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motivation

• understanding of 

• bound state dynamics

• bound state spectra

• qcd & field theory

• wanted:
hadronic basis for scattering amplitudes
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observations
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• QCD bound states
∞ # of constituents vs. few valence quarks

• bound state spectra
charmonium and positronium qualitatively similar

• αs might freeze in already for moderate virtualities

• virtual gluons more costly than anticipated
⇐ large-angle scattering, Okubo-Zweig-Iizuka rule, ...
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Figure 3: 95% CL contours for jet shape means (dashed) and some distributions (solid). The
curves for the T , C and old BT and BW distributions are taken from [8]. The curves for the
means are to be taken as purely indicative since we have not accounted for the correlations
between systematic errors (which, where available, are added in quadrature to the statistical
errors). Additionally for some observables we may not have found all the available data.

As a first step it would be necessary to carry out a resummed PT calculation for the DIS
broadening. This has so far not been done.

The situation for the mean broadening measured with respect to the thrust axis is fairly
simple though, since (modulo factors of two associated with the definition of the broadening
in DIS [23]) it is equivalent to a single hemisphere in e+e−:

〈B〉DIS,thrust − 〈B〉(PT)
DIS,thrust = P

(

π

2
√

CFαCMW(Q̄)
+

3

4
−

β0

6CF
+ η0 + O (

√
αs)

)

. (5.3)

For the mean broadening defined with respect to the photon (z) axis the situation is more
complicated because of the dependence on perturbative initial-state radiation. To a first
approximation, at moderate x, one can view the DIS event as a rotated e+e− event where
the broadening is measured in the right hemisphere with respect to the axis of the quark
in the left hemisphere: i.e. the relevant transverse momentum for determining the rapidity
available to the NP correction is p = |%p1 + %p2|. Since this is very similar to max(p1, p2) we
have a situation like that for the wide-jet broadening, and the leading power correction is
suppressed by factor

√
2 compared to (5.3):

〈B〉DIS,z − 〈B〉(PT)
DIS,z = P

(

π

2
√

2CFαCMW(Q̄)
+

3

4
−

β0

12CF
+ η0 + O (1)

)

. (5.4)

Even though we have chosen to include some subleading terms of O (1), it is likely that there
are other terms of O (1), arising through the x dependence of the problem. In particular,
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FIG. 1. The effective coupling from LF holographic mapping for κ = 0.54 GeV is compared with

effective QCD couplings extracted from different observables and lattice results. Details on the

comparison with other effective charges are given in Ref. [39].

perturbative UV domain. The effective charge αg1 has been determined in Ref [39] from

several experiments. Figure 1 also displays other couplings from different observables as

well as αg1, which is computed from the Bjorken sum rule [12] over a large range of mo-

mentum transfer (continuous band). At Q2 = 0 one has the constraint on the slope of αg1

from the Gerasimov-Drell-Hearn (GDH) sum rule [40], which is also shown in the figure.

The results show no sign of a phase transition, cusp, or other nonanalytical behavior, a fact

which allows us to extend the functional dependence of the coupling to large distances. The

smooth behavior of the holographic strong coupling also allows us to extrapolate its form to

the perturbative domain. This is discussed further in Sec. VI.

The hadronic model obtained from the dilaton-modified AdS space provides a semiclassi-

cal first approximation to QCD. Color confinement is introduced by the harmonic oscillator

potential, but effects from gluon creation and absorption are not included in this effec-

tive theory. The nonperturbative confining effects vanish exponentially at large momentum

11

Brodsky, de Téramond & Deur,
Phys. Rev. D81 (2010) 096010
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large-angle hadron-hadron 
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C. WHITE et al.

at incident momenta of —5 GeV/c [10,11]. The success
of dimensional scaling suggests that high pl exclusive

interactions probe the valence structure of hadrons.
Whether or not a perturbative @CD (PQCD) descrip-

tion of large angle exclusive reactions is justified has

been debated [12]. At issue is whether the momentum

transfer for the parton interactions is suKciently large to
use perturbation theory. Li and Sterman [13] have es-

timated the perturbative contribution to the pion mag-

netic form factor, after including radiative eH'ects that
prevent the quarks from separating (Sudakov suppres-

sion). They find that about half of the form factor is

perturbative for Q2 = 5 (GeV/c) . Additionally, Jacob
and Kisslinger [14] have suggested that the asymptotic
terms begin to dominate at about Q2 = 3.5(GeV/c)2.
Spin data, however, generally disagree with a simple low-

est order PQCD picture. Large transverse single-spin

asymmetry for proton-proton elastic scattering [15] and

a large azimuthal dependence for the decay p
from the 90' reaction vr p -+ p p [16] were not expected
under lowest order PQCD.
Farrar has expressed meson-baryon scattering ampli-

tudes as a sum of terms involving valence quark scat-

tering amplitudes [17]. The amplitudes can be subdi-

vided into four basic categories, shown in Fig. 1, which
are described by pure gluon exchange (GEX), quark in-

terchange (INT) between the hadrons, quark-antiquark

annihilation (ANN) and pair creation, or a combination

(COMB) of the above. The quark scattering amplitudes

within each group differ in their quark chirality, and each

amplitude consists of a sum of many individual Feyn-

man graphs corresponding to the various ways that the

required gluons connect to the quark lines. The large

number of two-body exclusives accessible by sr+ and K+
beams on proton targets with pseudoscalar mesons in the

final state have been expressed as linear combinations of

GEX

INT

ANN

COMB

FIG. 1. The four general types of quark How diagrams

which contribute to meson-baryon, two-body exclusive reac-

tions. The diagrams contributing to baryon-baryon reactions

are similar.
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FIG. 2. Quark Sow diagrams which contribute to (a) K+p
and (b) K p elastic scattering, (c) the reaction K p
Z+, and (d) the reaction K p m m+2

thirteen quark scattering amplitudes. Several examples
are shown in Fig. 2, with quark flavors identified for K+p
elastic scattering and X p ~ Z+x+.
With this formalism, a calculation of the cross sections

is possible, although this work is not complete. However,

certain reactions isolate one or another category of am-

plitudes. By measuring a large number of reactions, it is
possible to isolate the relative importance of pure gluon

exchange, quark interchange, and the others. This ap-

proach was used in our 9.9 GeV experiment, and quark

interchange diagrams appeared to dominate [1].

AP PARATUS

Beam. A 24 GeV/c proton beam from the Brookhaven

AGS with typically 4x10 protons each 3 sec over a 1
sec flattop produced the Cl secondary beam &om a plat-
inum target. The C1 beam line was 100 m long from

the production target to the center of our hydrogen tar-

get. The production angle was 0; horizontal collimator

jaws following a dipole magnet defined a momentum bite

of 6p/p = 1% full width at half maximum (FWHM).
The beam acceptance was AO = 0.8 msr. The typical

secondary beam intensity was 2 x10" particles per spill.
Beam particle type was tagged, using two differential

gas Cherenkov counters located about 27 m upstream

&om the experiment. The counters were 1.5 m long by

0.5 m diameter, and were filled with pressurized CO2 gas.
The optics consisted of a spherical mirror at the down-

stream end, reflecting 5' and 8' cones of Cherenkov light

to two concentric rings of six 5 cm phototubes at the focal
plane. The index of re&action was adjusted by changing

the pressure of the gas. The upstream counter tagged

pions and kaons, and the downstream counter identified

kaons and protons. Positive identification required a hit

multiplicity of 4, 5, or 6 (six tubes per ring) within the

proper ring in conjunction with a time-to-digital con-

verter (TDC) value in time with the spectrometer track.
Kaon identification required both kaon rings. Figure 3

shows pressure curves for the beam Cherenkov counters,

taken for positive and negative beams at low intensity.

The arrows indicate our standard settings. Particle type
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observations

DDD

• QCD bound states
∞ # of constituents vs. few valence quarks

• bound state spectra
e.g. charmonium and positronium qualitatively similar

• αs might freeze in already for moderate virtualities

• virtual gluons more costly than anticipated
⇐ large-angle scattering, Okubo-Zweig-Iizuka rule, ...
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• virtual gluons more costly than anticipated
⇐ large-angle scattering, Okubo-Zweig-Iizuka rule, ...

⇒ try valence fermions 
+ low-order instantaneous interactions



not less !

2

The interaction (1.1) is instantaneous. Gluons propagate in time, giving rise to intermediate states with one or
several gluons. The Coulomb field A0 of gauge theories is an exception. It has no time derivative in the Lagrangian
and is thus instantaneous. We can avoid |qq̄ g〉 , . . . Fock states related to the linear potential c |x| in (1.1) only if it
is due to Coulomb gluons1. The absence of a time derivative on A0 also implies that the field equations of motion
(“Gauss’ law”) allow us to express A0 in terms of the propagating fields at each instant of time. In QED Gauss’ law
specifies, for an |e−(x1)e+(x2)〉 state and in ∇ ·A = 0 gauge,

−∇2A0(x) = e [δ(x− x1)− δ(x− x2)] , (1.2)

with the standard solution

A0(x) =
e

4π

[
1

|x− x1|
− 1

|x− x2|

]
. (1.3)

The interaction potential is then 1
2 [eA

0(x1) − eA0(x2)] = −α/|x1 − x2|, the familiar Coulomb potential. However,
we may add a homogeneous solution of (1.2) to (1.3) [21],

A0
Λ(x) = Λ2 !̂ · x ; AΛ = 0 . (1.4)

The constant Λ corresponds to a nonvanishing boundary condition in the solution of Gauss’ law,

lim
|x|→∞

FµνF
µν(x) = −2Λ4. (1.5)

The unit vector !̂ must be independent of x but can otherwise be chosen freely. Rotational invariance requires
!̂ ‖ x1 − x2. The potential energy is then

V (x1 − x2) =
1
2 [eA

0
Λ(x1)− eA0

Λ(x2)] =
1
2eΛ

2|x1 − x2| . (1.6)

An analogous, homogeneous solution of Gauss’ law exists in QCD [21]. The parameter Λ should vanish for QED to
describe data, while in QCD Λ ∼ ΛQCD may be related to the coefficient c of the quark model potential (1.1). The
homogeneous solution (1.4) exists for charges of any momentum, whereas A0 dominates perturbative exchange only
in the case of nonrelativistic dynamics. It is clear from (1.6) that the potential V is invariant under translations only
for neutral (color singlet) states. Poincaré invariance thus requires the bound states to be neutral if Λ %= 0.

We define a neutral fermion-antifermion bound state at equal time (t = 0) and of 4-momentum P = (E,P ) by

|P 〉 =
∫

dx1dx2 ψ̄1(t = 0,x1) exp
[
iP · (x1 + x2)/2

]
Ψ(x1 − x2)ψ2(t = 0,x2) |0〉R . (1.7)

Here ψf is a fermion operator of flavor f in Abelian gauge theory (see [21] for the generalization to QCD), and the
c-number wave function Ψ has 4× 4 Dirac components. The boundary condition (1.5) separates charged and neutral
states by an infinite (field) energy. This is similar to D = 1 + 1 dimensions, where the perturbative potential is
linear and physical states are neutral [22]. The subscript R denotes that we are using the “retarded vacuum,” which
satisfies ψ1(x) |0〉R = ψ†

2(x) |0〉R = 0. This eliminates pair production from the vacuum, H |0〉R = 0, allowing us to
describe the bound state in terms of a two-particle Fock state only [21]. It was observed previously [23] that scattering
amplitudes defined using the retarded vacuum give inclusive cross sections.

Under a space translation x → x+ d the state (1.7) transforms by a phase exp(iP · d), as appropriate for a state
of total momentum P . Stationarity under time translations imposes

H |P 〉 = E |P 〉 . (1.8)

At lowest order in the coupling e, neglecting all perturbative contributions, the gauge field is given by (1.4). This
contribution can be taken into account by adding an O

(
eΛ2

)
instantaneous interaction term to the Hamiltonian,

H → H +HΛ, which for neutral states is effectively [21]

HΛ = −eΛ2

4

∑

f,f ′

∫
dx dy ψ†

fψf (t,x)|x− y|ψ†
f ′ψf ′(t,y), (1.9)

1 The single gluon exchange term in (1.1) is instantaneous only for nonrelativistic dynamics. Even photon exchange in QED atoms
involves higher Fock states, in frames where the atom moves relativistically [20].
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for neutral (color singlet) states. Poincaré invariance thus requires the bound states to be neutral if Λ %= 0.

We define a neutral fermion-antifermion bound state at equal time (t = 0) and of 4-momentum P = (E,P ) by

|P 〉 =
∫

dx1dx2 ψ̄1(t = 0,x1) exp
[
iP · (x1 + x2)/2

]
Ψ(x1 − x2)ψ2(t = 0,x2) |0〉R . (1.7)

Here ψf is a fermion operator of flavor f in Abelian gauge theory (see [21] for the generalization to QCD), and the
c-number wave function Ψ has 4× 4 Dirac components. The boundary condition (1.5) separates charged and neutral
states by an infinite (field) energy. This is similar to D = 1 + 1 dimensions, where the perturbative potential is
linear and physical states are neutral [22]. The subscript R denotes that we are using the “retarded vacuum,” which
satisfies ψ1(x) |0〉R = ψ†

2(x) |0〉R = 0. This eliminates pair production from the vacuum, H |0〉R = 0, allowing us to
describe the bound state in terms of a two-particle Fock state only [21]. It was observed previously [23] that scattering
amplitudes defined using the retarded vacuum give inclusive cross sections.

Under a space translation x → x+ d the state (1.7) transforms by a phase exp(iP · d), as appropriate for a state
of total momentum P . Stationarity under time translations imposes

H |P 〉 = E |P 〉 . (1.8)

At lowest order in the coupling e, neglecting all perturbative contributions, the gauge field is given by (1.4). This
contribution can be taken into account by adding an O

(
eΛ2

)
instantaneous interaction term to the Hamiltonian,

H → H +HΛ, which for neutral states is effectively [21]

HΛ = −eΛ2

4

∑

f,f ′

∫
dx dy ψ†

fψf (t,x)|x− y|ψ†
f ′ψf ′(t,y), (1.9)

1 The single gluon exchange term in (1.1) is instantaneous only for nonrelativistic dynamics. Even photon exchange in QED atoms
involves higher Fock states, in frames where the atom moves relativistically [20].

2

The interaction (1.1) is instantaneous. Gluons propagate in time, giving rise to intermediate states with one or
several gluons. The Coulomb field A0 of gauge theories is an exception. It has no time derivative in the Lagrangian
and is thus instantaneous. We can avoid |qq̄ g〉 , . . . Fock states related to the linear potential c |x| in (1.1) only if it
is due to Coulomb gluons1. The absence of a time derivative on A0 also implies that the field equations of motion
(“Gauss’ law”) allow us to express A0 in terms of the propagating fields at each instant of time. In QED Gauss’ law
specifies, for an |e−(x1)e+(x2)〉 state and in ∇ ·A = 0 gauge,

−∇2A0(x) = e [δ(x− x1)− δ(x− x2)] , (1.2)

with the standard solution

A0(x) =
e

4π

[
1

|x− x1|
− 1

|x− x2|

]
. (1.3)

The interaction potential is then 1
2 [eA

0(x1) − eA0(x2)] = −α/|x1 − x2|, the familiar Coulomb potential. However,
we may add a homogeneous solution of (1.2) to (1.3) [21],

A0
Λ(x) = Λ2 !̂ · x ; AΛ = 0 . (1.4)

The constant Λ corresponds to a nonvanishing boundary condition in the solution of Gauss’ law,

lim
|x|→∞

FµνF
µν(x) = −2Λ4. (1.5)

The unit vector !̂ must be independent of x but can otherwise be chosen freely. Rotational invariance requires
!̂ ‖ x1 − x2. The potential energy is then

V (x1 − x2) =
1
2 [eA

0
Λ(x1)− eA0

Λ(x2)] =
1
2eΛ

2|x1 − x2| . (1.6)

An analogous, homogeneous solution of Gauss’ law exists in QCD [21]. The parameter Λ should vanish for QED to
describe data, while in QCD Λ ∼ ΛQCD may be related to the coefficient c of the quark model potential (1.1). The
homogeneous solution (1.4) exists for charges of any momentum, whereas A0 dominates perturbative exchange only
in the case of nonrelativistic dynamics. It is clear from (1.6) that the potential V is invariant under translations only
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⇒ in non-relativistic limit: hydrogen Schrödinger problem 
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−∇2A0(x) = e [δ(x− x1)− δ(x− x2)] , (1.2)

with the standard solution

A0(x) =
e

4π

[
1

|x− x1|
− 1

|x− x2|

]
. (1.3)

The interaction potential is then 1
2 [eA

0(x1) − eA0(x2)] = −α/|x1 − x2|, the familiar Coulomb potential. However,
we may add a homogeneous solution of (1.2) to (1.3) [21],

A0
Λ(x) = Λ2 !̂ · x ; AΛ = 0 . (1.4)

The constant Λ corresponds to a nonvanishing boundary condition in the solution of Gauss’ law,

lim
|x|→∞

FµνF
µν(x) = −2Λ4. (1.5)

The unit vector !̂ must be independent of x but can otherwise be chosen freely. Rotational invariance requires
!̂ ‖ x1 − x2. The potential energy is then

V (x1 − x2) =
1
2 [eA

0
Λ(x1)− eA0

Λ(x2)] =
1
2eΛ

2|x1 − x2| . (1.6)

An analogous, homogeneous solution of Gauss’ law exists in QCD [21]. The parameter Λ should vanish for QED to
describe data, while in QCD Λ ∼ ΛQCD may be related to the coefficient c of the quark model potential (1.1). The
homogeneous solution (1.4) exists for charges of any momentum, whereas A0 dominates perturbative exchange only
in the case of nonrelativistic dynamics. It is clear from (1.6) that the potential V is invariant under translations only
for neutral (color singlet) states. Poincaré invariance thus requires the bound states to be neutral if Λ %= 0.

We define a neutral fermion-antifermion bound state at equal time (t = 0) and of 4-momentum P = (E,P ) by

|P 〉 =
∫

dx1dx2 ψ̄1(t = 0,x1) exp
[
iP · (x1 + x2)/2

]
Ψ(x1 − x2)ψ2(t = 0,x2) |0〉R . (1.7)

Here ψf is a fermion operator of flavor f in Abelian gauge theory (see [21] for the generalization to QCD), and the
c-number wave function Ψ has 4× 4 Dirac components. The boundary condition (1.5) separates charged and neutral
states by an infinite (field) energy. This is similar to D = 1 + 1 dimensions, where the perturbative potential is
linear and physical states are neutral [22]. The subscript R denotes that we are using the “retarded vacuum,” which
satisfies ψ1(x) |0〉R = ψ†

2(x) |0〉R = 0. This eliminates pair production from the vacuum, H |0〉R = 0, allowing us to
describe the bound state in terms of a two-particle Fock state only [21]. It was observed previously [23] that scattering
amplitudes defined using the retarded vacuum give inclusive cross sections.

Under a space translation x → x+ d the state (1.7) transforms by a phase exp(iP · d), as appropriate for a state
of total momentum P . Stationarity under time translations imposes

H |P 〉 = E |P 〉 . (1.8)

At lowest order in the coupling e, neglecting all perturbative contributions, the gauge field is given by (1.4). This
contribution can be taken into account by adding an O

(
eΛ2

)
instantaneous interaction term to the Hamiltonian,

H → H +HΛ, which for neutral states is effectively [21]

HΛ = −eΛ2

4

∑

f,f ′

∫
dx dy ψ†

fψf (t,x)|x− y|ψ†
f ′ψf ′(t,y), (1.9)

1 The single gluon exchange term in (1.1) is instantaneous only for nonrelativistic dynamics. Even photon exchange in QED atoms
involves higher Fock states, in frames where the atom moves relativistically [20].
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time-ordering of Feynman propagators gives a wave function with any number of e+e− pair components, which arise
from Z diagrams. Using retarded propagators there are no Z-contributions and one obtains the standard Dirac
wave function describing a single particle with both positive and negative energy components. Remarkably, the same
relativistic bound state can thus, at Born level, be equivalently described using two quite different wave functions [2].
The iε-prescription invariance ensures that the bound state energies are independent of the choice of wave function.
The possibility to describe relativistic bound states, which have an infinite sea of constituents, using few-particle

“valence” wave functions reopens the issue of explicit Poincaré covariance. Since ! is a fundamental parameter of the
Lagrangian each order in an ! expansion, and in particular the Born term, will have exact Poincaré invariance [3]. In
the present paper we discuss cases where the wave functions of relativistic bound states in different frames can thus
be related explicitly.
The Dirac bound states mentioned above are not translation invariant due to the external potential. We need to

consider freely moving bound states formed by the interaction between two (or more) particles, such as QED atoms.
The equal-time wave function of an atom in motion was considered in [4]. In the rest frame, and at lowest order in
α (and !) the interaction is given by the standard Coulomb potential V (r) = −α/r. Since atoms are non-relativistic
the Z diagrams are suppressed also for Feynman propagators. After a boost, however, the interaction (in Coulomb
gauge) acquires also a propagating, transverse photon component. Thus, in a moving positronium atom |e+e−γ〉 Fock
states must be included even at lowest order in α. Adding relativistic corrections will increase the number of Fock
states, further complicating the transformation of atomic wave functions under boosts.
An explicit transformation law for relativistic states can be found for QED and QCD in D = 1 + 1 dimensions.

