

IV. Dynamische Sternmodelle

20. Birkhoff-Theorem, Machsches Prinzip

Birkhoff-Theorem: Ein sphärisch symmetrisches Gravitationsfeld im leeren Raum ist statisch.

Beweis: > Übungsaufgabe 4

Anwendung: Gravitationsfeld außerhalb einer sphärisch symmetrischen Massenverteilung ist statisch, selbst wenn die Massenverteilung Monopolschwingungen ausführt. (Nur Monopolschwingungen sind sphärisch symmetrisch.)

> Form und Ausdehnung der Massenverteilung ist irrelevant, ihr Gravitationsfeld erscheint wie das einer Punktmasse im Ursprung.

(20.1)

Machsches Prinzip:

Betrachte leeren Raum innerhalb einer sphärisch symmetrischen Massenverteilung.

$$\Rightarrow$$
 keine Massenverteilung im Zentrum $\Rightarrow \tau_s = 0 \Rightarrow g_{\mu\nu} = \eta_{\mu\nu}$

Metrik innerhalb einer sphärisch symmetrischen Massenverteilung ist Minkowski-Metrik!

Anwendung: betrachte Massenverteilung im Universum und ihre Geschwindigkeit

in erster Näherung isotrope Massenverteilung, Geschwindigkeiten der Massen in erster Näherung radial vom (beliebigen) Beobachter nach außen.

\Rightarrow	Falls keine Massen in unmittelbarer Umgebung des Beobachters: Metrik ist Minkowski-Metrik!
\Rightarrow	Massenverteilung im Universum kann bei Rechnungen mit lokalen Massen vernachlässigt werden, Metrik wird asymptotisch zur Minkowski-Metrik.
⇒	Beobachter definiert (lokales) Inertialsystem! Relativ zu ihm mit konstanter Geschwindigkeit bewegte Systeme sind ebenfalls Inertialsysteme, relativ zu ihm beschleunigte (und insbesondere rotierende) Systeme sind keine Inertialsysteme!
\Rightarrow	Inertialsystem ist Bezugssystem, von dem aus die Massenverteilung im Universum isotrop erscheint.
	Machsches Prinzip: Massen im Universum legen Inertialsysteme fest.