂i of SO(3) in the representation (8) as well as in their representation as
(3× 3) matrices.

(iii) Determine the generators K̂i of Lorentz boosts in their representation as (4× 4) matrices.

(iv) State the commutation relations of the L̂i (without proof) and compute [K̂i, K̂j ] und [L̂i, K̂j ] by

extending the generators L̂i to (4× 4) matrix representation.

(v) Determine new generators Ĵ±
i as linear combinations of L̂i and K̂i, which fulfill the algebra

[Ĵ±
i , Ĵ

±
j ] = i

3∑
k=1

εijkĴ
±
k .

Show in addition that
[Ĵ±
i , Ĵ

∓
j ] = 0 .

Remark: Apparently, the generators
{
Ĵ±
i

}
fulfill the Lie algebra of SU(2)×SU(2). But one has to be careful:

there are several reasons why the groups SO+(1, 3) and SU(2)×SU(2) cannot be isomorphic. For instance,
SU(2) × SU(2) is a compact Lie group, while SO+(1, 3) is a non-compact Lie group. Indeed, it can be
shown that the proper orthochronous Lorentz group SO+(1, 3) and the group of complex (2 × 2) matrices
with detU = 1, SL(2,C) are in an analogous relationship as the groups SO(3) and SU(2). It holds that
SO+(1, 3) ∼= SL(2,C)/Z2. The reason for the isomorphism of the Lie algebras from part (v) has its origin
in the fact that the generators Ĵ±

i , i = 1, 2, 3, are a complexification of the Lie algebra so+(1, 3). Then,
SO+(1, 3)C ∼= (SU(2)× SU(2))/Z2.
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