Since there are no transverse photons the interaction is fully given by the instantaneous (non-propagating) A0 field in
Coulomb gauge. We derive below the Poincaré algebra for QED starting from the non-local fermionic action, which
is obtained by eliminating the A0 field. This demonstrates that only interactions via a linear potential between the
fermions, as stipulated by QED, lead to a Poincaré-covariant theory. The fact that the Lorentz boost operator must
involve a gauge transformation in order to keep the Coulomb gauge condition satisfied in the boost is also illustrated.
We show how (Born level) two-body eigenstates of the translation generators P 0 and P 1 may be found in QED,

making use of retarded propagation in analogy to the Dirac case mentioned above [2]. We then apply the boost
generator to obtain the bound state in another frame. The boosted state remains an eigenstate of P 0 and P 1, with
appropriately transformed eigenvalues. The rate of Lorentz contraction of the wave function turns out to depend on
the linear potential V (x) and thus on the distance x between the constituents. The boost covariance of bound states
of two fermions interacting via a linear potential has been noticed before as a property of their bound state equation
[7]. Here we present the derivation from first principles, by identifying the system with a relativistic two-fermion
bound state of 1+1 dimensional QED (or QCD) in the Born approximation.
The rest of the paper is organized as follows. In Sect. II we discuss the Poincaré algebra for 1+1 dimensional

QED in Coulomb gauge after integrating out the gauge bosons, in Sect. III we present the corresponding bound state
equation, in Sect. IV we analyze the behavior of the bound-state wave function under boosts, and in Sect. V we
conclude the paper. Appendix A contains details on the derivation of the generators of the Poincaré algebra from
Sect. II, and in App. B we present the generalization to QCD, i.e., to non-Abelian gauge groups.

II. POINCARÉ GENERATORS OF QED2

We shall work in Coulomb gauge (here equivalent to A1 = 0) in order to avoid Fock states with longitudinal photons.
The QED action in D = 1 + 1 for fermions of flavor f is then

S =

∫

d2x
[

−
1

2

(

∂1A
0
)(

∂1A0
)

+
∑

f

ψ†
f (x)γ

0
(

i/∂ −mf − eγ0A0
)

ψf (x)
]

. (2.1)

The equation of motion for A0 (Gauss’ law),

− ∂2
1A

0(x) = e
∑

f

ψ†
fψf (x), (2.2)

allows to express A0 in terms of the fermion fields,

A0(x) = −
e

2

∑

f

∫

dy1|x1 − y1|ψ†
fψf (x

0, y1), (2.3)
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Sect. II, and in App. B we present the generalization to QCD, i.e., to non-Abelian gauge groups.
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A0(x) = −
e

2

∑

f

∫

dy1|x1 − y1|ψ†
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in the absence of a background field [5]. Using this in the action (2.1) gives the non-local expression

S ≡ SF + SV =
∑

f

∫

d2xψ†
f (x)γ

0
(

i/∂ −mf

)

ψf (x) +
e2

4

∑

f,f ′

∫

d2x d2y δ(x0 − y0)ψ†
fψf (x)|x1 − y1|ψ†

f ′ψf ′(y). (2.4)

Since no approximations have been made this action must be invariant under time and space translations as well
as boosts, generated by the operators P 0, P 1 and M01, respectively. Let us review the derivation of the Poincaré
generators for the non-local action (2.4), adapting the standard procedures (see, e.g., Sect. 7.3 in [6]).
Consider the infinitesimal space translation

ψf (x
0, x1) → ψf

(

x0, x1 − ε(x0)d&
)

, (2.5)

where the a priori arbitrary function ε(x0) will be a constant for a true translation. The variation of the free fermion
action is

δSF = −d&
∑

f

∫

d2x
[

ψ†
f (x)γ

0
(

i/∂ −mf

)

ε(x0)∂1ψf (x) + ε(x0)
(

∂1ψ
†
f (x)

)

γ0
(

i/∂ −mf

)

]

ψf (x), (2.6)

where /∂ in the first term operates both on ε(x0) and the fermion field. As seen by integrating the last term partially
over x1, all terms except the one where /∂ differentiates ε(x0) cancel. Thus

δSF = −id&
∑

f

∫

d2x ε′(x0)ψ†
f (x)∂1ψf (x) . (2.7)

The transformation of the potential term SV can be canceled by a shift of integration variables x1 → x1 + ε(x0)d&
and y1 → y1 + ε(x0)d&, since the δ-function sets x0 = y0 and the potential |x1 − y1| as well as ε(x0) are unchanged
by the shift. Therefore δSV = 0 and the variation of the action becomes

δS = d&

∫

dx0 ε′(x0)P 1, (2.8)

where we identified the generator for spatial translations

P 1 = −i
∑

f

∫

dx1 ψ†
f (x)∂1ψf (x) . (2.9)

Setting ε(x0) ≡ 1 the generic transformation (2.5) becomes a standard space translation and the variation (2.8)
vanishes, which proves the covariance of the QED action under space translations.
Let us then assume that the fermion fields satisfy their equation of motion. Since the variation of the action vanishes

under every infinitesimal transformation of ψ(x), the variation (2.8) now vanishes for any function ε(x0). Therefore,

0 = d&

∫

dx0 ε′(x0)P 1 = −d&

∫

dx0 ε(x0)
d

dx0
P 1 . (2.10)

Since ε(x0) was arbitrary we conclude that P 1 is conserved,

d

dx0
P 1 = 0, (2.11)

when ψ(x) satisfies its equation of motion.
The analogous derivations of the time translation P 0 and boost generator M01 are given in Appendix A. Since the

gauge constraint A1 = 0 is not invariant under boosts M01 is actually a combination of a Lorentz boost and a gauge
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transformation1. Denoting P 0 = P 0
F + P 0

V and M01 = M01
F +M01

V the result is

P 0
F =

∑

f

∫

dx1 ψ†
f (x)(−iγ0γ1∂1 +mfγ

0)ψf (x),

(2.12)

P 0
V = −

e2

4

∑

f,f ′

∫

dx1dy1 ψ†
fψf (x

0, x1)|x1 − y1|ψ†
f ′ψf ′(x0, y1),

M01
F = x0P 1 +

∑

f

∫

dx1 ψ†
f (x)

[

x1(iγ0γ1∂1 − γ0mf ) +
i

2
γ0γ1

]

ψf (x),

(2.13)

M01
V =

e2

8

∑

f,f ′

∫

dx1dy1 ψ†
fψf (x

0, x1)(x1 + y1)|x1 − y1|ψ†
f ′ψf ′(x0, y1) .

Let us then check that these generators satisfy the D = 1 + 1 Poincaré Lie algebra. Using the anticommutation
relation

{

ψfα(x
0, x1),ψ†

f ′β(x
0, y1)

}

= δ(x1 − y1)δff ′δαβ (2.14)

it is straightforward to verify that the free generators P 0
F , P 1, and M01

F indeed satisfy

[

P 0, P 1
]

= 0,
[

P 0,M01
]

= iP 1,
[

P 1,M01
]

= iP 0 (2.15)

among themselves. It is also easy to see that
[

P 0, P 1
]

= 0 holds when the interactions are included since P 0
V in (2.12)

is invariant under space translations.
Of the three contributions to

[

P 0,M01
]

that involve interactions the term
[

P 0
V ,M

01
V

]

= 0 since P 0
V and M01

V involve
neither derivatives nor Dirac matrices. The two other terms

[

P 0
V ,M

01
F

]

=
e2

2

∑

f,f ′

∫

dx1dy1
[

ψ†
f (x)iγ

0γ1ψf (x)
]

ψ†
f ′ψf ′(y)x1 ∂

∂x1
|x1 − y1|,

[

P 0
F ,M

01
V

]

= −
e2

4

∑

f,f ′

∫

dx1dy1
[

ψ†
f (x)iγ

0γ1ψf (x)
]

ψ†
f ′ψf ′(y)

∂

∂x1

[

(x1 + y1)|x1 − y1|
]

(2.16)

cancel,
[

P 0
V ,M

01
F

]

+
[

P 0
F ,M

01
V

]

= 0, which ensures
[

P 0,M01
]

= iP 1. In the third Lie algebra relation

[

P 1,M01
V

]

= −
ie2

8

∑

f,f ′

∫

dx1dy1
[

ψ†
f (x)ψf (x)

][

ψ†
f ′ψf ′(y)

] [( ∂

∂x1
+

∂

∂y1
)

(x1 + y1)|x1 − y1|
]

= iP 0
V (2.17)

ensures
[

P 1,M01
]

= iP 0 with interacting generators. Note that the generator algebra (2.15) is satisfied only for the
linear potential specified by QED2.

III. TWO-BODY BOUND STATES IN QED2

As mentioned in the Introduction and further explained in [2], a relativistic gauge theory bound state may be
described by valence-like Dirac-type wave functions provided instantaneous Coulomb exchange dominates and one
uses retarded propagators. At the Born level (lowest order in !) the bound state energies will agree with the result
using Feynman propagators, even though the wave functions obtained with the two types of propagator are very
different.

1 In any event, for massless gauge fields like the photon, Lorentz and gauge transformations are entwined at the fundamental level, as
these fields only represent a faithful vector representation of the Lorentz group up to a gauge transformation. (See, e.g., Sect. 5.9 in
[6].)
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ψf (x), (2.6)

where /∂ in the first term operates both on ε(x0) and the fermion field. As seen by integrating the last term partially
over x1, all terms except the one where /∂ differentiates ε(x0) cancel. Thus

δSF = −id&
∑
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∫

d2x ε′(x0)ψ†
f (x)∂1ψf (x) . (2.7)

The transformation of the potential term SV can be canceled by a shift of integration variables x1 → x1 + ε(x0)d&
and y1 → y1 + ε(x0)d&, since the δ-function sets x0 = y0 and the potential |x1 − y1| as well as ε(x0) are unchanged
by the shift. Therefore δSV = 0 and the variation of the action becomes
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dx1 ψ†
f (x)∂1ψf (x) . (2.9)

Setting ε(x0) ≡ 1 the generic transformation (2.5) becomes a standard space translation and the variation (2.8)
vanishes, which proves the covariance of the QED action under space translations.
Let us then assume that the fermion fields satisfy their equation of motion. Since the variation of the action vanishes
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∫
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∫

dx0 ε(x0)
d

dx0
P 1 . (2.10)

Since ε(x0) was arbitrary we conclude that P 1 is conserved,
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dx0
P 1 = 0, (2.11)

when ψ(x) satisfies its equation of motion.
The analogous derivations of the time translation P 0 and boost generator M01 are given in Appendix A. Since the
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where /∂ in the first term operates both on ε(x0) and the fermion field. As seen by integrating the last term partially
over x1, all terms except the one where /∂ differentiates ε(x0) cancel. Thus
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∑
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Setting ε(x0) ≡ 1 the generic transformation (2.5) becomes a standard space translation and the variation (2.8)
vanishes, which proves the covariance of the QED action under space translations.
Let us then assume that the fermion fields satisfy their equation of motion. Since the variation of the action vanishes

under every infinitesimal transformation of ψ(x), the variation (2.8) now vanishes for any function ε(x0). Therefore,
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f ′ψf ′(y). (2.4)

Since no approximations have been made this action must be invariant under time and space translations as well
as boosts, generated by the operators P 0, P 1 and M01, respectively. Let us review the derivation of the Poincaré
generators for the non-local action (2.4), adapting the standard procedures (see, e.g., Sect. 7.3 in [6]).
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(
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where /∂ in the first term operates both on ε(x0) and the fermion field. As seen by integrating the last term partially
over x1, all terms except the one where /∂ differentiates ε(x0) cancel. Thus

δSF = −id&
∑
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The transformation of the potential term SV can be canceled by a shift of integration variables x1 → x1 + ε(x0)d&
and y1 → y1 + ε(x0)d&, since the δ-function sets x0 = y0 and the potential |x1 − y1| as well as ε(x0) are unchanged
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in the absence of a background field [5]. Using this in the action (2.1) gives the non-local expression
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d2x d2y δ(x0 − y0)ψ†
fψf (x)|x1 − y1|ψ†

f ′ψf ′(y). (2.4)

Since no approximations have been made this action must be invariant under time and space translations as well
as boosts, generated by the operators P 0, P 1 and M01, respectively. Let us review the derivation of the Poincaré
generators for the non-local action (2.4), adapting the standard procedures (see, e.g., Sect. 7.3 in [6]).
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(
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, (2.5)

where the a priori arbitrary function ε(x0) will be a constant for a true translation. The variation of the free fermion
action is
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Setting ε(x0) ≡ 1 the generic transformation (2.5) becomes a standard space translation and the variation (2.8)
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vanishes, which proves the covariance of the QED action under space translations.
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ψf (x
0, x1) → ψf

(
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where /∂ in the first term operates both on ε(x0) and the fermion field. As seen by integrating the last term partially
over x1, all terms except the one where /∂ differentiates ε(x0) cancel. Thus
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∑
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The transformation of the potential term SV can be canceled by a shift of integration variables x1 → x1 + ε(x0)d&
and y1 → y1 + ε(x0)d&, since the δ-function sets x0 = y0 and the potential |x1 − y1| as well as ε(x0) are unchanged
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The analogous derivations of the time translation P 0 and boost generator M01 are given in Appendix A. Since the

gauge constraint A1 = 0 is not invariant under boosts M01 is actually a combination of a Lorentz boost and a gauge

momentum

total momentum conserved
in potential interaction



temporal translation

DDD

9

It is obviously more challenging to generalize the present approach to QCD bound states inD = 3+1 dimensions. In
order to avoid Fock states with any number of propagating transverse gluons the interaction should, in all frames, be
dominated by instantaneous Coulomb exchange. The linear potential of QCD2 was moreover essential for the closure
of the Lie algebra in the non-local formulation involving only quark fields. It appears possible to apply the methods
presented above also in D = 3 + 1 dimensions by imposing a non-vanishing boundary condition on the solution of
Gauss’ law for A0. This gives rise to a linear instantaneous potential in all frames, which is of O (g) in the coupling
and thus leading compared to the O

(

g2
)

transverse gluon exchange [2]. The frame dependence of the wave function
turns out to be similar to the D = 1+ 1 case when the quark positions are aligned with the CM momentum [7]. The
other configurations of the wave function may then be solved numerically using the bound state equation.
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Appendix A: Poincaré generators

The derivation of the generators of time translations P 0 and boosts M01 is analogous to that of the space translation
generator P 1 and is given below. We assume a single flavour f for simplicity of notation.

The generator P 0 of time translations

In a generic time translation the fermion field transforms as

ψ(x0, x1) → ψ
(

x0 − ε(x0)dt, x1
)

, (A1)

and the variation of the free fermion action (2.4) becomes

δSF = −dt

∫

d2x ψ†(x)γ0
(

i/∂ −m
)

ε(x0)∂0ψ(x)− dt

∫

d2x ε(x0)
(

∂0ψ
†(x)

)

γ0
(

i/∂ −m
)

ψ(x) . (A2)

Integrating the last term partially over x0 we find a contribution due to the dependence of ε on x0,

δSF = −dt

∫

d2x ε′(x0)ψ†(x)γ0
(

− iγ1∂1 +m
)

ψ(x) . (A3)

The variation of SV can be written as

δSV = −
dte2

4

∫

d2xd2y δ(x0 − y0)ε(x0)
∂

∂x0

[

ψ†ψ(x)
]

|x1 − y1|ψ†ψ(y)

−
dte2

4

∫

d2xd2y δ(x0 − y0)ψ†ψ(x)|x1 − y1|ε(y0)
∂

∂y0
[

ψ†ψ(y)
]

. (A4)

A partial integration gives

δSV =
dte2

4

∫

d2xd2y ε′(x0)δ(x0 − y0)ψ†ψ(x)|x1 − y1|ψ†ψ(y) . (A5)

Collecting the results,

δS = −dt

∫

dx0 ε′(x0)P 0, (A6)

where P 0 is the Hamiltonian

P 0 =

∫

dx1 ψ†(x)(−iγ0γ1∂1 +mγ0)ψ(x) −
e2

4

∫

dx1dy1 ψ†ψ(x0, x1)|x1 − y1|ψ†ψ(x0, y1) . (A7)

4

transformation1. Denoting P 0 = P 0
F + P 0

V and M01 = M01
F +M01

V the result is

P 0
F =

∑

f

∫

dx1 ψ†
f (x)(−iγ0γ1∂1 +mfγ

0)ψf (x),

(2.12)

P 0
V = −

e2

4

∑

f,f ′

∫

dx1dy1 ψ†
fψf (x

0, x1)|x1 − y1|ψ†
f ′ψf ′(x0, y1),

M01
F = x0P 1 +

∑

f

∫

dx1 ψ†
f (x)

[

x1(iγ0γ1∂1 − γ0mf ) +
i

2
γ0γ1

]

ψf (x),

(2.13)

M01
V =

e2

8

∑

f,f ′

∫

dx1dy1 ψ†
fψf (x

0, x1)(x1 + y1)|x1 − y1|ψ†
f ′ψf ′(x0, y1) .

Let us then check that these generators satisfy the D = 1 + 1 Poincaré Lie algebra. Using the anticommutation
relation

{

ψfα(x
0, x1),ψ†

f ′β(x
0, y1)

}

= δ(x1 − y1)δff ′δαβ (2.14)

it is straightforward to verify that the free generators P 0
F , P 1, and M01

F indeed satisfy

[

P 0, P 1
]

= 0,
[

P 0,M01
]

= iP 1,
[

P 1,M01
]

= iP 0 (2.15)

among themselves. It is also easy to see that
[

P 0, P 1
]

= 0 holds when the interactions are included since P 0
V in (2.12)

is invariant under space translations.
Of the three contributions to

[

P 0,M01
]

that involve interactions the term
[

P 0
V ,M

01
V

]

= 0 since P 0
V and M01

V involve
neither derivatives nor Dirac matrices. The two other terms

[

P 0
V ,M

01
F

]

=
e2

2

∑

f,f ′

∫

dx1dy1
[

ψ†
f (x)iγ

0γ1ψf (x)
]

ψ†
f ′ψf ′(y)x1 ∂

∂x1
|x1 − y1|,

[

P 0
F ,M

01
V

]

= −
e2

4

∑

f,f ′

∫

dx1dy1
[

ψ†
f (x)iγ

0γ1ψf (x)
]

ψ†
f ′ψf ′(y)

∂

∂x1

[

(x1 + y1)|x1 − y1|
]

(2.16)

cancel,
[

P 0
V ,M

01
F

]

+
[

P 0
F ,M

01
V

]

= 0, which ensures
[

P 0,M01
]

= iP 1. In the third Lie algebra relation

[

P 1,M01
V

]

= −
ie2

8

∑

f,f ′

∫

dx1dy1
[

ψ†
f (x)ψf (x)

][

ψ†
f ′ψf ′(y)

] [( ∂

∂x1
+

∂

∂y1
)

(x1 + y1)|x1 − y1|
]

= iP 0
V (2.17)

ensures
[

P 1,M01
]

= iP 0 with interacting generators. Note that the generator algebra (2.15) is satisfied only for the
linear potential specified by QED2.

III. TWO-BODY BOUND STATES IN QED2

As mentioned in the Introduction and further explained in [2], a relativistic gauge theory bound state may be
described by valence-like Dirac-type wave functions provided instantaneous Coulomb exchange dominates and one
uses retarded propagators. At the Born level (lowest order in !) the bound state energies will agree with the result
using Feynman propagators, even though the wave functions obtained with the two types of propagator are very
different.

1 In any event, for massless gauge fields like the photon, Lorentz and gauge transformations are entwined at the fundamental level, as
these fields only represent a faithful vector representation of the Lorentz group up to a gauge transformation. (See, e.g., Sect. 5.9 in
[6].)

Hamiltonian
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It is obviously more challenging to generalize the present approach to QCD bound states inD = 3+1 dimensions. In
order to avoid Fock states with any number of propagating transverse gluons the interaction should, in all frames, be
dominated by instantaneous Coulomb exchange. The linear potential of QCD2 was moreover essential for the closure
of the Lie algebra in the non-local formulation involving only quark fields. It appears possible to apply the methods
presented above also in D = 3 + 1 dimensions by imposing a non-vanishing boundary condition on the solution of
Gauss’ law for A0. This gives rise to a linear instantaneous potential in all frames, which is of O (g) in the coupling
and thus leading compared to the O

(

g2
)

transverse gluon exchange [2]. The frame dependence of the wave function
turns out to be similar to the D = 1+ 1 case when the quark positions are aligned with the CM momentum [7]. The
other configurations of the wave function may then be solved numerically using the bound state equation.
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Appendix A: Poincaré generators

The derivation of the generators of time translations P 0 and boosts M01 is analogous to that of the space translation
generator P 1 and is given below. We assume a single flavour f for simplicity of notation.

The generator P 0 of time translations

In a generic time translation the fermion field transforms as

ψ(x0, x1) → ψ
(

x0 − ε(x0)dt, x1
)

, (A1)

and the variation of the free fermion action (2.4) becomes

δSF = −dt

∫

d2x ψ†(x)γ0
(

i/∂ −m
)

ε(x0)∂0ψ(x)− dt

∫

d2x ε(x0)
(

∂0ψ
†(x)

)

γ0
(

i/∂ −m
)

ψ(x) . (A2)

Integrating the last term partially over x0 we find a contribution due to the dependence of ε on x0,

δSF = −dt

∫

d2x ε′(x0)ψ†(x)γ0
(

− iγ1∂1 +m
)

ψ(x) . (A3)

The variation of SV can be written as

δSV = −
dte2

4

∫

d2xd2y δ(x0 − y0)ε(x0)
∂

∂x0

[

ψ†ψ(x)
]

|x1 − y1|ψ†ψ(y)

−
dte2

4

∫

d2xd2y δ(x0 − y0)ψ†ψ(x)|x1 − y1|ε(y0)
∂

∂y0
[

ψ†ψ(y)
]

. (A4)

A partial integration gives

δSV =
dte2

4

∫

d2xd2y ε′(x0)δ(x0 − y0)ψ†ψ(x)|x1 − y1|ψ†ψ(y) . (A5)

Collecting the results,

δS = −dt

∫

dx0 ε′(x0)P 0, (A6)

where P 0 is the Hamiltonian

P 0 =

∫

dx1 ψ†(x)(−iγ0γ1∂1 +mγ0)ψ(x) −
e2

4

∫

dx1dy1 ψ†ψ(x0, x1)|x1 − y1|ψ†ψ(x0, y1) . (A7)

4

transformation1. Denoting P 0 = P 0
F + P 0

V and M01 = M01
F +M01

V the result is

P 0
F =

∑

f

∫

dx1 ψ†
f (x)(−iγ0γ1∂1 +mfγ

0)ψf (x),

(2.12)

P 0
V = −

e2

4

∑

f,f ′

∫

dx1dy1 ψ†
fψf (x

0, x1)|x1 − y1|ψ†
f ′ψf ′(x0, y1),

M01
F = x0P 1 +

∑

f

∫

dx1 ψ†
f (x)

[

x1(iγ0γ1∂1 − γ0mf ) +
i

2
γ0γ1

]

ψf (x),

(2.13)

M01
V =

e2

8

∑

f,f ′

∫

dx1dy1 ψ†
fψf (x

0, x1)(x1 + y1)|x1 − y1|ψ†
f ′ψf ′(x0, y1) .

Let us then check that these generators satisfy the D = 1 + 1 Poincaré Lie algebra. Using the anticommutation
relation

{

ψfα(x
0, x1),ψ†

f ′β(x
0, y1)

}

= δ(x1 − y1)δff ′δαβ (2.14)

it is straightforward to verify that the free generators P 0
F , P 1, and M01

F indeed satisfy

[

P 0, P 1
]

= 0,
[

P 0,M01
]

= iP 1,
[

P 1,M01
]

= iP 0 (2.15)

among themselves. It is also easy to see that
[

P 0, P 1
]

= 0 holds when the interactions are included since P 0
V in (2.12)

is invariant under space translations.
Of the three contributions to

[

P 0,M01
]

that involve interactions the term
[

P 0
V ,M

01
V

]

= 0 since P 0
V and M01

V involve
neither derivatives nor Dirac matrices. The two other terms

[

P 0
V ,M

01
F

]

=
e2

2

∑

f,f ′

∫

dx1dy1
[

ψ†
f (x)iγ

0γ1ψf (x)
]

ψ†
f ′ψf ′(y)x1 ∂

∂x1
|x1 − y1|,

[

P 0
F ,M

01
V

]

= −
e2

4

∑

f,f ′

∫

dx1dy1
[

ψ†
f (x)iγ

0γ1ψf (x)
]

ψ†
f ′ψf ′(y)

∂

∂x1

[

(x1 + y1)|x1 − y1|
]

(2.16)

cancel,
[

P 0
V ,M

01
F

]

+
[

P 0
F ,M

01
V

]

= 0, which ensures
[

P 0,M01
]

= iP 1. In the third Lie algebra relation

[

P 1,M01
V

]

= −
ie2

8

∑

f,f ′

∫

dx1dy1
[

ψ†
f (x)ψf (x)

][

ψ†
f ′ψf ′(y)

] [( ∂

∂x1
+

∂

∂y1
)

(x1 + y1)|x1 − y1|
]

= iP 0
V (2.17)

ensures
[

P 1,M01
]

= iP 0 with interacting generators. Note that the generator algebra (2.15) is satisfied only for the
linear potential specified by QED2.

III. TWO-BODY BOUND STATES IN QED2

As mentioned in the Introduction and further explained in [2], a relativistic gauge theory bound state may be
described by valence-like Dirac-type wave functions provided instantaneous Coulomb exchange dominates and one
uses retarded propagators. At the Born level (lowest order in !) the bound state energies will agree with the result
using Feynman propagators, even though the wave functions obtained with the two types of propagator are very
different.

1 In any event, for massless gauge fields like the photon, Lorentz and gauge transformations are entwined at the fundamental level, as
these fields only represent a faithful vector representation of the Lorentz group up to a gauge transformation. (See, e.g., Sect. 5.9 in
[6].)
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The covariance of the action and the conservation of P 0 follow as for space translations in the main text.

The boost generator M01

An infinitesimal boost in the x1-direction which transforms the coordinates as

x0 → x0 + dξx1, x1 → x1 + dξx0 (A8)

also generates an A1 component of the gauge field: (A0, A1 = 0) → (A0, dξA0). In order to stay in the A1 = 0 gauge
we need to follow up with a gauge transformation

ψ(x) → exp(−idξ θ)ψ(x) (A9)

with

∂1θ(x) = eA0(x) = −
e2

2

∫

d2y δ(x0 − y0)|x1 − y1|ψ†ψ(y), (A10)

where A0 was taken from (2.3). This gives

θ(x) = −
e2

4

∫

d2y δ(x0 − y0)(x1 − y1)|x1 − y1|ψ†ψ(y). (A11)

Combined with the standard boost transformation we have then

ψ(x0, x1) →
[

1 + 1
2ε(x

0)γ0γ1dξ − iε(x0)θ(x0, x1)dξ
]

ψ
(

x0 − ε(x0)x1dξ, x1 − ε(x0)x0dξ
)

. (A12)

We can decompose this into boost, spin, and gauge transformations, defined as

ψ(x0, x1)
boost→ ψ

(

x0 − ε(x0)x1dξ, x1 − ε(x0)x0dξ
)

, (A13)

ψ(x0, x1)
spin→

[

1 + 1
2 ε(x

0)γ0γ1dξ
]

ψ(x0, x1), (A14)

ψ(x0, x1)
gauge→

[

1− iε(x0)θ(x0, x1)dξ
]

ψ(x0, x1). (A15)

Since SF in (2.4) is explicitly Lorentz covariant we expect that its combined boost and spin transformation only
involves terms with ε′(x0). A straightforward calculation gives

δboostSF + δspinSF = 1
2 idξ

∫

d2x ε′(x0)ψ†(x)γ0γ1ψ(x)

−dξ

∫

d2x ε′(x0)ψ†(x)
(

ix0∂1 − ix1γ0γ1∂1 + x1γ0m
)

ψ(x) . (A16)

The variation under the gauge transformation (A15) is

δgaugeSF = dξ

∫

d2x ψ†(x)γ0
[

γµ∂µε(x
0)θ(x)

]

ψ(x) (A17)

= −
dξe2

2

∫

d2xd2y ε(x0)δ(x0 − y0)ψ†(x)γ0γ1ψ(x)|x1 − y1|ψ†ψ(y)

−
dξe2

4

∫

d2xd2y ε(x0)δ(x0 − y0)(x1 − y1)|x1 − y1|ψ†ψ(x)
∂

∂y0
ψ†ψ(y),

where the first (second) term arises from the spatial (time) derivative of θ(x) in (A11). The contribution involving
ε′(x0) vanishes due to the antisymmetry of the integrand under x ↔ y.5

The fields in the potential term SV of (2.4) appear in the gauge invariant combination ψ†(x)ψ(x). Thus

δgaugeSV = 0. (A18)

5 The fermion fields at x anticommute with those at y due to the factor δ(x0 − y0)|x1 − y1|.
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∫
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Combined with the standard boost transformation we have then
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The variation under the gauge transformation (A15) is

δgaugeSF = dξ

∫

d2x ψ†(x)γ0
[

γµ∂µε(x
0)θ(x)

]

ψ(x) (A17)

= −
dξe2

2

∫

d2xd2y ε(x0)δ(x0 − y0)ψ†(x)γ0γ1ψ(x)|x1 − y1|ψ†ψ(y)

−
dξe2

4

∫

d2xd2y ε(x0)δ(x0 − y0)(x1 − y1)|x1 − y1|ψ†ψ(x)
∂

∂y0
ψ†ψ(y),

where the first (second) term arises from the spatial (time) derivative of θ(x) in (A11). The contribution involving
ε′(x0) vanishes due to the antisymmetry of the integrand under x ↔ y.5

The fields in the potential term SV of (2.4) appear in the gauge invariant combination ψ†(x)ψ(x). Thus

δgaugeSV = 0. (A18)

5 The fermion fields at x anticommute with those at y due to the factor δ(x0 − y0)|x1 − y1|.
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1 + 1
2 ε(x

0)γ0γ1dξ
]

ψ(x0, x1), (A14)

ψ(x0, x1)
gauge→

[

1− iε(x0)θ(x0, x1)dξ
]

ψ(x0, x1). (A15)

Since SF in (2.4) is explicitly Lorentz covariant we expect that its combined boost and spin transformation only
involves terms with ε′(x0). A straightforward calculation gives

δboostSF + δspinSF = 1
2 idξ

∫

d2x ε′(x0)ψ†(x)γ0γ1ψ(x)

−dξ

∫

d2x ε′(x0)ψ†(x)
(

ix0∂1 − ix1γ0γ1∂1 + x1γ0m
)

ψ(x) . (A16)

The variation under the gauge transformation (A15) is

δgaugeSF = dξ

∫

d2x ψ†(x)γ0
[

γµ∂µε(x
0)θ(x)

]

ψ(x) (A17)

= −
dξe2

2

∫

d2xd2y ε(x0)δ(x0 − y0)ψ†(x)γ0γ1ψ(x)|x1 − y1|ψ†ψ(y)

−
dξe2

4

∫

d2xd2y ε(x0)δ(x0 − y0)(x1 − y1)|x1 − y1|ψ†ψ(x)
∂

∂y0
ψ†ψ(y),

where the first (second) term arises from the spatial (time) derivative of θ(x) in (A11). The contribution involving
ε′(x0) vanishes due to the antisymmetry of the integrand under x ↔ y.5

The fields in the potential term SV of (2.4) appear in the gauge invariant combination ψ†(x)ψ(x). Thus

δgaugeSV = 0. (A18)

5 The fermion fields at x anticommute with those at y due to the factor δ(x0 − y0)|x1 − y1|.
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time-ordering of Feynman propagators gives a wave function with any number of e+e− pair components, which arise
from Z diagrams. Using retarded propagators there are no Z-contributions and one obtains the standard Dirac
wave function describing a single particle with both positive and negative energy components. Remarkably, the same
relativistic bound state can thus, at Born level, be equivalently described using two quite different wave functions [2].
The iε-prescription invariance ensures that the bound state energies are independent of the choice of wave function.
The possibility to describe relativistic bound states, which have an infinite sea of constituents, using few-particle

“valence” wave functions reopens the issue of explicit Poincaré covariance. Since ! is a fundamental parameter of the
Lagrangian each order in an ! expansion, and in particular the Born term, will have exact Poincaré invariance [3]. In
the present paper we discuss cases where the wave functions of relativistic bound states in different frames can thus
be related explicitly.
The Dirac bound states mentioned above are not translation invariant due to the external potential. We need to

consider freely moving bound states formed by the interaction between two (or more) particles, such as QED atoms.
The equal-time wave function of an atom in motion was considered in [4]. In the rest frame, and at lowest order in
α (and !) the interaction is given by the standard Coulomb potential V (r) = −α/r. Since atoms are non-relativistic
the Z diagrams are suppressed also for Feynman propagators. After a boost, however, the interaction (in Coulomb
gauge) acquires also a propagating, transverse photon component. Thus, in a moving positronium atom |e+e−γ〉 Fock
states must be included even at lowest order in α. Adding relativistic corrections will increase the number of Fock
states, further complicating the transformation of atomic wave functions under boosts.
An explicit transformation law for relativistic states can be found for QED and QCD in D = 1 + 1 dimensions.

Since there are no transverse photons the interaction is fully given by the instantaneous (non-propagating) A0 field in
Coulomb gauge. We derive below the Poincaré algebra for QED starting from the non-local fermionic action, which
is obtained by eliminating the A0 field. This demonstrates that only interactions via a linear potential between the
fermions, as stipulated by QED, lead to a Poincaré-covariant theory. The fact that the Lorentz boost operator must
involve a gauge transformation in order to keep the Coulomb gauge condition satisfied in the boost is also illustrated.
We show how (Born level) two-body eigenstates of the translation generators P 0 and P 1 may be found in QED,

making use of retarded propagation in analogy to the Dirac case mentioned above [2]. We then apply the boost
generator to obtain the bound state in another frame. The boosted state remains an eigenstate of P 0 and P 1, with
appropriately transformed eigenvalues. The rate of Lorentz contraction of the wave function turns out to depend on
the linear potential V (x) and thus on the distance x between the constituents. The boost covariance of bound states
of two fermions interacting via a linear potential has been noticed before as a property of their bound state equation
[7]. Here we present the derivation from first principles, by identifying the system with a relativistic two-fermion
bound state of 1+1 dimensional QED (or QCD) in the Born approximation.
The rest of the paper is organized as follows. In Sect. II we discuss the Poincaré algebra for 1+1 dimensional

QED in Coulomb gauge after integrating out the gauge bosons, in Sect. III we present the corresponding bound state
equation, in Sect. IV we analyze the behavior of the bound-state wave function under boosts, and in Sect. V we
conclude the paper. Appendix A contains details on the derivation of the generators of the Poincaré algebra from
Sect. II, and in App. B we present the generalization to QCD, i.e., to non-Abelian gauge groups.

II. POINCARÉ GENERATORS OF QED2

We shall work in Coulomb gauge (here equivalent to A1 = 0) in order to avoid Fock states with longitudinal photons.
The QED action in D = 1 + 1 for fermions of flavor f is then

S =

∫

d2x
[

−
1

2

(

∂1A
0
)(

∂1A0
)

+
∑

f

ψ†
f (x)γ

0
(

i/∂ −mf − eγ0A0
)

ψf (x)
]

. (2.1)

The equation of motion for A0 (Gauss’ law),

− ∂2
1A

0(x) = e
∑

f

ψ†
fψf (x), (2.2)

allows to express A0 in terms of the fermion fields,

A0(x) = −
e

2

∑

f

∫

dy1|x1 − y1|ψ†
fψf (x

0, y1), (2.3)

but:



boost
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The covariance of the action and the conservation of P 0 follow as for space translations in the main text.

The boost generator M01

An infinitesimal boost in the x1-direction which transforms the coordinates as

x0 → x0 + dξx1, x1 → x1 + dξx0 (A8)

also generates an A1 component of the gauge field: (A0, A1 = 0) → (A0, dξA0). In order to stay in the A1 = 0 gauge
we need to follow up with a gauge transformation

ψ(x) → exp(−idξ θ)ψ(x) (A9)

with

∂1θ(x) = eA0(x) = −
e2

2

∫

d2y δ(x0 − y0)|x1 − y1|ψ†ψ(y), (A10)

where A0 was taken from (2.3). This gives

θ(x) = −
e2

4

∫

d2y δ(x0 − y0)(x1 − y1)|x1 − y1|ψ†ψ(y). (A11)

Combined with the standard boost transformation we have then

ψ(x0, x1) →
[

1 + 1
2ε(x

0)γ0γ1dξ − iε(x0)θ(x0, x1)dξ
]

ψ
(

x0 − ε(x0)x1dξ, x1 − ε(x0)x0dξ
)

. (A12)

We can decompose this into boost, spin, and gauge transformations, defined as

ψ(x0, x1)
boost→ ψ

(

x0 − ε(x0)x1dξ, x1 − ε(x0)x0dξ
)

, (A13)

ψ(x0, x1)
spin→

[

1 + 1
2 ε(x

0)γ0γ1dξ
]

ψ(x0, x1), (A14)

ψ(x0, x1)
gauge→

[

1− iε(x0)θ(x0, x1)dξ
]

ψ(x0, x1). (A15)

Since SF in (2.4) is explicitly Lorentz covariant we expect that its combined boost and spin transformation only
involves terms with ε′(x0). A straightforward calculation gives

δboostSF + δspinSF = 1
2 idξ

∫

d2x ε′(x0)ψ†(x)γ0γ1ψ(x)

−dξ

∫

d2x ε′(x0)ψ†(x)
(

ix0∂1 − ix1γ0γ1∂1 + x1γ0m
)

ψ(x) . (A16)

The variation under the gauge transformation (A15) is

δgaugeSF = dξ

∫

d2x ψ†(x)γ0
[

γµ∂µε(x
0)θ(x)

]

ψ(x) (A17)

= −
dξe2

2

∫

d2xd2y ε(x0)δ(x0 − y0)ψ†(x)γ0γ1ψ(x)|x1 − y1|ψ†ψ(y)

−
dξe2

4

∫

d2xd2y ε(x0)δ(x0 − y0)(x1 − y1)|x1 − y1|ψ†ψ(x)
∂

∂y0
ψ†ψ(y),

where the first (second) term arises from the spatial (time) derivative of θ(x) in (A11). The contribution involving
ε′(x0) vanishes due to the antisymmetry of the integrand under x ↔ y.5

The fields in the potential term SV of (2.4) appear in the gauge invariant combination ψ†(x)ψ(x). Thus

δgaugeSV = 0. (A18)

5 The fermion fields at x anticommute with those at y due to the factor δ(x0 − y0)|x1 − y1|.
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The boost generator M01

An infinitesimal boost in the x1-direction which transforms the coordinates as

x0 → x0 + dξx1, x1 → x1 + dξx0 (A8)

also generates an A1 component of the gauge field: (A0, A1 = 0) → (A0, dξA0). In order to stay in the A1 = 0 gauge
we need to follow up with a gauge transformation

ψ(x) → exp(−idξ θ)ψ(x) (A9)

with

∂1θ(x) = eA0(x) = −
e2

2

∫

d2y δ(x0 − y0)|x1 − y1|ψ†ψ(y), (A10)

where A0 was taken from (2.3). This gives

θ(x) = −
e2

4

∫

d2y δ(x0 − y0)(x1 − y1)|x1 − y1|ψ†ψ(y). (A11)

Combined with the standard boost transformation we have then

ψ(x0, x1) →
[

1 + 1
2ε(x

0)γ0γ1dξ − iε(x0)θ(x0, x1)dξ
]

ψ
(

x0 − ε(x0)x1dξ, x1 − ε(x0)x0dξ
)

. (A12)

We can decompose this into boost, spin, and gauge transformations, defined as

ψ(x0, x1)
boost→ ψ

(

x0 − ε(x0)x1dξ, x1 − ε(x0)x0dξ
)

, (A13)

ψ(x0, x1)
spin→

[

1 + 1
2 ε(x

0)γ0γ1dξ
]

ψ(x0, x1), (A14)

ψ(x0, x1)
gauge→

[

1− iε(x0)θ(x0, x1)dξ
]

ψ(x0, x1). (A15)

Since SF in (2.4) is explicitly Lorentz covariant we expect that its combined boost and spin transformation only
involves terms with ε′(x0). A straightforward calculation gives

δboostSF + δspinSF = 1
2 idξ

∫

d2x ε′(x0)ψ†(x)γ0γ1ψ(x)

−dξ

∫

d2x ε′(x0)ψ†(x)
(

ix0∂1 − ix1γ0γ1∂1 + x1γ0m
)

ψ(x) . (A16)

The variation under the gauge transformation (A15) is

δgaugeSF = dξ

∫

d2x ψ†(x)γ0
[

γµ∂µε(x
0)θ(x)

]

ψ(x) (A17)

= −
dξe2

2

∫

d2xd2y ε(x0)δ(x0 − y0)ψ†(x)γ0γ1ψ(x)|x1 − y1|ψ†ψ(y)

−
dξe2

4

∫

d2xd2y ε(x0)δ(x0 − y0)(x1 − y1)|x1 − y1|ψ†ψ(x)
∂

∂y0
ψ†ψ(y),

where the first (second) term arises from the spatial (time) derivative of θ(x) in (A11). The contribution involving
ε′(x0) vanishes due to the antisymmetry of the integrand under x ↔ y.5

The fields in the potential term SV of (2.4) appear in the gauge invariant combination ψ†(x)ψ(x). Thus

δgaugeSV = 0. (A18)

5 The fermion fields at x anticommute with those at y due to the factor δ(x0 − y0)|x1 − y1|.
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x0 → x0 + dξx1, x1 → x1 + dξx0 (A8)

also generates an A1 component of the gauge field: (A0, A1 = 0) → (A0, dξA0). In order to stay in the A1 = 0 gauge
we need to follow up with a gauge transformation

ψ(x) → exp(−idξ θ)ψ(x) (A9)

with

∂1θ(x) = eA0(x) = −
e2

2

∫

d2y δ(x0 − y0)|x1 − y1|ψ†ψ(y), (A10)

where A0 was taken from (2.3). This gives

θ(x) = −
e2

4

∫

d2y δ(x0 − y0)(x1 − y1)|x1 − y1|ψ†ψ(y). (A11)

Combined with the standard boost transformation we have then

ψ(x0, x1) →
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2ε(x

0)γ0γ1dξ − iε(x0)θ(x0, x1)dξ
]

ψ
(

x0 − ε(x0)x1dξ, x1 − ε(x0)x0dξ
)

. (A12)

We can decompose this into boost, spin, and gauge transformations, defined as

ψ(x0, x1)
boost→ ψ

(

x0 − ε(x0)x1dξ, x1 − ε(x0)x0dξ
)

, (A13)

ψ(x0, x1)
spin→

[

1 + 1
2 ε(x

0)γ0γ1dξ
]

ψ(x0, x1), (A14)

ψ(x0, x1)
gauge→

[

1− iε(x0)θ(x0, x1)dξ
]

ψ(x0, x1). (A15)

Since SF in (2.4) is explicitly Lorentz covariant we expect that its combined boost and spin transformation only
involves terms with ε′(x0). A straightforward calculation gives

δboostSF + δspinSF = 1
2 idξ

∫

d2x ε′(x0)ψ†(x)γ0γ1ψ(x)

−dξ

∫

d2x ε′(x0)ψ†(x)
(

ix0∂1 − ix1γ0γ1∂1 + x1γ0m
)

ψ(x) . (A16)

The variation under the gauge transformation (A15) is

δgaugeSF = dξ

∫

d2x ψ†(x)γ0
[

γµ∂µε(x
0)θ(x)

]

ψ(x) (A17)

= −
dξe2

2

∫

d2xd2y ε(x0)δ(x0 − y0)ψ†(x)γ0γ1ψ(x)|x1 − y1|ψ†ψ(y)

−
dξe2

4

∫

d2xd2y ε(x0)δ(x0 − y0)(x1 − y1)|x1 − y1|ψ†ψ(x)
∂

∂y0
ψ†ψ(y),

where the first (second) term arises from the spatial (time) derivative of θ(x) in (A11). The contribution involving
ε′(x0) vanishes due to the antisymmetry of the integrand under x ↔ y.5

The fields in the potential term SV of (2.4) appear in the gauge invariant combination ψ†(x)ψ(x). Thus

δgaugeSV = 0. (A18)

5 The fermion fields at x anticommute with those at y due to the factor δ(x0 − y0)|x1 − y1|.
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An infinitesimal boost in the x1-direction which transforms the coordinates as

x0 → x0 + dξx1, x1 → x1 + dξx0 (A8)

also generates an A1 component of the gauge field: (A0, A1 = 0) → (A0, dξA0). In order to stay in the A1 = 0 gauge
we need to follow up with a gauge transformation

ψ(x) → exp(−idξ θ)ψ(x) (A9)

with

∂1θ(x) = eA0(x) = −
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2

∫

d2y δ(x0 − y0)|x1 − y1|ψ†ψ(y), (A10)

where A0 was taken from (2.3). This gives
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∫
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Combined with the standard boost transformation we have then
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]
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(
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We can decompose this into boost, spin, and gauge transformations, defined as
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boost→ ψ
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)
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∂y0
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where the first (second) term arises from the spatial (time) derivative of θ(x) in (A11). The contribution involving
ε′(x0) vanishes due to the antisymmetry of the integrand under x ↔ y.5

The fields in the potential term SV of (2.4) appear in the gauge invariant combination ψ†(x)ψ(x). Thus

δgaugeSV = 0. (A18)

5 The fermion fields at x anticommute with those at y due to the factor δ(x0 − y0)|x1 − y1|.
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δgaugeSV = 0. (A18)

5 The fermion fields at x anticommute with those at y due to the factor δ(x0 − y0)|x1 − y1|.
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The covariance of the action and the conservation of P 0 follow as for space translations in the main text.

The boost generator M01
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2

∫
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where A0 was taken from (2.3). This gives

θ(x) = −
e2

4

∫
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Combined with the standard boost transformation we have then

ψ(x0, x1) →
[

1 + 1
2ε(x

0)γ0γ1dξ − iε(x0)θ(x0, x1)dξ
]

ψ
(

x0 − ε(x0)x1dξ, x1 − ε(x0)x0dξ
)

. (A12)

We can decompose this into boost, spin, and gauge transformations, defined as

ψ(x0, x1)
boost→ ψ

(

x0 − ε(x0)x1dξ, x1 − ε(x0)x0dξ
)

, (A13)

ψ(x0, x1)
spin→

[

1 + 1
2 ε(x

0)γ0γ1dξ
]

ψ(x0, x1), (A14)

ψ(x0, x1)
gauge→

[

1− iε(x0)θ(x0, x1)dξ
]

ψ(x0, x1). (A15)

Since SF in (2.4) is explicitly Lorentz covariant we expect that its combined boost and spin transformation only
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−dξ
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)

ψ(x) . (A16)

The variation under the gauge transformation (A15) is
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0)θ(x)

]

ψ(x) (A17)
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dξe2

2
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−
dξe2

4

∫

d2xd2y ε(x0)δ(x0 − y0)(x1 − y1)|x1 − y1|ψ†ψ(x)
∂

∂y0
ψ†ψ(y),

where the first (second) term arises from the spatial (time) derivative of θ(x) in (A11). The contribution involving
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The fields in the potential term SV of (2.4) appear in the gauge invariant combination ψ†(x)ψ(x). Thus
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5 The fermion fields at x anticommute with those at y due to the factor δ(x0 − y0)|x1 − y1|.
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time-ordering of Feynman propagators gives a wave function with any number of e+e− pair components, which arise
from Z diagrams. Using retarded propagators there are no Z-contributions and one obtains the standard Dirac
wave function describing a single particle with both positive and negative energy components. Remarkably, the same
relativistic bound state can thus, at Born level, be equivalently described using two quite different wave functions [2].
The iε-prescription invariance ensures that the bound state energies are independent of the choice of wave function.
The possibility to describe relativistic bound states, which have an infinite sea of constituents, using few-particle

“valence” wave functions reopens the issue of explicit Poincaré covariance. Since ! is a fundamental parameter of the
Lagrangian each order in an ! expansion, and in particular the Born term, will have exact Poincaré invariance [3]. In
the present paper we discuss cases where the wave functions of relativistic bound states in different frames can thus
be related explicitly.
The Dirac bound states mentioned above are not translation invariant due to the external potential. We need to

consider freely moving bound states formed by the interaction between two (or more) particles, such as QED atoms.
The equal-time wave function of an atom in motion was considered in [4]. In the rest frame, and at lowest order in
α (and !) the interaction is given by the standard Coulomb potential V (r) = −α/r. Since atoms are non-relativistic
the Z diagrams are suppressed also for Feynman propagators. After a boost, however, the interaction (in Coulomb
gauge) acquires also a propagating, transverse photon component. Thus, in a moving positronium atom |e+e−γ〉 Fock
states must be included even at lowest order in α. Adding relativistic corrections will increase the number of Fock
states, further complicating the transformation of atomic wave functions under boosts.
An explicit transformation law for relativistic states can be found for QED and QCD in D = 1 + 1 dimensions.

Since there are no transverse photons the interaction is fully given by the instantaneous (non-propagating) A0 field in
Coulomb gauge. We derive below the Poincaré algebra for QED starting from the non-local fermionic action, which
is obtained by eliminating the A0 field. This demonstrates that only interactions via a linear potential between the
fermions, as stipulated by QED, lead to a Poincaré-covariant theory. The fact that the Lorentz boost operator must
involve a gauge transformation in order to keep the Coulomb gauge condition satisfied in the boost is also illustrated.
We show how (Born level) two-body eigenstates of the translation generators P 0 and P 1 may be found in QED,

making use of retarded propagation in analogy to the Dirac case mentioned above [2]. We then apply the boost
generator to obtain the bound state in another frame. The boosted state remains an eigenstate of P 0 and P 1, with
appropriately transformed eigenvalues. The rate of Lorentz contraction of the wave function turns out to depend on
the linear potential V (x) and thus on the distance x between the constituents. The boost covariance of bound states
of two fermions interacting via a linear potential has been noticed before as a property of their bound state equation
[7]. Here we present the derivation from first principles, by identifying the system with a relativistic two-fermion
bound state of 1+1 dimensional QED (or QCD) in the Born approximation.
The rest of the paper is organized as follows. In Sect. II we discuss the Poincaré algebra for 1+1 dimensional

QED in Coulomb gauge after integrating out the gauge bosons, in Sect. III we present the corresponding bound state
equation, in Sect. IV we analyze the behavior of the bound-state wave function under boosts, and in Sect. V we
conclude the paper. Appendix A contains details on the derivation of the generators of the Poincaré algebra from
Sect. II, and in App. B we present the generalization to QCD, i.e., to non-Abelian gauge groups.

II. POINCARÉ GENERATORS OF QED2

We shall work in Coulomb gauge (here equivalent to A1 = 0) in order to avoid Fock states with longitudinal photons.
The QED action in D = 1 + 1 for fermions of flavor f is then

S =

∫

d2x
[

−
1

2

(

∂1A
0
)(

∂1A0
)

+
∑

f

ψ†
f (x)γ

0
(

i/∂ −mf − eγ0A0
)

ψf (x)
]

. (2.1)

The equation of motion for A0 (Gauss’ law),

− ∂2
1A

0(x) = e
∑

f

ψ†
fψf (x), (2.2)

allows to express A0 in terms of the fermion fields,

A0(x) = −
e

2

∑

f

∫

dy1|x1 − y1|ψ†
fψf (x

0, y1), (2.3)

but:
non-covariant gauge

⇒
must restore gauge condition
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4

transformation1. Denoting P 0 = P 0
F + P 0

V and M01 = M01
F +M01

V the result is

P 0
F =

∑

f

∫

dx1 ψ†
f (x)(−iγ0γ1∂1 +mfγ

0)ψf (x),

(2.12)

P 0
V = −

e2

4

∑

f,f ′

∫

dx1dy1 ψ†
fψf (x

0, x1)|x1 − y1|ψ†
f ′ψf ′(x0, y1),

M01
F = x0P 1 +

∑

f

∫

dx1 ψ†
f (x)

[

x1(iγ0γ1∂1 − γ0mf ) +
i

2
γ0γ1

]

ψf (x),

(2.13)

M01
V =

e2

8

∑

f,f ′

∫

dx1dy1 ψ†
fψf (x

0, x1)(x1 + y1)|x1 − y1|ψ†
f ′ψf ′(x0, y1) .

Let us then check that these generators satisfy the D = 1 + 1 Poincaré Lie algebra. Using the anticommutation
relation

{

ψfα(x
0, x1),ψ†

f ′β(x
0, y1)

}

= δ(x1 − y1)δff ′δαβ (2.14)

it is straightforward to verify that the free generators P 0
F , P 1, and M01

F indeed satisfy

[

P 0, P 1
]

= 0,
[

P 0,M01
]

= iP 1,
[

P 1,M01
]

= iP 0 (2.15)

among themselves. It is also easy to see that
[

P 0, P 1
]

= 0 holds when the interactions are included since P 0
V in (2.12)

is invariant under space translations.
Of the three contributions to

[

P 0,M01
]

that involve interactions the term
[

P 0
V ,M

01
V

]

= 0 since P 0
V and M01

V involve
neither derivatives nor Dirac matrices. The two other terms

[

P 0
V ,M

01
F

]

=
e2

2

∑

f,f ′

∫

dx1dy1
[

ψ†
f (x)iγ

0γ1ψf (x)
]

ψ†
f ′ψf ′(y)x1 ∂

∂x1
|x1 − y1|,

[

P 0
F ,M

01
V

]

= −
e2

4

∑

f,f ′

∫

dx1dy1
[

ψ†
f (x)iγ

0γ1ψf (x)
]

ψ†
f ′ψf ′(y)

∂

∂x1

[

(x1 + y1)|x1 − y1|
]

(2.16)

cancel,
[

P 0
V ,M

01
F

]

+
[

P 0
F ,M

01
V

]

= 0, which ensures
[

P 0,M01
]

= iP 1. In the third Lie algebra relation

[

P 1,M01
V

]

= −
ie2

8

∑

f,f ′

∫

dx1dy1
[

ψ†
f (x)ψf (x)

][

ψ†
f ′ψf ′(y)

] [( ∂

∂x1
+

∂

∂y1
)

(x1 + y1)|x1 − y1|
]

= iP 0
V (2.17)

ensures
[

P 1,M01
]

= iP 0 with interacting generators. Note that the generator algebra (2.15) is satisfied only for the
linear potential specified by QED2.

III. TWO-BODY BOUND STATES IN QED2

As mentioned in the Introduction and further explained in [2], a relativistic gauge theory bound state may be
described by valence-like Dirac-type wave functions provided instantaneous Coulomb exchange dominates and one
uses retarded propagators. At the Born level (lowest order in !) the bound state energies will agree with the result
using Feynman propagators, even though the wave functions obtained with the two types of propagator are very
different.

1 In any event, for massless gauge fields like the photon, Lorentz and gauge transformations are entwined at the fundamental level, as
these fields only represent a faithful vector representation of the Lorentz group up to a gauge transformation. (See, e.g., Sect. 5.9 in
[6].)

as densities

11

The spin transformation becomes

δspinSV =
dξe2

2

∫

d2xd2y ε(x0)δ(x0 − y0)ψ†γ0γ1ψ(x)|x1 − y1|ψ†ψ(y) (A19)

after using the symmetry of the integration measure under x ↔ y. In the boost transformation we notice that since
initially x0 = y0 in SV , the shift of the space coordinate is the same for all fields, and can be absorbed into a shift dξx0

of the integration variables x1, y1 similarly as in the treatment of the space translations. The remaining contribution
from the transformation of the time coordinates can be expressed as

δboostSV = −
dξe2

4

∫

d2xd2y δ(x0 − y0)|x1 − y1|x1ε(x0)
∂

∂x0
ψ†ψ(x)ψ†ψ(y) (A20)

−
dξe2

4

∫

d2xd2y δ(x0 − y0)|x1 − y1|y1ψ†ψ(x)ε(y0)
∂

∂y0
ψ†ψ(y) (A21)

=
dξe2

4

∫

d2xd2y ε(x0)δ(x0 − y0)(x1 − y1)|x1 − y1|ψ†ψ(x)
∂

∂y0
ψ†ψ(y)

+
dξe2

4

∫

d2xd2y ε′(x0)x1ψ†ψ(x)δ(x0 − y0)|x1 − y1|ψ†ψ(y), (A22)

where the latter expression was obtained by partial integration. Adding up the various contributions, only terms
involving the derivative of ε(x0) survive:

δS = dξ

∫

dx0 ε′(x0)M01, (A23)

where, using again the x ↔ y symmetry of the integration measure in the potential term,

M01 = x0

∫

dx1 ψ†(x)(−i∂1)ψ(x) +

∫

dx1 ψ†(x)
[

x1(iγ0γ1∂1 − γ0m) +
i

2
γ0γ1

]

ψ(x)

+
e2

8

∫

dx1dy1 ψ†ψ(x0, x1)(x1 + y1)|x1 − y1|ψ†ψ(x0, y1) . (A24)

In terms of the momentum densities

P0 = ψ̄
(

− 1
2 iγ

1
↔

∂ 1 +m
)

ψ −
e2

4

∫

dy1 ψ†ψ(x0, x1)|x1 − y1|ψ†ψ(x0, y1),

P1 = ψ̄
(

− 1
2 iγ

0
↔

∂ 1

)

ψ, (A25)

the boost density has the expected form,

M01 = x0P1 − x1P0 . (A26)

Appendix B: Poincaré algebra of QCD2

The derivation of the QED2 generators in Appendix A can be carried out similarly for QCD2. In Coulomb gauge
the solution of Gauss’ law (without a constant background field, and for a single flavor) gives

A0
a(x) = −

g

2

∑

A,B

∫

d2y δ(x0 − y0)|x1 − y1|ψ†
A(y)T

AB
a ψB(y). (B1)

Substituting this expression in the QCD2 action gives (suppressing the quark color indices)

S =

∫

d2xψ†(x)γ0
(

i/∂ −m
)

ψ(x) +
g2

4

∑

a

∫

d2x d2y δ(x0 − y0)ψ†(x)Taψ(x)|x1 − y1|ψ†(y)Taψ(y). (B2)
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dx1dy1
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uses retarded propagators. At the Born level (lowest order in !) the bound state energies will agree with the result
using Feynman propagators, even though the wave functions obtained with the two types of propagator are very
different.

1 In any event, for massless gauge fields like the photon, Lorentz and gauge transformations are entwined at the fundamental level, as
these fields only represent a faithful vector representation of the Lorentz group up to a gauge transformation. (See, e.g., Sect. 5.9 in
[6].)

as densities

11

The spin transformation becomes

δspinSV =
dξe2

2

∫

d2xd2y ε(x0)δ(x0 − y0)ψ†γ0γ1ψ(x)|x1 − y1|ψ†ψ(y) (A19)

after using the symmetry of the integration measure under x ↔ y. In the boost transformation we notice that since
initially x0 = y0 in SV , the shift of the space coordinate is the same for all fields, and can be absorbed into a shift dξx0

of the integration variables x1, y1 similarly as in the treatment of the space translations. The remaining contribution
from the transformation of the time coordinates can be expressed as

δboostSV = −
dξe2

4

∫

d2xd2y δ(x0 − y0)|x1 − y1|x1ε(x0)
∂

∂x0
ψ†ψ(x)ψ†ψ(y) (A20)

−
dξe2

4

∫

d2xd2y δ(x0 − y0)|x1 − y1|y1ψ†ψ(x)ε(y0)
∂

∂y0
ψ†ψ(y) (A21)

=
dξe2

4

∫

d2xd2y ε(x0)δ(x0 − y0)(x1 − y1)|x1 − y1|ψ†ψ(x)
∂

∂y0
ψ†ψ(y)

+
dξe2

4

∫

d2xd2y ε′(x0)x1ψ†ψ(x)δ(x0 − y0)|x1 − y1|ψ†ψ(y), (A22)

where the latter expression was obtained by partial integration. Adding up the various contributions, only terms
involving the derivative of ε(x0) survive:

δS = dξ

∫

dx0 ε′(x0)M01, (A23)

where, using again the x ↔ y symmetry of the integration measure in the potential term,

M01 = x0

∫

dx1 ψ†(x)(−i∂1)ψ(x) +

∫

dx1 ψ†(x)
[

x1(iγ0γ1∂1 − γ0m) +
i

2
γ0γ1

]

ψ(x)

+
e2

8

∫

dx1dy1 ψ†ψ(x0, x1)(x1 + y1)|x1 − y1|ψ†ψ(x0, y1) . (A24)

In terms of the momentum densities

P0 = ψ̄
(

− 1
2 iγ

1
↔

∂ 1 +m
)

ψ −
e2

4

∫

dy1 ψ†ψ(x0, x1)|x1 − y1|ψ†ψ(x0, y1),

P1 = ψ̄
(

− 1
2 iγ

0
↔

∂ 1

)

ψ, (A25)

the boost density has the expected form,

M01 = x0P1 − x1P0 . (A26)

Appendix B: Poincaré algebra of QCD2

The derivation of the QED2 generators in Appendix A can be carried out similarly for QCD2. In Coulomb gauge
the solution of Gauss’ law (without a constant background field, and for a single flavor) gives

A0
a(x) = −

g

2

∑

A,B

∫

d2y δ(x0 − y0)|x1 − y1|ψ†
A(y)T

AB
a ψB(y). (B1)

Substituting this expression in the QCD2 action gives (suppressing the quark color indices)

S =

∫

d2xψ†(x)γ0
(

i/∂ −m
)

ψ(x) +
g2

4

∑

a

∫

d2x d2y δ(x0 − y0)ψ†(x)Taψ(x)|x1 − y1|ψ†(y)Taψ(y). (B2)
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cross check ✔



Poincaré invariance

DDD

4

transformation1. Denoting P 0 = P 0
F + P 0

V and M01 = M01
F +M01

V the result is

P 0
F =

∑

f

∫

dx1 ψ†
f (x)(−iγ0γ1∂1 +mfγ

0)ψf (x),

(2.12)

P 0
V = −

e2

4

∑

f,f ′

∫

dx1dy1 ψ†
fψf (x

0, x1)|x1 − y1|ψ†
f ′ψf ′(x0, y1),

M01
F = x0P 1 +

∑

f

∫

dx1 ψ†
f (x)

[

x1(iγ0γ1∂1 − γ0mf ) +
i

2
γ0γ1

]

ψf (x),

(2.13)

M01
V =

e2

8

∑

f,f ′

∫

dx1dy1 ψ†
fψf (x

0, x1)(x1 + y1)|x1 − y1|ψ†
f ′ψf ′(x0, y1) .

Let us then check that these generators satisfy the D = 1 + 1 Poincaré Lie algebra. Using the anticommutation
relation

{

ψfα(x
0, x1),ψ†

f ′β(x
0, y1)

}

= δ(x1 − y1)δff ′δαβ (2.14)

it is straightforward to verify that the free generators P 0
F , P 1, and M01

F indeed satisfy

[

P 0, P 1
]

= 0,
[

P 0,M01
]

= iP 1,
[

P 1,M01
]

= iP 0 (2.15)

among themselves. It is also easy to see that
[

P 0, P 1
]

= 0 holds when the interactions are included since P 0
V in (2.12)

is invariant under space translations.
Of the three contributions to

[

P 0,M01
]

that involve interactions the term
[

P 0
V ,M

01
V

]

= 0 since P 0
V and M01

V involve
neither derivatives nor Dirac matrices. The two other terms

[

P 0
V ,M

01
F

]

=
e2

2

∑

f,f ′

∫

dx1dy1
[

ψ†
f (x)iγ

0γ1ψf (x)
]

ψ†
f ′ψf ′(y)x1 ∂

∂x1
|x1 − y1|,

[

P 0
F ,M

01
V

]

= −
e2

4

∑

f,f ′

∫

dx1dy1
[

ψ†
f (x)iγ

0γ1ψf (x)
]

ψ†
f ′ψf ′(y)

∂

∂x1

[

(x1 + y1)|x1 − y1|
]

(2.16)

cancel,
[

P 0
V ,M

01
F

]

+
[

P 0
F ,M

01
V

]

= 0, which ensures
[

P 0,M01
]

= iP 1. In the third Lie algebra relation

[

P 1,M01
V

]

= −
ie2

8

∑

f,f ′

∫

dx1dy1
[

ψ†
f (x)ψf (x)

][

ψ†
f ′ψf ′(y)

] [( ∂

∂x1
+

∂

∂y1
)

(x1 + y1)|x1 − y1|
]

= iP 0
V (2.17)

ensures
[

P 1,M01
]

= iP 0 with interacting generators. Note that the generator algebra (2.15) is satisfied only for the
linear potential specified by QED2.

III. TWO-BODY BOUND STATES IN QED2

As mentioned in the Introduction and further explained in [2], a relativistic gauge theory bound state may be
described by valence-like Dirac-type wave functions provided instantaneous Coulomb exchange dominates and one
uses retarded propagators. At the Born level (lowest order in !) the bound state energies will agree with the result
using Feynman propagators, even though the wave functions obtained with the two types of propagator are very
different.

1 In any event, for massless gauge fields like the photon, Lorentz and gauge transformations are entwined at the fundamental level, as
these fields only represent a faithful vector representation of the Lorentz group up to a gauge transformation. (See, e.g., Sect. 5.9 in
[6].)
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P 0, P 1
]
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[

P 0,M01
]

= iP 1

[

P 1,M01
]

= iP 0

check using
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bound state equation
5

In QED2 Coulomb interaction is ensured by the gauge condition A1 = 0. Retarded propagation for fermions is
achieved using the “retarded” vacuum (which is equivalent to removing the Dirac sea)

|0〉R = N−1
∏

p1

d†(p1) |0〉 , (3.1)

where the product is over antifermion creation operators of all momenta p1 and N is a normalization factor. The
Pauli exclusion principle implies

ψ(x) |0〉R = 0 (3.2)

for all x. This ensures retarded propagation, R〈0|T
[

ψ(x)ψ̄(0)
]

|0〉R ∝ θ(x0), and forbids intermediate pairs. The
unusual “vacuum” |0〉R should be understood as a method of selecting terms that contribute at lowest order in !. For
perturbative loop corrections the boundary condition needs to be adjusted correspondingly to allow single or multiple
pair production.
We define our fermion-antifermion bound states of energy E and momentum k by2

|E, k〉 ≡
∫

dx1dx2 exp
[

1
2 ik(x1 + x2)

]

ψ̄1(0, x1)e
iϕΦ(x1 − x2)ψ2(0, x2) |0〉R . (3.3)

Since we are working at Born level we may assume the fermion flavors f = 1, 2 to be distinct. The boundary condition
corresponding to (3.2) in the case of two flavors is taken to be

ψ1(x) |0〉R = ψ†
2(x) |0〉R = 0. (3.4)

In (3.3) the space coordinate of fermion j is denoted xj ≡ x1
j (j = 1, 2), and the state is defined at equal time, x0

j = 0.

The wave function is the product of a plane wave in the CM position coordinate 1
2 (x1+x2) and a 2×2 matrix function

Φ(x)eiϕ(x) of the relative coordinate x ≡ x1 − x2. As we shall see below, the extraction of the phase ϕ(x) makes the
transformation of the wave function Φ(x) under boosts, i.e., its k dependence, more easily tractable. The phase is
defined by

ϕ(x) = −(m2
1 −m2

2)(ξ + ζ)
ε(x)

e2
, (3.5)

where ε(x) ≡ x/|x| is the sign function. The standard boost parameter of the bound state (of rest mass M) is denoted
ξ,

sinh ξ =
k

M
, cosh ξ =

E

M
, (3.6)

whereas ζ is defined by

sinh ζ = −
k

√

p2
, cosh ζ =

E − V (x)
√

p2
, (3.7)

and depends on the relative coordinate x through the linear QED2 potential

V (x) = 1
2 e

2|x|. (3.8)

The x-dependent “momentum” p appearing in (3.7),

p ≡ (E − V,−k), /p = (E − V )γ0 + kγ1, p2 = (E − V )2 − k2, (3.9)

is obtained by a ζ-boost from the rest frame,

/p = exp(12ζγ
0γ1)

√

p2γ0 exp(− 1
2 ζγ

0γ1). (3.10)

2 The present definition of the wave function is related to the χ(x) used in [2, 7] as Φ(x) = γ0χ(x) exp[−iϕ(x)].
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6

Equation (3.5) extends the definition of the phase ϕ(x) first found in [7] to x < 0. We also add the x-independent term
∝ ξ which is required by the boost transformation to be studied in the next section. Since V (0) = 0, p2 = E2−k2 = M2

and ξ + ζ = 0 at x = 0. The parameter ζ in (3.7), and consequently the phase ϕ(x), are, however, well-defined only
for p2 > 0. Therefore, we shall here restrict to the region near the origin, with |x| < 2(E − |k|)/e2, where p2 remains
positive. This range covers the whole wave function in the weak coupling limit e → 0. Notice also that this is only
a restriction of the “covariant” formulation involving the variable ζ and the particular choice of the phase ϕ(x) in
(3.5), whereas the Poincaré algebra defines the bound state equation and the transformation of the wave function for
all values of the coordinates.
In D = 1+ 1 dimensions we may represent the Dirac matrices in terms of the Pauli matrices as

γ0 = σ3, γ1 = iσ2, γ0γ1 = σ1. (3.11)

Applying the space translation generator (2.9) we may verify that the state (3.3) has total momentum k,

P 1 |E, k〉 = k |E, k〉 . (3.12)

Using (2.12) the energy eigenvalue condition P 0 |E, k〉 = E |E, k〉 gives a bound state equation for the wave function
Φ(x),

i∂x {σ1,Φ(x)}− (∂xϕ) {σ1,Φ(x)}− 1
2k [σ1,Φ(x)] +m1σ3Φ(x)−m2Φ(x)σ3 =

[

E − V (x)
]

Φ(x), (3.13)

where the x-derivative of ϕ(x) at constant k is given by (3.5) as

∂xϕ(x) ≡
∂ϕ

∂x

∣

∣

∣

∣

k

= (m2
1 −m2

2)
k

2p2
. (3.14)

In terms of p, the bound state equation can be written as

i∂x {σ1,Φ(x)}− (∂xϕ) {σ1,Φ(x)}− σ3

(

1
2/p−m1

)

Φ(x) − Φ(x)
(

1
2/p+m2

)

σ3 = 0. (3.15)

We wish to ascertain that the bound state energy has the correct k dependence, E =
√
k2 +M2. There is no previous

experience (except [7]) of how the wave function Φ should depend on k.
Since Φ is a 2× 2 matrix it has four independent components, which may be taken to be the coefficients of the unit

and Pauli matrices,

Φ(x) ≡ Φ0(x) +
3

∑

j=1

Φj(x)σj = φ(x) + Φ2(x)σ2 + Φ3(x)σ3, (3.16)

φ(x) ≡ Φ0(x) + Φ1(x)σ1. (3.17)

As Φ2 and Φ3 do not contribute to the derivative i∂x {σ1,Φ} in the bound state equation, these two components can
be expressed in terms of φ. We find

Φ(x) =
/p

p2
(

1
2/p+m1

)

φ+ φ
(

1
2/p−m2

) /p

p2
= φ+

1

p2
(m1/pφ−m2φ /p). (3.18)

The bound state equation can be expressed in a frame-independent way by introducing the new variable

s(x) ≡
1

2

∫ x

0
du

[

E − V (u)
]

=
ε(x)

2e2
[

2EV (x)− V (x)2
]

=
ε(x)

2e2
(M2 − p2), (3.19)

ds

dx
=

∂s

∂x

∣

∣

∣

∣

k

=
1

2

[

E − V (x)
]

,

where M ≡
√
E2 − k2 is the rest mass of the bound state. Then (3.15) implies3

i∂sσ1φ(s) =

[

1−
m2

1 +m2
2

p2

]

φ(s) +
2m1m2

p2
σ3φ(s)σ3. (3.20)

3 For conciseness of notation we denote by Φ(s) the wave function Φ(x(s)) implicitly defined by (3.19).
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a restriction of the “covariant” formulation involving the variable ζ and the particular choice of the phase ϕ(x) in
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bound state equation

|E, k〉 ≡
∫

dx1dx2 exp
[

1
2 ik(x1 + x2)

]

ψ̄1(0, x1)e
iϕΦ(x1 − x2)ψ2(0, x2) |0〉R

DDD

P 0
F =

∑

f

∫

dx1 ψ†
f (x)(−iγ0γ1∂1 +mfγ

0)ψf (x),

P 0
V = −

e2

4

∑

f,f ′

∫

dx1dy1 ψ†
fψf (x

0, x1)|x1 − y1|ψ†
f ′ψf ′(x0, y1)

6

Equation (3.5) extends the definition of the phase ϕ(x) first found in [7] to x < 0. We also add the x-independent term
∝ ξ which is required by the boost transformation to be studied in the next section. Since V (0) = 0, p2 = E2−k2 = M2

and ξ + ζ = 0 at x = 0. The parameter ζ in (3.7), and consequently the phase ϕ(x), are, however, well-defined only
for p2 > 0. Therefore, we shall here restrict to the region near the origin, with |x| < 2(E − |k|)/e2, where p2 remains
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Since Φ is a 2× 2 matrix it has four independent components, which may be taken to be the coefficients of the unit

and Pauli matrices,

Φ(x) ≡ Φ0(x) +
3

∑

j=1

Φj(x)σj = φ(x) + Φ2(x)σ2 + Φ3(x)σ3, (3.16)

φ(x) ≡ Φ0(x) + Φ1(x)σ1. (3.17)

As Φ2 and Φ3 do not contribute to the derivative i∂x {σ1,Φ} in the bound state equation, these two components can
be expressed in terms of φ. We find
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1
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= φ+

1

p2
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The bound state equation can be expressed in a frame-independent way by introducing the new variable

s(x) ≡
1

2

∫ x

0
du
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E − V (u)
]

=
ε(x)

2e2
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2EV (x)− V (x)2
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=
ε(x)

2e2
(M2 − p2), (3.19)

ds

dx
=

∂s

∂x

∣

∣

∣

∣

k

=
1

2
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E − V (x)
]

,

where M ≡
√
E2 − k2 is the rest mass of the bound state. Then (3.15) implies3

i∂sσ1φ(s) =

[

1−
m2

1 +m2
2

p2

]

φ(s) +
2m1m2

p2
σ3φ(s)σ3. (3.20)

3 For conciseness of notation we denote by Φ(s) the wave function Φ(x(s)) implicitly defined by (3.19).
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P 1 |E, k〉 = k |E, k〉 . (3.12)
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k2 +M2. There is no previous

experience (except [7]) of how the wave function Φ should depend on k.
Since Φ is a 2× 2 matrix it has four independent components, which may be taken to be the coefficients of the unit
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where M ≡
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all values of the coordinates.
In D = 1+ 1 dimensions we may represent the Dirac matrices in terms of the Pauli matrices as

γ0 = σ3, γ1 = iσ2, γ0γ1 = σ1. (3.11)

Applying the space translation generator (2.9) we may verify that the state (3.3) has total momentum k,

P 1 |E, k〉 = k |E, k〉 . (3.12)

Using (2.12) the energy eigenvalue condition P 0 |E, k〉 = E |E, k〉 gives a bound state equation for the wave function
Φ(x),

i∂x {σ1,Φ(x)}− (∂xϕ) {σ1,Φ(x)}− 1
2k [σ1,Φ(x)] +m1σ3Φ(x)−m2Φ(x)σ3 =

[

E − V (x)
]

Φ(x), (3.13)

where the x-derivative of ϕ(x) at constant k is given by (3.5) as

∂xϕ(x) ≡
∂ϕ

∂x

∣

∣

∣

∣

k

= (m2
1 −m2

2)
k

2p2
. (3.14)

In terms of p, the bound state equation can be written as

i∂x {σ1,Φ(x)}− (∂xϕ) {σ1,Φ(x)}− σ3

(

1
2/p−m1

)

Φ(x) − Φ(x)
(

1
2/p+m2

)

σ3 = 0. (3.15)
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where M ≡
√
E2 − k2 is the rest mass of the bound state. Then (3.15) implies3
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1−
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1 +m2
2
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φ(s) +
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p2
σ3φ(s)σ3. (3.20)

3 For conciseness of notation we denote by Φ(s) the wave function Φ(x(s)) implicitly defined by (3.19).
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i∂x {σ1,Φ(x)}− (∂xϕ) {σ1,Φ(x)}− 1
2k [σ1,Φ(x)] +m1σ3Φ(x)−m2Φ(x)σ3

no derivatives on #2 & #3
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∝ ξ which is required by the boost transformation to be studied in the next section. Since V (0) = 0, p2 = E2−k2 = M2

and ξ + ζ = 0 at x = 0. The parameter ζ in (3.7), and consequently the phase ϕ(x), are, however, well-defined only
for p2 > 0. Therefore, we shall here restrict to the region near the origin, with |x| < 2(E − |k|)/e2, where p2 remains
positive. This range covers the whole wave function in the weak coupling limit e → 0. Notice also that this is only
a restriction of the “covariant” formulation involving the variable ζ and the particular choice of the phase ϕ(x) in
(3.5), whereas the Poincaré algebra defines the bound state equation and the transformation of the wave function for
all values of the coordinates.
In D = 1+ 1 dimensions we may represent the Dirac matrices in terms of the Pauli matrices as

γ0 = σ3, γ1 = iσ2, γ0γ1 = σ1. (3.11)

Applying the space translation generator (2.9) we may verify that the state (3.3) has total momentum k,

P 1 |E, k〉 = k |E, k〉 . (3.12)

Using (2.12) the energy eigenvalue condition P 0 |E, k〉 = E |E, k〉 gives a bound state equation for the wave function
Φ(x),

i∂x {σ1,Φ(x)}− (∂xϕ) {σ1,Φ(x)}− 1
2k [σ1,Φ(x)] +m1σ3Φ(x)−m2Φ(x)σ3 =

[

E − V (x)
]

Φ(x), (3.13)

where the x-derivative of ϕ(x) at constant k is given by (3.5) as

∂xϕ(x) ≡
∂ϕ

∂x
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∣

∣

∣

k

= (m2
1 −m2
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k

2p2
. (3.14)

In terms of p, the bound state equation can be written as

i∂x {σ1,Φ(x)}− (∂xϕ) {σ1,Φ(x)}− σ3

(

1
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)

Φ(x) − Φ(x)
(

1
2/p+m2

)

σ3 = 0. (3.15)

We wish to ascertain that the bound state energy has the correct k dependence, E =
√
k2 +M2. There is no previous

experience (except [7]) of how the wave function Φ should depend on k.
Since Φ is a 2× 2 matrix it has four independent components, which may be taken to be the coefficients of the unit

and Pauli matrices,

Φ(x) ≡ Φ0(x) +
3

∑

j=1

Φj(x)σj = φ(x) + Φ2(x)σ2 + Φ3(x)σ3, (3.16)

φ(x) ≡ Φ0(x) + Φ1(x)σ1. (3.17)

As Φ2 and Φ3 do not contribute to the derivative i∂x {σ1,Φ} in the bound state equation, these two components can
be expressed in terms of φ. We find

Φ(x) =
/p

p2
(

1
2/p+m1

)

φ+ φ
(

1
2/p−m2

) /p

p2
= φ+

1

p2
(m1/pφ−m2φ /p). (3.18)

The bound state equation can be expressed in a frame-independent way by introducing the new variable

s(x) ≡
1

2

∫ x

0
du

[

E − V (u)
]

=
ε(x)

2e2
[

2EV (x)− V (x)2
]

=
ε(x)

2e2
(M2 − p2), (3.19)

ds

dx
=

∂s
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]

,

where M ≡
√
E2 − k2 is the rest mass of the bound state. Then (3.15) implies3

i∂sσ1φ(s) =

[

1−
m2

1 +m2
2

p2

]

φ(s) +
2m1m2

p2
σ3φ(s)σ3. (3.20)

3 For conciseness of notation we denote by Φ(s) the wave function Φ(x(s)) implicitly defined by (3.19).
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Equation (3.5) extends the definition of the phase ϕ(x) first found in [7] to x < 0. We also add the x-independent term
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and ξ + ζ = 0 at x = 0. The parameter ζ in (3.7), and consequently the phase ϕ(x), are, however, well-defined only
for p2 > 0. Therefore, we shall here restrict to the region near the origin, with |x| < 2(E − |k|)/e2, where p2 remains
positive. This range covers the whole wave function in the weak coupling limit e → 0. Notice also that this is only
a restriction of the “covariant” formulation involving the variable ζ and the particular choice of the phase ϕ(x) in
(3.5), whereas the Poincaré algebra defines the bound state equation and the transformation of the wave function for
all values of the coordinates.
In D = 1+ 1 dimensions we may represent the Dirac matrices in terms of the Pauli matrices as

γ0 = σ3, γ1 = iσ2, γ0γ1 = σ1. (3.11)

Applying the space translation generator (2.9) we may verify that the state (3.3) has total momentum k,

P 1 |E, k〉 = k |E, k〉 . (3.12)

Using (2.12) the energy eigenvalue condition P 0 |E, k〉 = E |E, k〉 gives a bound state equation for the wave function
Φ(x),

i∂x {σ1,Φ(x)}− (∂xϕ) {σ1,Φ(x)}− 1
2k [σ1,Φ(x)] +m1σ3Φ(x)−m2Φ(x)σ3 =

[
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]

Φ(x), (3.13)

where the x-derivative of ϕ(x) at constant k is given by (3.5) as

∂xϕ(x) ≡
∂ϕ

∂x

∣

∣

∣

∣

k

= (m2
1 −m2

2)
k

2p2
. (3.14)

In terms of p, the bound state equation can be written as

i∂x {σ1,Φ(x)}− (∂xϕ) {σ1,Φ(x)}− σ3

(

1
2/p−m1

)

Φ(x) − Φ(x)
(

1
2/p+m2

)

σ3 = 0. (3.15)

We wish to ascertain that the bound state energy has the correct k dependence, E =
√
k2 +M2. There is no previous

experience (except [7]) of how the wave function Φ should depend on k.
Since Φ is a 2× 2 matrix it has four independent components, which may be taken to be the coefficients of the unit

and Pauli matrices,

Φ(x) ≡ Φ0(x) +
3

∑

j=1

Φj(x)σj = φ(x) + Φ2(x)σ2 + Φ3(x)σ3, (3.16)

φ(x) ≡ Φ0(x) + Φ1(x)σ1. (3.17)
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(

1
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)
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(

1
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= φ+
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The bound state equation can be expressed in a frame-independent way by introducing the new variable

s(x) ≡
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=
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]

=
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,

where M ≡
√
E2 − k2 is the rest mass of the bound state. Then (3.15) implies3

i∂sσ1φ(s) =

[
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m2

1 +m2
2

p2

]

φ(s) +
2m1m2

p2
σ3φ(s)σ3. (3.20)

3 For conciseness of notation we denote by Φ(s) the wave function Φ(x(s)) implicitly defined by (3.19).
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√
k2 +M2. There is no previous
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be expressed in terms of φ. We find

Φ(x) =
/p

p2
(

1
2/p+m1

)

φ+ φ
(

1
2/p−m2

) /p

p2
= φ+

1

p2
(m1/pφ−m2φ /p). (3.18)

The bound state equation can be expressed in a frame-independent way by introducing the new variable

s(x) ≡
1

2

∫ x

0
du

[

E − V (u)
]

=
ε(x)

2e2
[

2EV (x)− V (x)2
]

=
ε(x)

2e2
(M2 − p2), (3.19)

ds

dx
=

∂s

∂x

∣

∣

∣

∣

k

=
1

2

[

E − V (x)
]

,

where M ≡
√
E2 − k2 is the rest mass of the bound state. Then (3.15) implies3

i∂sσ1φ(s) =

[

1−
m2

1 +m2
2

p2

]

φ(s) +
2m1m2

p2
σ3φ(s)σ3. (3.20)

3 For conciseness of notation we denote by Φ(s) the wave function Φ(x(s)) implicitly defined by (3.19).

6

Equation (3.5) extends the definition of the phase ϕ(x) first found in [7] to x < 0. We also add the x-independent term
∝ ξ which is required by the boost transformation to be studied in the next section. Since V (0) = 0, p2 = E2−k2 = M2

and ξ + ζ = 0 at x = 0. The parameter ζ in (3.7), and consequently the phase ϕ(x), are, however, well-defined only
for p2 > 0. Therefore, we shall here restrict to the region near the origin, with |x| < 2(E − |k|)/e2, where p2 remains
positive. This range covers the whole wave function in the weak coupling limit e → 0. Notice also that this is only
a restriction of the “covariant” formulation involving the variable ζ and the particular choice of the phase ϕ(x) in
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and Pauli matrices,

Φ(x) ≡ Φ0(x) +
3

∑

j=1

Φj(x)σj = φ(x) + Φ2(x)σ2 + Φ3(x)σ3, (3.16)

φ(x) ≡ Φ0(x) + Φ1(x)σ1. (3.17)

As Φ2 and Φ3 do not contribute to the derivative i∂x {σ1,Φ} in the bound state equation, these two components can
be expressed in terms of φ. We find

Φ(x) =
/p

p2
(

1
2/p+m1

)

φ+ φ
(

1
2/p−m2

) /p

p2
= φ+

1

p2
(m1/pφ−m2φ /p). (3.18)

The bound state equation can be expressed in a frame-independent way by introducing the new variable

s(x) ≡
1

2

∫ x

0
du

[

E − V (u)
]

=
ε(x)

2e2
[

2EV (x)− V (x)2
]

=
ε(x)

2e2
(M2 − p2), (3.19)

ds

dx
=

∂s

∂x

∣

∣

∣

∣

k

=
1

2

[

E − V (x)
]

,

where M ≡
√
E2 − k2 is the rest mass of the bound state. Then (3.15) implies3

i∂sσ1φ(s) =

[

1−
m2

1 +m2
2

p2

]

φ(s) +
2m1m2

p2
σ3φ(s)σ3. (3.20)

3 For conciseness of notation we denote by Φ(s) the wave function Φ(x(s)) implicitly defined by (3.19).
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In QED2 Coulomb interaction is ensured by the gauge condition A1 = 0. Retarded propagation for fermions is
achieved using the “retarded” vacuum (which is equivalent to removing the Dirac sea)

|0〉R = N−1
∏

p1

d†(p1) |0〉 , (3.1)

where the product is over antifermion creation operators of all momenta p1 and N is a normalization factor. The
Pauli exclusion principle implies

ψ(x) |0〉R = 0 (3.2)

for all x. This ensures retarded propagation, R〈0|T
[

ψ(x)ψ̄(0)
]

|0〉R ∝ θ(x0), and forbids intermediate pairs. The
unusual “vacuum” |0〉R should be understood as a method of selecting terms that contribute at lowest order in !. For
perturbative loop corrections the boundary condition needs to be adjusted correspondingly to allow single or multiple
pair production.
We define our fermion-antifermion bound states of energy E and momentum k by2

|E, k〉 ≡
∫

dx1dx2 exp
[

1
2 ik(x1 + x2)

]

ψ̄1(0, x1)e
iϕΦ(x1 − x2)ψ2(0, x2) |0〉R . (3.3)

Since we are working at Born level we may assume the fermion flavors f = 1, 2 to be distinct. The boundary condition
corresponding to (3.2) in the case of two flavors is taken to be

ψ1(x) |0〉R = ψ†
2(x) |0〉R = 0. (3.4)

In (3.3) the space coordinate of fermion j is denoted xj ≡ x1
j (j = 1, 2), and the state is defined at equal time, x0

j = 0.

The wave function is the product of a plane wave in the CM position coordinate 1
2 (x1+x2) and a 2×2 matrix function

Φ(x)eiϕ(x) of the relative coordinate x ≡ x1 − x2. As we shall see below, the extraction of the phase ϕ(x) makes the
transformation of the wave function Φ(x) under boosts, i.e., its k dependence, more easily tractable. The phase is
defined by

ϕ(x) = −(m2
1 −m2

2)(ξ + ζ)
ε(x)

e2
, (3.5)

where ε(x) ≡ x/|x| is the sign function. The standard boost parameter of the bound state (of rest mass M) is denoted
ξ,

sinh ξ =
k

M
, cosh ξ =

E

M
, (3.6)

whereas ζ is defined by

sinh ζ = −
k

√

p2
, cosh ζ =

E − V (x)
√

p2
, (3.7)

and depends on the relative coordinate x through the linear QED2 potential

V (x) = 1
2 e

2|x|. (3.8)

The x-dependent “momentum” p appearing in (3.7),

p ≡ (E − V,−k), /p = (E − V )γ0 + kγ1, p2 = (E − V )2 − k2, (3.9)

is obtained by a ζ-boost from the rest frame,

/p = exp(12ζγ
0γ1)

√

p2γ0 exp(− 1
2 ζγ

0γ1). (3.10)

2 The present definition of the wave function is related to the χ(x) used in [2, 7] as Φ(x) = γ0χ(x) exp[−iϕ(x)].
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Equivalently, the bound state condition for the components Φ0 and Φ1 of the wave function are

i∂sΦ1(s) =

[

1−
(m1 −m2)2

p2

]

Φ0(s), i∂sΦ0(s) =

[

1−
(m1 +m2)2

p2

]

Φ1(s). (3.21)

The conditions (3.20) and (3.21) are independent of the CM momentum k since according to (3.19) p2 is k independent
at fixed s and rest mass M . This means that Φ0(s) and Φ1(s), and hence also φ(s), are the same functions of s in all
reference frames. According to (3.10) and (3.18) the full wave function Φ(s) of a bound state with momentum k is
given by the rest frame (k = 0) wave function Φ(k=0)(s) as

Φ(s) = eσ1ζ/2Φ(k=0)(s)e−σ1ζ/2, (3.22)

possibly up to an s-independent factor. The boost parameter ζ is given in (3.7). The relation between s and x is k
dependent and thus different for Φ(s) and Φ(k=0)(s).
As seen from (3.19) the bound state equation (3.13) gives the correct dependence between energy and momentum,

E =
√
k2 +M2, only for the linear potential of QED2. This is ensured by the Lorentz invariance of the QED action

and the expansion in !. The frame independence of the wave function, when expressed as a function of s, was first
observed in [7]. It implies that the Lorentz contraction of the bound state is x dependent: dx/ds = 2/(E − V (x)).
Non-relativistic wave functions (V # E) transform globally, with a 1/E contraction [8].

IV. BOOST COVARIANCE OF THE WAVE FUNCTION

In the previous section we found that the dependence on the CM momentum k of the solutions to the bound state
equation (3.13) are related as in (3.22) (up to an x-independent factor). We shall now demonstrate that this relation
is consistent with a direct boost of the bound states, using the generator M01 derived in Sect. II.
The sign convention of the Lie algebra (2.15) implies that the state |E + dξk, k + dξE〉 of 2-momentum Λk, corre-

sponding to the infinitesimal boost defined by (A8), is generated by −idξM01,

Pµ(1− idξM01) |E, k〉 = kµ(1− idξM01) |E, k〉+ idξ
[

M01, Pµ
]

|E, k〉 = (Λk)µ(1− idξM01) |E, k〉 . (4.1)

From its definition (3.3) the k dependence of the wave function Φ(x) at constant x ≡ x1 − x2 is thus given by the
boost operator through

(1− idξM01) |E, k〉 = |E + dξk, k + dξE〉 =
∫

dx1dx2e
ik(x1+x2)/2+iϕ(x)

× ψ̄1(0, x1)
{

Φ+ idξE
[

1
2 (x1 + x2) +

∂ϕ(x)

∂k

∣

∣

∣

∣

x

]

Φ+ dξE
∂Φ(x)

∂k

∣

∣

∣

∣

x

}

ψ2(0, x2) |0〉R m, (4.2)

where the k dependence of ϕ(x) at constant x is obtained from (3.5),

∂ϕ(x)

∂k

∣

∣

∣

∣

x

= (m2
1 −m2

2)
E − V

2Ep2
x. (4.3)

Using the representation (2.13) of M01 we find (with ∂j ≡ ∂/∂xj)

M01 |E, k〉 =

∫

dx1dx2ψ̄1(0, x1)
{

−
[

x1σ1i
→

∂1 + x1σ3m1 +
1
2 iσ1

]

eik(x1+x2)/2+iϕ(x)Φ(x)

+ eik(x1+x2)/2+iϕ(x)Φ(x)
[

i
←

∂2x2σ1 + x2σ3m2 +
1
2 iσ1 − 1

2 (x1 + x2)V (x)
]

}

ψ2(0, x2) |0〉R

=

∫

dx1dx2e
ik(x1+x2)/2+iϕ(x)ψ̄1(0, x1) (4.4)

×
{

1
2 (x1 + x2)

(

− i∂x {σ1,Φ}+ (∂xϕ) {σ1,Φ}+ 1
2k [σ1,Φ]−m1σ3Φ+m2Φσ3 − V Φ

)

+ 1
2x

(

− i∂x [σ1,Φ] + (∂xϕ) [σ1,Φ] +
1
2k {σ1,Φ}−m1σ3Φ−m2Φσ3

)

− 1
2 i [σ1,Φ]

}

ψ2(0, x2) |0〉R .

The coefficient of 1
2 (x1+x2) on the next-to-last line equals −EΦ by the bound state equation (3.13). Hence it cancels

against the corresponding term on the rhs. of (4.2). The remaining terms specify the k dependence of the wave
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Equation (3.5) extends the definition of the phase ϕ(x) first found in [7] to x < 0. We also add the x-independent term
∝ ξ which is required by the boost transformation to be studied in the next section. Since V (0) = 0, p2 = E2−k2 = M2

and ξ + ζ = 0 at x = 0. The parameter ζ in (3.7), and consequently the phase ϕ(x), are, however, well-defined only
for p2 > 0. Therefore, we shall here restrict to the region near the origin, with |x| < 2(E − |k|)/e2, where p2 remains
positive. This range covers the whole wave function in the weak coupling limit e → 0. Notice also that this is only
a restriction of the “covariant” formulation involving the variable ζ and the particular choice of the phase ϕ(x) in
(3.5), whereas the Poincaré algebra defines the bound state equation and the transformation of the wave function for
all values of the coordinates.
In D = 1+ 1 dimensions we may represent the Dirac matrices in terms of the Pauli matrices as

γ0 = σ3, γ1 = iσ2, γ0γ1 = σ1. (3.11)

Applying the space translation generator (2.9) we may verify that the state (3.3) has total momentum k,

P 1 |E, k〉 = k |E, k〉 . (3.12)

Using (2.12) the energy eigenvalue condition P 0 |E, k〉 = E |E, k〉 gives a bound state equation for the wave function
Φ(x),

i∂x {σ1,Φ(x)}− (∂xϕ) {σ1,Φ(x)}− 1
2k [σ1,Φ(x)] +m1σ3Φ(x)−m2Φ(x)σ3 =

[

E − V (x)
]

Φ(x), (3.13)

where the x-derivative of ϕ(x) at constant k is given by (3.5) as

∂xϕ(x) ≡
∂ϕ

∂x

∣

∣

∣

∣

k

= (m2
1 −m2

2)
k

2p2
. (3.14)

In terms of p, the bound state equation can be written as

i∂x {σ1,Φ(x)}− (∂xϕ) {σ1,Φ(x)}− σ3

(

1
2/p−m1

)

Φ(x) − Φ(x)
(

1
2/p+m2

)

σ3 = 0. (3.15)

We wish to ascertain that the bound state energy has the correct k dependence, E =
√
k2 +M2. There is no previous

experience (except [7]) of how the wave function Φ should depend on k.
Since Φ is a 2× 2 matrix it has four independent components, which may be taken to be the coefficients of the unit

and Pauli matrices,

Φ(x) ≡ Φ0(x) +
3

∑

j=1

Φj(x)σj = φ(x) + Φ2(x)σ2 + Φ3(x)σ3, (3.16)

φ(x) ≡ Φ0(x) + Φ1(x)σ1. (3.17)

As Φ2 and Φ3 do not contribute to the derivative i∂x {σ1,Φ} in the bound state equation, these two components can
be expressed in terms of φ. We find

Φ(x) =
/p

p2
(

1
2/p+m1

)

φ+ φ
(

1
2/p−m2

) /p

p2
= φ+

1

p2
(m1/pφ−m2φ /p). (3.18)

The bound state equation can be expressed in a frame-independent way by introducing the new variable

s(x) ≡
1

2

∫ x

0
du

[

E − V (u)
]

=
ε(x)

2e2
[

2EV (x)− V (x)2
]

=
ε(x)

2e2
(M2 − p2), (3.19)

ds

dx
=

∂s

∂x

∣

∣

∣

∣

k

=
1

2

[

E − V (x)
]

,

where M ≡
√
E2 − k2 is the rest mass of the bound state. Then (3.15) implies3

i∂sσ1φ(s) =

[

1−
m2

1 +m2
2

p2

]

φ(s) +
2m1m2

p2
σ3φ(s)σ3. (3.20)

3 For conciseness of notation we denote by Φ(s) the wave function Φ(x(s)) implicitly defined by (3.19).
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Since Φ is a 2× 2 matrix it has four independent components, which may be taken to be the coefficients of the unit

and Pauli matrices,

Φ(x) ≡ Φ0(x) +
3

∑

j=1

Φj(x)σj = φ(x) + Φ2(x)σ2 + Φ3(x)σ3, (3.16)

φ(x) ≡ Φ0(x) + Φ1(x)σ1. (3.17)

As Φ2 and Φ3 do not contribute to the derivative i∂x {σ1,Φ} in the bound state equation, these two components can
be expressed in terms of φ. We find

Φ(x) =
/p

p2
(

1
2/p+m1

)

φ+ φ
(

1
2/p−m2

) /p

p2
= φ+

1

p2
(m1/pφ−m2φ /p). (3.18)

The bound state equation can be expressed in a frame-independent way by introducing the new variable

s(x) ≡
1

2

∫ x

0
du

[

E − V (u)
]

=
ε(x)

2e2
[

2EV (x)− V (x)2
]

=
ε(x)

2e2
(M2 − p2), (3.19)

ds

dx
=

∂s

∂x

∣

∣

∣

∣

k

=
1

2

[

E − V (x)
]

,

where M ≡
√
E2 − k2 is the rest mass of the bound state. Then (3.15) implies3

i∂sσ1φ(s) =

[

1−
m2

1 +m2
2

p2

]

φ(s) +
2m1m2

p2
σ3φ(s)σ3. (3.20)

3 For conciseness of notation we denote by Φ(s) the wave function Φ(x(s)) implicitly defined by (3.19).
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In QED2 Coulomb interaction is ensured by the gauge condition A1 = 0. Retarded propagation for fermions is
achieved using the “retarded” vacuum (which is equivalent to removing the Dirac sea)

|0〉R = N−1
∏

p1

d†(p1) |0〉 , (3.1)

where the product is over antifermion creation operators of all momenta p1 and N is a normalization factor. The
Pauli exclusion principle implies

ψ(x) |0〉R = 0 (3.2)

for all x. This ensures retarded propagation, R〈0|T
[

ψ(x)ψ̄(0)
]

|0〉R ∝ θ(x0), and forbids intermediate pairs. The
unusual “vacuum” |0〉R should be understood as a method of selecting terms that contribute at lowest order in !. For
perturbative loop corrections the boundary condition needs to be adjusted correspondingly to allow single or multiple
pair production.
We define our fermion-antifermion bound states of energy E and momentum k by2

|E, k〉 ≡
∫

dx1dx2 exp
[

1
2 ik(x1 + x2)

]

ψ̄1(0, x1)e
iϕΦ(x1 − x2)ψ2(0, x2) |0〉R . (3.3)

Since we are working at Born level we may assume the fermion flavors f = 1, 2 to be distinct. The boundary condition
corresponding to (3.2) in the case of two flavors is taken to be

ψ1(x) |0〉R = ψ†
2(x) |0〉R = 0. (3.4)

In (3.3) the space coordinate of fermion j is denoted xj ≡ x1
j (j = 1, 2), and the state is defined at equal time, x0

j = 0.

The wave function is the product of a plane wave in the CM position coordinate 1
2 (x1+x2) and a 2×2 matrix function

Φ(x)eiϕ(x) of the relative coordinate x ≡ x1 − x2. As we shall see below, the extraction of the phase ϕ(x) makes the
transformation of the wave function Φ(x) under boosts, i.e., its k dependence, more easily tractable. The phase is
defined by

ϕ(x) = −(m2
1 −m2

2)(ξ + ζ)
ε(x)

e2
, (3.5)

where ε(x) ≡ x/|x| is the sign function. The standard boost parameter of the bound state (of rest mass M) is denoted
ξ,

sinh ξ =
k

M
, cosh ξ =

E

M
, (3.6)

whereas ζ is defined by

sinh ζ = −
k

√

p2
, cosh ζ =

E − V (x)
√

p2
, (3.7)

and depends on the relative coordinate x through the linear QED2 potential

V (x) = 1
2 e

2|x|. (3.8)

The x-dependent “momentum” p appearing in (3.7),

p ≡ (E − V,−k), /p = (E − V )γ0 + kγ1, p2 = (E − V )2 − k2, (3.9)

is obtained by a ζ-boost from the rest frame,

/p = exp(12ζγ
0γ1)

√

p2γ0 exp(− 1
2 ζγ

0γ1). (3.10)

2 The present definition of the wave function is related to the χ(x) used in [2, 7] as Φ(x) = γ0χ(x) exp[−iϕ(x)].
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Equivalently, the bound state condition for the components Φ0 and Φ1 of the wave function are

i∂sΦ1(s) =

[

1−
(m1 −m2)2

p2

]

Φ0(s), i∂sΦ0(s) =

[

1−
(m1 +m2)2

p2

]

Φ1(s). (3.21)

The conditions (3.20) and (3.21) are independent of the CM momentum k since according to (3.19) p2 is k independent
at fixed s and rest mass M . This means that Φ0(s) and Φ1(s), and hence also φ(s), are the same functions of s in all
reference frames. According to (3.10) and (3.18) the full wave function Φ(s) of a bound state with momentum k is
given by the rest frame (k = 0) wave function Φ(k=0)(s) as

Φ(s) = eσ1ζ/2Φ(k=0)(s)e−σ1ζ/2, (3.22)

possibly up to an s-independent factor. The boost parameter ζ is given in (3.7). The relation between s and x is k
dependent and thus different for Φ(s) and Φ(k=0)(s).
As seen from (3.19) the bound state equation (3.13) gives the correct dependence between energy and momentum,

E =
√
k2 +M2, only for the linear potential of QED2. This is ensured by the Lorentz invariance of the QED action

and the expansion in !. The frame independence of the wave function, when expressed as a function of s, was first
observed in [7]. It implies that the Lorentz contraction of the bound state is x dependent: dx/ds = 2/(E − V (x)).
Non-relativistic wave functions (V # E) transform globally, with a 1/E contraction [8].

IV. BOOST COVARIANCE OF THE WAVE FUNCTION

In the previous section we found that the dependence on the CM momentum k of the solutions to the bound state
equation (3.13) are related as in (3.22) (up to an x-independent factor). We shall now demonstrate that this relation
is consistent with a direct boost of the bound states, using the generator M01 derived in Sect. II.
The sign convention of the Lie algebra (2.15) implies that the state |E + dξk, k + dξE〉 of 2-momentum Λk, corre-

sponding to the infinitesimal boost defined by (A8), is generated by −idξM01,

Pµ(1− idξM01) |E, k〉 = kµ(1− idξM01) |E, k〉+ idξ
[

M01, Pµ
]

|E, k〉 = (Λk)µ(1− idξM01) |E, k〉 . (4.1)

From its definition (3.3) the k dependence of the wave function Φ(x) at constant x ≡ x1 − x2 is thus given by the
boost operator through

(1− idξM01) |E, k〉 = |E + dξk, k + dξE〉 =
∫

dx1dx2e
ik(x1+x2)/2+iϕ(x)

× ψ̄1(0, x1)
{

Φ+ idξE
[

1
2 (x1 + x2) +

∂ϕ(x)

∂k

∣

∣

∣

∣

x

]

Φ+ dξE
∂Φ(x)

∂k

∣

∣

∣

∣

x

}

ψ2(0, x2) |0〉R m, (4.2)

where the k dependence of ϕ(x) at constant x is obtained from (3.5),

∂ϕ(x)

∂k

∣

∣

∣

∣

x

= (m2
1 −m2

2)
E − V

2Ep2
x. (4.3)

Using the representation (2.13) of M01 we find (with ∂j ≡ ∂/∂xj)

M01 |E, k〉 =

∫

dx1dx2ψ̄1(0, x1)
{

−
[

x1σ1i
→

∂1 + x1σ3m1 +
1
2 iσ1

]

eik(x1+x2)/2+iϕ(x)Φ(x)

+ eik(x1+x2)/2+iϕ(x)Φ(x)
[

i
←

∂2x2σ1 + x2σ3m2 +
1
2 iσ1 − 1

2 (x1 + x2)V (x)
]

}

ψ2(0, x2) |0〉R

=

∫

dx1dx2e
ik(x1+x2)/2+iϕ(x)ψ̄1(0, x1) (4.4)

×
{

1
2 (x1 + x2)

(

− i∂x {σ1,Φ}+ (∂xϕ) {σ1,Φ}+ 1
2k [σ1,Φ]−m1σ3Φ+m2Φσ3 − V Φ

)

+ 1
2x

(

− i∂x [σ1,Φ] + (∂xϕ) [σ1,Φ] +
1
2k {σ1,Φ}−m1σ3Φ−m2Φσ3

)

− 1
2 i [σ1,Φ]

}

ψ2(0, x2) |0〉R .

The coefficient of 1
2 (x1+x2) on the next-to-last line equals −EΦ by the bound state equation (3.13). Hence it cancels

against the corresponding term on the rhs. of (4.2). The remaining terms specify the k dependence of the wave
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Equivalently, the bound state condition for the components Φ0 and Φ1 of the wave function are

i∂sΦ1(s) =

[

1−
(m1 −m2)2

p2

]

Φ0(s), i∂sΦ0(s) =

[

1−
(m1 +m2)2

p2

]

Φ1(s). (3.21)

The conditions (3.20) and (3.21) are independent of the CM momentum k since according to (3.19) p2 is k independent
at fixed s and rest mass M . This means that Φ0(s) and Φ1(s), and hence also φ(s), are the same functions of s in all
reference frames. According to (3.10) and (3.18) the full wave function Φ(s) of a bound state with momentum k is
given by the rest frame (k = 0) wave function Φ(k=0)(s) as

Φ(s) = eσ1ζ/2Φ(k=0)(s)e−σ1ζ/2, (3.22)

possibly up to an s-independent factor. The boost parameter ζ is given in (3.7). The relation between s and x is k
dependent and thus different for Φ(s) and Φ(k=0)(s).
As seen from (3.19) the bound state equation (3.13) gives the correct dependence between energy and momentum,

E =
√
k2 +M2, only for the linear potential of QED2. This is ensured by the Lorentz invariance of the QED action

and the expansion in !. The frame independence of the wave function, when expressed as a function of s, was first
observed in [7]. It implies that the Lorentz contraction of the bound state is x dependent: dx/ds = 2/(E − V (x)).
Non-relativistic wave functions (V # E) transform globally, with a 1/E contraction [8].

IV. BOOST COVARIANCE OF THE WAVE FUNCTION

In the previous section we found that the dependence on the CM momentum k of the solutions to the bound state
equation (3.13) are related as in (3.22) (up to an x-independent factor). We shall now demonstrate that this relation
is consistent with a direct boost of the bound states, using the generator M01 derived in Sect. II.
The sign convention of the Lie algebra (2.15) implies that the state |E + dξk, k + dξE〉 of 2-momentum Λk, corre-

sponding to the infinitesimal boost defined by (A8), is generated by −idξM01,

Pµ(1− idξM01) |E, k〉 = kµ(1− idξM01) |E, k〉+ idξ
[

M01, Pµ
]

|E, k〉 = (Λk)µ(1− idξM01) |E, k〉 . (4.1)

From its definition (3.3) the k dependence of the wave function Φ(x) at constant x ≡ x1 − x2 is thus given by the
boost operator through

(1− idξM01) |E, k〉 = |E + dξk, k + dξE〉 =
∫

dx1dx2e
ik(x1+x2)/2+iϕ(x)

× ψ̄1(0, x1)
{

Φ+ idξE
[

1
2 (x1 + x2) +

∂ϕ(x)

∂k

∣

∣

∣

∣

x

]

Φ+ dξE
∂Φ(x)

∂k

∣

∣

∣

∣

x

}

ψ2(0, x2) |0〉R m, (4.2)

where the k dependence of ϕ(x) at constant x is obtained from (3.5),

∂ϕ(x)

∂k

∣

∣

∣

∣

x

= (m2
1 −m2

2)
E − V

2Ep2
x. (4.3)

Using the representation (2.13) of M01 we find (with ∂j ≡ ∂/∂xj)

M01 |E, k〉 =

∫

dx1dx2ψ̄1(0, x1)
{

−
[

x1σ1i
→

∂1 + x1σ3m1 +
1
2 iσ1

]

eik(x1+x2)/2+iϕ(x)Φ(x)

+ eik(x1+x2)/2+iϕ(x)Φ(x)
[

i
←

∂2x2σ1 + x2σ3m2 +
1
2 iσ1 − 1

2 (x1 + x2)V (x)
]

}

ψ2(0, x2) |0〉R

=

∫

dx1dx2e
ik(x1+x2)/2+iϕ(x)ψ̄1(0, x1) (4.4)

×
{

1
2 (x1 + x2)

(

− i∂x {σ1,Φ}+ (∂xϕ) {σ1,Φ}+ 1
2k [σ1,Φ]−m1σ3Φ+m2Φσ3 − V Φ

)

+ 1
2x

(

− i∂x [σ1,Φ] + (∂xϕ) [σ1,Φ] +
1
2k {σ1,Φ}−m1σ3Φ−m2Φσ3

)

− 1
2 i [σ1,Φ]

}

ψ2(0, x2) |0〉R .

The coefficient of 1
2 (x1+x2) on the next-to-last line equals −EΦ by the bound state equation (3.13). Hence it cancels

against the corresponding term on the rhs. of (4.2). The remaining terms specify the k dependence of the wave

boosts:
equations form invariant in terms of s

relation between s & x frame dependent

cross check: direct boosting ✔
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Equivalently, the bound state condition for the components Φ0 and Φ1 of the wave function are

i∂sΦ1(s) =

[

1−
(m1 −m2)2

p2

]

Φ0(s), i∂sΦ0(s) =

[

1−
(m1 +m2)2

p2

]

Φ1(s). (3.21)

The conditions (3.20) and (3.21) are independent of the CM momentum k since according to (3.19) p2 is k independent
at fixed s and rest mass M . This means that Φ0(s) and Φ1(s), and hence also φ(s), are the same functions of s in all
reference frames. According to (3.10) and (3.18) the full wave function Φ(s) of a bound state with momentum k is
given by the rest frame (k = 0) wave function Φ(k=0)(s) as

Φ(s) = eσ1ζ/2Φ(k=0)(s)e−σ1ζ/2, (3.22)

possibly up to an s-independent factor. The boost parameter ζ is given in (3.7). The relation between s and x is k
dependent and thus different for Φ(s) and Φ(k=0)(s).
As seen from (3.19) the bound state equation (3.13) gives the correct dependence between energy and momentum,

E =
√
k2 +M2, only for the linear potential of QED2. This is ensured by the Lorentz invariance of the QED action

and the expansion in !. The frame independence of the wave function, when expressed as a function of s, was first
observed in [7]. It implies that the Lorentz contraction of the bound state is x dependent: dx/ds = 2/(E − V (x)).
Non-relativistic wave functions (V # E) transform globally, with a 1/E contraction [8].

IV. BOOST COVARIANCE OF THE WAVE FUNCTION

In the previous section we found that the dependence on the CM momentum k of the solutions to the bound state
equation (3.13) are related as in (3.22) (up to an x-independent factor). We shall now demonstrate that this relation
is consistent with a direct boost of the bound states, using the generator M01 derived in Sect. II.
The sign convention of the Lie algebra (2.15) implies that the state |E + dξk, k + dξE〉 of 2-momentum Λk, corre-

sponding to the infinitesimal boost defined by (A8), is generated by −idξM01,

Pµ(1− idξM01) |E, k〉 = kµ(1− idξM01) |E, k〉+ idξ
[

M01, Pµ
]

|E, k〉 = (Λk)µ(1− idξM01) |E, k〉 . (4.1)

From its definition (3.3) the k dependence of the wave function Φ(x) at constant x ≡ x1 − x2 is thus given by the
boost operator through

(1− idξM01) |E, k〉 = |E + dξk, k + dξE〉 =
∫

dx1dx2e
ik(x1+x2)/2+iϕ(x)

× ψ̄1(0, x1)
{

Φ+ idξE
[

1
2 (x1 + x2) +

∂ϕ(x)

∂k

∣

∣

∣

∣

x

]

Φ+ dξE
∂Φ(x)

∂k

∣

∣

∣

∣

x

}

ψ2(0, x2) |0〉R m, (4.2)

where the k dependence of ϕ(x) at constant x is obtained from (3.5),

∂ϕ(x)

∂k

∣

∣

∣

∣

x

= (m2
1 −m2

2)
E − V

2Ep2
x. (4.3)

Using the representation (2.13) of M01 we find (with ∂j ≡ ∂/∂xj)

M01 |E, k〉 =

∫

dx1dx2ψ̄1(0, x1)
{

−
[

x1σ1i
→

∂1 + x1σ3m1 +
1
2 iσ1

]

eik(x1+x2)/2+iϕ(x)Φ(x)

+ eik(x1+x2)/2+iϕ(x)Φ(x)
[

i
←

∂2x2σ1 + x2σ3m2 +
1
2 iσ1 − 1

2 (x1 + x2)V (x)
]

}

ψ2(0, x2) |0〉R

=

∫

dx1dx2e
ik(x1+x2)/2+iϕ(x)ψ̄1(0, x1) (4.4)

×
{

1
2 (x1 + x2)

(

− i∂x {σ1,Φ}+ (∂xϕ) {σ1,Φ}+ 1
2k [σ1,Φ]−m1σ3Φ+m2Φσ3 − V Φ

)

+ 1
2x

(

− i∂x [σ1,Φ] + (∂xϕ) [σ1,Φ] +
1
2k {σ1,Φ}−m1σ3Φ−m2Φσ3

)

− 1
2 i [σ1,Φ]

}

ψ2(0, x2) |0〉R .

The coefficient of 1
2 (x1+x2) on the next-to-last line equals −EΦ by the bound state equation (3.13). Hence it cancels

against the corresponding term on the rhs. of (4.2). The remaining terms specify the k dependence of the wave
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Equivalently, the bound state condition for the components Φ0 and Φ1 of the wave function are

i∂sΦ1(s) =

[

1−
(m1 −m2)2

p2

]

Φ0(s), i∂sΦ0(s) =
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1−
(m1 +m2)2
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]

Φ1(s). (3.21)

The conditions (3.20) and (3.21) are independent of the CM momentum k since according to (3.19) p2 is k independent
at fixed s and rest mass M . This means that Φ0(s) and Φ1(s), and hence also φ(s), are the same functions of s in all
reference frames. According to (3.10) and (3.18) the full wave function Φ(s) of a bound state with momentum k is
given by the rest frame (k = 0) wave function Φ(k=0)(s) as

Φ(s) = eσ1ζ/2Φ(k=0)(s)e−σ1ζ/2, (3.22)

possibly up to an s-independent factor. The boost parameter ζ is given in (3.7). The relation between s and x is k
dependent and thus different for Φ(s) and Φ(k=0)(s).
As seen from (3.19) the bound state equation (3.13) gives the correct dependence between energy and momentum,

E =
√
k2 +M2, only for the linear potential of QED2. This is ensured by the Lorentz invariance of the QED action

and the expansion in !. The frame independence of the wave function, when expressed as a function of s, was first
observed in [7]. It implies that the Lorentz contraction of the bound state is x dependent: dx/ds = 2/(E − V (x)).
Non-relativistic wave functions (V # E) transform globally, with a 1/E contraction [8].

IV. BOOST COVARIANCE OF THE WAVE FUNCTION

In the previous section we found that the dependence on the CM momentum k of the solutions to the bound state
equation (3.13) are related as in (3.22) (up to an x-independent factor). We shall now demonstrate that this relation
is consistent with a direct boost of the bound states, using the generator M01 derived in Sect. II.
The sign convention of the Lie algebra (2.15) implies that the state |E + dξk, k + dξE〉 of 2-momentum Λk, corre-

sponding to the infinitesimal boost defined by (A8), is generated by −idξM01,

Pµ(1− idξM01) |E, k〉 = kµ(1− idξM01) |E, k〉+ idξ
[

M01, Pµ
]

|E, k〉 = (Λk)µ(1− idξM01) |E, k〉 . (4.1)

From its definition (3.3) the k dependence of the wave function Φ(x) at constant x ≡ x1 − x2 is thus given by the
boost operator through

(1− idξM01) |E, k〉 = |E + dξk, k + dξE〉 =
∫

dx1dx2e
ik(x1+x2)/2+iϕ(x)

× ψ̄1(0, x1)
{

Φ+ idξE
[
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2 (x1 + x2) +

∂ϕ(x)
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∣

∣

∣

∣

x

]

Φ+ dξE
∂Φ(x)
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∣

∣

∣

∣

x

}

ψ2(0, x2) |0〉R m, (4.2)

where the k dependence of ϕ(x) at constant x is obtained from (3.5),

∂ϕ(x)

∂k

∣

∣

∣

∣

x

= (m2
1 −m2
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E − V
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x. (4.3)

Using the representation (2.13) of M01 we find (with ∂j ≡ ∂/∂xj)

M01 |E, k〉 =

∫

dx1dx2ψ̄1(0, x1)
{

−
[
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→

∂1 + x1σ3m1 +
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]
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←
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]

}

ψ2(0, x2) |0〉R

=

∫

dx1dx2e
ik(x1+x2)/2+iϕ(x)ψ̄1(0, x1) (4.4)

×
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1
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}

ψ2(0, x2) |0〉R .

The coefficient of 1
2 (x1+x2) on the next-to-last line equals −EΦ by the bound state equation (3.13). Hence it cancels

against the corresponding term on the rhs. of (4.2). The remaining terms specify the k dependence of the wave
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Equivalently, the bound state condition for the components Φ0 and Φ1 of the wave function are

i∂sΦ1(s) =

[

1−
(m1 −m2)2

p2

]

Φ0(s), i∂sΦ0(s) =

[

1−
(m1 +m2)2

p2

]

Φ1(s). (3.21)

The conditions (3.20) and (3.21) are independent of the CM momentum k since according to (3.19) p2 is k independent
at fixed s and rest mass M . This means that Φ0(s) and Φ1(s), and hence also φ(s), are the same functions of s in all
reference frames. According to (3.10) and (3.18) the full wave function Φ(s) of a bound state with momentum k is
given by the rest frame (k = 0) wave function Φ(k=0)(s) as

Φ(s) = eσ1ζ/2Φ(k=0)(s)e−σ1ζ/2, (3.22)

possibly up to an s-independent factor. The boost parameter ζ is given in (3.7). The relation between s and x is k
dependent and thus different for Φ(s) and Φ(k=0)(s).
As seen from (3.19) the bound state equation (3.13) gives the correct dependence between energy and momentum,

E =
√
k2 +M2, only for the linear potential of QED2. This is ensured by the Lorentz invariance of the QED action

and the expansion in !. The frame independence of the wave function, when expressed as a function of s, was first
observed in [7]. It implies that the Lorentz contraction of the bound state is x dependent: dx/ds = 2/(E − V (x)).
Non-relativistic wave functions (V # E) transform globally, with a 1/E contraction [8].

IV. BOOST COVARIANCE OF THE WAVE FUNCTION

In the previous section we found that the dependence on the CM momentum k of the solutions to the bound state
equation (3.13) are related as in (3.22) (up to an x-independent factor). We shall now demonstrate that this relation
is consistent with a direct boost of the bound states, using the generator M01 derived in Sect. II.
The sign convention of the Lie algebra (2.15) implies that the state |E + dξk, k + dξE〉 of 2-momentum Λk, corre-

sponding to the infinitesimal boost defined by (A8), is generated by −idξM01,

Pµ(1− idξM01) |E, k〉 = kµ(1− idξM01) |E, k〉+ idξ
[

M01, Pµ
]

|E, k〉 = (Λk)µ(1− idξM01) |E, k〉 . (4.1)

From its definition (3.3) the k dependence of the wave function Φ(x) at constant x ≡ x1 − x2 is thus given by the
boost operator through

(1− idξM01) |E, k〉 = |E + dξk, k + dξE〉 =
∫

dx1dx2e
ik(x1+x2)/2+iϕ(x)

× ψ̄1(0, x1)
{

Φ+ idξE
[

1
2 (x1 + x2) +

∂ϕ(x)

∂k

∣

∣

∣

∣

x

]

Φ+ dξE
∂Φ(x)

∂k

∣

∣

∣

∣

x

}

ψ2(0, x2) |0〉R m, (4.2)

where the k dependence of ϕ(x) at constant x is obtained from (3.5),

∂ϕ(x)

∂k

∣

∣

∣

∣

x

= (m2
1 −m2

2)
E − V

2Ep2
x. (4.3)

Using the representation (2.13) of M01 we find (with ∂j ≡ ∂/∂xj)

M01 |E, k〉 =

∫

dx1dx2ψ̄1(0, x1)
{

−
[

x1σ1i
→

∂1 + x1σ3m1 +
1
2 iσ1

]

eik(x1+x2)/2+iϕ(x)Φ(x)

+ eik(x1+x2)/2+iϕ(x)Φ(x)
[

i
←

∂2x2σ1 + x2σ3m2 +
1
2 iσ1 − 1

2 (x1 + x2)V (x)
]

}

ψ2(0, x2) |0〉R

=

∫

dx1dx2e
ik(x1+x2)/2+iϕ(x)ψ̄1(0, x1) (4.4)

×
{

1
2 (x1 + x2)

(

− i∂x {σ1,Φ}+ (∂xϕ) {σ1,Φ}+ 1
2k [σ1,Φ]−m1σ3Φ+m2Φσ3 − V Φ

)

+ 1
2x

(

− i∂x [σ1,Φ] + (∂xϕ) [σ1,Φ] +
1
2k {σ1,Φ}−m1σ3Φ−m2Φσ3

)

− 1
2 i [σ1,Φ]

}

ψ2(0, x2) |0〉R .

The coefficient of 1
2 (x1+x2) on the next-to-last line equals −EΦ by the bound state equation (3.13). Hence it cancels

against the corresponding term on the rhs. of (4.2). The remaining terms specify the k dependence of the wave
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Equation (3.5) extends the definition of the phase ϕ(x) first found in [7] to x < 0. We also add the x-independent term
∝ ξ which is required by the boost transformation to be studied in the next section. Since V (0) = 0, p2 = E2−k2 = M2

and ξ + ζ = 0 at x = 0. The parameter ζ in (3.7), and consequently the phase ϕ(x), are, however, well-defined only
for p2 > 0. Therefore, we shall here restrict to the region near the origin, with |x| < 2(E − |k|)/e2, where p2 remains
positive. This range covers the whole wave function in the weak coupling limit e → 0. Notice also that this is only
a restriction of the “covariant” formulation involving the variable ζ and the particular choice of the phase ϕ(x) in
(3.5), whereas the Poincaré algebra defines the bound state equation and the transformation of the wave function for
all values of the coordinates.
In D = 1+ 1 dimensions we may represent the Dirac matrices in terms of the Pauli matrices as

γ0 = σ3, γ1 = iσ2, γ0γ1 = σ1. (3.11)

Applying the space translation generator (2.9) we may verify that the state (3.3) has total momentum k,

P 1 |E, k〉 = k |E, k〉 . (3.12)

Using (2.12) the energy eigenvalue condition P 0 |E, k〉 = E |E, k〉 gives a bound state equation for the wave function
Φ(x),

i∂x {σ1,Φ(x)}− (∂xϕ) {σ1,Φ(x)}− 1
2k [σ1,Φ(x)] +m1σ3Φ(x)−m2Φ(x)σ3 =

[

E − V (x)
]

Φ(x), (3.13)

where the x-derivative of ϕ(x) at constant k is given by (3.5) as

∂xϕ(x) ≡
∂ϕ

∂x

∣

∣

∣

∣

k

= (m2
1 −m2

2)
k

2p2
. (3.14)

In terms of p, the bound state equation can be written as

i∂x {σ1,Φ(x)}− (∂xϕ) {σ1,Φ(x)}− σ3

(

1
2/p−m1

)

Φ(x) − Φ(x)
(

1
2/p+m2

)

σ3 = 0. (3.15)

We wish to ascertain that the bound state energy has the correct k dependence, E =
√
k2 +M2. There is no previous

experience (except [7]) of how the wave function Φ should depend on k.
Since Φ is a 2× 2 matrix it has four independent components, which may be taken to be the coefficients of the unit

and Pauli matrices,

Φ(x) ≡ Φ0(x) +
3

∑

j=1

Φj(x)σj = φ(x) + Φ2(x)σ2 + Φ3(x)σ3, (3.16)

φ(x) ≡ Φ0(x) + Φ1(x)σ1. (3.17)

As Φ2 and Φ3 do not contribute to the derivative i∂x {σ1,Φ} in the bound state equation, these two components can
be expressed in terms of φ. We find

Φ(x) =
/p

p2
(

1
2/p+m1

)

φ+ φ
(

1
2/p−m2

) /p

p2
= φ+

1

p2
(m1/pφ−m2φ /p). (3.18)

The bound state equation can be expressed in a frame-independent way by introducing the new variable

s(x) ≡
1

2

∫ x

0
du

[

E − V (u)
]

=
ε(x)

2e2
[

2EV (x)− V (x)2
]

=
ε(x)

2e2
(M2 − p2), (3.19)

ds

dx
=

∂s

∂x

∣

∣

∣

∣

k

=
1

2

[

E − V (x)
]

,

where M ≡
√
E2 − k2 is the rest mass of the bound state. Then (3.15) implies3

i∂sσ1φ(s) =

[

1−
m2

1 +m2
2

p2

]

φ(s) +
2m1m2

p2
σ3φ(s)σ3. (3.20)

3 For conciseness of notation we denote by Φ(s) the wave function Φ(x(s)) implicitly defined by (3.19).
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∣
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In QED2 Coulomb interaction is ensured by the gauge condition A1 = 0. Retarded propagation for fermions is
achieved using the “retarded” vacuum (which is equivalent to removing the Dirac sea)

|0〉R = N−1
∏

p1

d†(p1) |0〉 , (3.1)

where the product is over antifermion creation operators of all momenta p1 and N is a normalization factor. The
Pauli exclusion principle implies

ψ(x) |0〉R = 0 (3.2)

for all x. This ensures retarded propagation, R〈0|T
[

ψ(x)ψ̄(0)
]

|0〉R ∝ θ(x0), and forbids intermediate pairs. The
unusual “vacuum” |0〉R should be understood as a method of selecting terms that contribute at lowest order in !. For
perturbative loop corrections the boundary condition needs to be adjusted correspondingly to allow single or multiple
pair production.
We define our fermion-antifermion bound states of energy E and momentum k by2

|E, k〉 ≡
∫

dx1dx2 exp
[

1
2 ik(x1 + x2)

]

ψ̄1(0, x1)e
iϕΦ(x1 − x2)ψ2(0, x2) |0〉R . (3.3)

Since we are working at Born level we may assume the fermion flavors f = 1, 2 to be distinct. The boundary condition
corresponding to (3.2) in the case of two flavors is taken to be

ψ1(x) |0〉R = ψ†
2(x) |0〉R = 0. (3.4)

In (3.3) the space coordinate of fermion j is denoted xj ≡ x1
j (j = 1, 2), and the state is defined at equal time, x0

j = 0.

The wave function is the product of a plane wave in the CM position coordinate 1
2 (x1+x2) and a 2×2 matrix function

Φ(x)eiϕ(x) of the relative coordinate x ≡ x1 − x2. As we shall see below, the extraction of the phase ϕ(x) makes the
transformation of the wave function Φ(x) under boosts, i.e., its k dependence, more easily tractable. The phase is
defined by

ϕ(x) = −(m2
1 −m2

2)(ξ + ζ)
ε(x)

e2
, (3.5)

where ε(x) ≡ x/|x| is the sign function. The standard boost parameter of the bound state (of rest mass M) is denoted
ξ,

sinh ξ =
k

M
, cosh ξ =

E

M
, (3.6)

whereas ζ is defined by

sinh ζ = −
k

√

p2
, cosh ζ =

E − V (x)
√

p2
, (3.7)

and depends on the relative coordinate x through the linear QED2 potential

V (x) = 1
2 e

2|x|. (3.8)

The x-dependent “momentum” p appearing in (3.7),

p ≡ (E − V,−k), /p = (E − V )γ0 + kγ1, p2 = (E − V )2 − k2, (3.9)

is obtained by a ζ-boost from the rest frame,

/p = exp(12ζγ
0γ1)

√

p2γ0 exp(− 1
2 ζγ

0γ1). (3.10)

2 The present definition of the wave function is related to the χ(x) used in [2, 7] as Φ(x) = γ0χ(x) exp[−iϕ(x)].
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Equivalently, the bound state condition for the components Φ0 and Φ1 of the wave function are

i∂sΦ1(s) =

[

1−
(m1 −m2)2

p2

]

Φ0(s), i∂sΦ0(s) =

[

1−
(m1 +m2)2

p2

]

Φ1(s). (3.21)

The conditions (3.20) and (3.21) are independent of the CM momentum k since according to (3.19) p2 is k independent
at fixed s and rest mass M . This means that Φ0(s) and Φ1(s), and hence also φ(s), are the same functions of s in all
reference frames. According to (3.10) and (3.18) the full wave function Φ(s) of a bound state with momentum k is
given by the rest frame (k = 0) wave function Φ(k=0)(s) as

Φ(s) = eσ1ζ/2Φ(k=0)(s)e−σ1ζ/2, (3.22)

possibly up to an s-independent factor. The boost parameter ζ is given in (3.7). The relation between s and x is k
dependent and thus different for Φ(s) and Φ(k=0)(s).
As seen from (3.19) the bound state equation (3.13) gives the correct dependence between energy and momentum,

E =
√
k2 +M2, only for the linear potential of QED2. This is ensured by the Lorentz invariance of the QED action

and the expansion in !. The frame independence of the wave function, when expressed as a function of s, was first
observed in [7]. It implies that the Lorentz contraction of the bound state is x dependent: dx/ds = 2/(E − V (x)).
Non-relativistic wave functions (V # E) transform globally, with a 1/E contraction [8].

IV. BOOST COVARIANCE OF THE WAVE FUNCTION

In the previous section we found that the dependence on the CM momentum k of the solutions to the bound state
equation (3.13) are related as in (3.22) (up to an x-independent factor). We shall now demonstrate that this relation
is consistent with a direct boost of the bound states, using the generator M01 derived in Sect. II.
The sign convention of the Lie algebra (2.15) implies that the state |E + dξk, k + dξE〉 of 2-momentum Λk, corre-

sponding to the infinitesimal boost defined by (A8), is generated by −idξM01,

Pµ(1− idξM01) |E, k〉 = kµ(1− idξM01) |E, k〉+ idξ
[

M01, Pµ
]

|E, k〉 = (Λk)µ(1− idξM01) |E, k〉 . (4.1)

From its definition (3.3) the k dependence of the wave function Φ(x) at constant x ≡ x1 − x2 is thus given by the
boost operator through

(1− idξM01) |E, k〉 = |E + dξk, k + dξE〉 =
∫

dx1dx2e
ik(x1+x2)/2+iϕ(x)

× ψ̄1(0, x1)
{

Φ+ idξE
[

1
2 (x1 + x2) +

∂ϕ(x)

∂k

∣

∣

∣

∣

x

]

Φ+ dξE
∂Φ(x)

∂k

∣

∣

∣

∣

x

}

ψ2(0, x2) |0〉R m, (4.2)

where the k dependence of ϕ(x) at constant x is obtained from (3.5),

∂ϕ(x)

∂k

∣

∣

∣

∣

x

= (m2
1 −m2

2)
E − V

2Ep2
x. (4.3)

Using the representation (2.13) of M01 we find (with ∂j ≡ ∂/∂xj)

M01 |E, k〉 =

∫

dx1dx2ψ̄1(0, x1)
{

−
[

x1σ1i
→

∂1 + x1σ3m1 +
1
2 iσ1

]

eik(x1+x2)/2+iϕ(x)Φ(x)

+ eik(x1+x2)/2+iϕ(x)Φ(x)
[

i
←

∂2x2σ1 + x2σ3m2 +
1
2 iσ1 − 1

2 (x1 + x2)V (x)
]

}

ψ2(0, x2) |0〉R

=

∫

dx1dx2e
ik(x1+x2)/2+iϕ(x)ψ̄1(0, x1) (4.4)

×
{

1
2 (x1 + x2)

(

− i∂x {σ1,Φ}+ (∂xϕ) {σ1,Φ}+ 1
2k [σ1,Φ]−m1σ3Φ+m2Φσ3 − V Φ

)

+ 1
2x

(

− i∂x [σ1,Φ] + (∂xϕ) [σ1,Φ] +
1
2k {σ1,Φ}−m1σ3Φ−m2Φσ3

)

− 1
2 i [σ1,Φ]

}

ψ2(0, x2) |0〉R .

The coefficient of 1
2 (x1+x2) on the next-to-last line equals −EΦ by the bound state equation (3.13). Hence it cancels

against the corresponding term on the rhs. of (4.2). The remaining terms specify the k dependence of the wave
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observed in [7]. It implies that the Lorentz contraction of the bound state is x dependent: dx/ds = 2/(E − V (x)).
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∣

∣

∣
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∣
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The relativity wave equations for the Dirac electron are transformed in a

simple manner into a symmetric canonical form. This canonical form makes readily

possible the investigation of the characteristics of the solutions of these relativity

equations for simple potential fields. If' the potential is a polynomial of any degree

in x, a continuous energy spectrum characterizes the solutions. If the potential is a

polynomial of any degree in 1/x, the solutions possess a continuous energy spectrum

when the energy is numerically greater than the rest-energy of the electron; values

of the energy numerically less than the rest-energy are barred. When the potential

is a polynomial of any degree in r, all values of the energy are allowed. For poten-
tials which are polynomials in 1/r of degree higher than the first, the energy spec-

trum is again continuous. The quantization arising for the Coulomb potential is an

exceptional case.

'N HIS treatment of the reflection of the relativity electron at a potential
-- jump Klein' found a paradoxical behavior of the Dirac electron associ-

ated with the possibility of the existence of states of negative kinetic energy.

He showed by an ingenious treatment that the reflection coefficient for elec-

trons incident upon a discontinuous potential jump of height P varied with

P from the value zero for P =0 to the value unity for P = W—mc' (W being

the energy of the incident electrons). For this last value of P the momentum
P associated with the transmitted beam had the value zero, and as I' was
increased beyond t/t' —nsc' this momentum became imaginary and the reHec-

tion coefficient remained unity until I' attained the value t/t/'+mc'. The re-

sults thus far are exactly what would be expected. If I' is increased further

one enters the domain of negative kinetic energy wherein the group velocity

and the momentum in the transmitted beam are oppositely directed; also the

reflection coefficient falls off from the value unity and approaches the value

(W—cp)/(W+cp) as P is indefinitely increased. Thus by a transition to a

state of negative kinetic energy the Dirac electron has apparently an appreci-

able probability of penetrating a barrier of infinite height. Bohr suggested
that this peculiar result might be due to a jump in potential of the order of
mc' over a region of the order of the Compton wa've-length k/mc. It is within
a region of the order of h/mc ths. t the internal structure of the Dirac electron

and the accompanying "trembling" phenomenon' manifests itself. This

supposition of Bohr was verified by Sauter' who treated the problem of the

* The results of this paper were presented at the Washington meeting of the American

Physical Society (April, 1932).
' O. Klein, Zeits. f. Physik 53, 157 (1929).
' E. Schrodinger, Preuss. Akad. Wiss. Berlin, Ber. 24, 418 (1930).
3 F. Sauter, Zeits. f. Physik 69, 742 (1931).
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of the distribution at low xBj is attributed to ff̄ pairs, indicating again
the inclusive nature of the wave functions obtained with retarded boundary
conditions.
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FIG. 2: The upper component ϕ(x) of the Dirac wave function (continuous blue line) and the Schrödinger wave function ρ(x) of
(2.19) (dashed red line). The fermion mass is m = 2.5 and the parameter b = 0 in the analytic solution (2.15). Both solutions
are normalized to unity in the range 0 ≤ x ≤ 6.

Multiplying the first equation by Φ†
! from the left and the second by Φk from the right and subtracting, we find

− i∂x
(
Φ†

!σ1Φk

)
= (Mk −M!)

(
Φ†

!Φk

)
. (2.23)

In terms of the solution ψ(x) = ϕ(x) + χ(x) in (2.15) this is

∂x [Im(ψ∗
!ψk)] = (Mk −M!)Re (ψ

∗
!ψk) . (2.24)

Recalling that ϕ(x) = η ϕ(−x) is real and χ(x) = −η χ(−x) is imaginary both sides of (2.24) are odd functions of x
if ηk = −η!. Since wave functions of opposite parity are trivially orthogonal it suffices to consider the case ηk = η!.
Integrating both sides from x = 0 to x = X and noting that the insertion at x = 0 of the left-hand side vanishes we
find

Im
[
ψ∗
!ψk(x = X)

]
= (Mk −M!)

∫ X

0
dxRe

[
ψ∗
!ψk(x)

]
. (2.25)

The leading term in the asymptotic limit of (2.16) is of the form

ψ(x → +∞) = η ψ∗(x → −∞) = C σim2/2e−iσ, (2.26)

where σ = M2 −Mx + x2/4, and the complex constant C depends on m as well as on a and b, which need not be
the same for each bound-state level. For a sufficiently large X that the asymptotic form (2.26) of the wave functions
applies we have

ψ∗
!ψk(x = X) $ Ck!e

i(Mk−M!)X , (2.27)

where Ck! = C∗
!Ckei(M

2
! −M2

k). If (to simplify the discussion) we choose X such that5

cos[(Mk −M!)X] = 0 (2.28)

(2.25) gives, taking into account that the integrand on the right-hand side is symmetric in x,

∫ X

−X
dxRe

[
ψ∗
!ψk(x)

]
$ 2Re(Ck!) sin[(Mk −M!)X]

Mk −M!
. (2.29)

5 Relaxing this assumption leads to an extra term in Eq. (2.29), which is singular at Mk = M! but does not contribute to the final result.

5

The two first-order equations (2.4) give rise to a second-order equation for ϕ(x),

∂2
xϕ(x) +

ε(x)

2(M − V +m)
∂xϕ(x) +

[
(M − V )2 −m2

]
ϕ(x) = 0, (2.6)

where ε(x) ≡ x/|x| is the sign function. For x → ∞ the term V 2ϕ(x) must be balanced by ∂2
xϕ(x), hence

ϕ(x → ∞) ∼ exp(±ix2/4). (2.7)

From (2.4) it follows that χ(x) has a similar asymptotic behavior. Since the norms |ϕ(x)| and |χ(x)| tend to constants
for x → ∞ the Dirac wave functions are not normalizable [28–30], unlike the solutions of the nonrelativistic Schrödinger
equation. As we shall see, the solutions have features which support the interpretation that their norm at large V (x)
reflects virtual pair contributions.

The coefficient of ∂xϕ(x) in (2.6) is singular at M−V +m = 0. Assuming ϕ(x) ∼ (M−V +m)α as M−V +m → 0
we find α = 0 or 2. Hence the general solutions ϕ(x) and χ(x) have no singularities at finite x. Since the wave
functions are not square integrable there is no restriction on the eigenvalues M . In Sec. II B we discuss how the
discrete eigenvalues required by the Schrödinger equation emerge nevertheless in the nonrelativistic domain (m & 1).
In Sec. II C we show that any two solutions with different eigenvalues M are orthogonal.

Since only the combination M − V (x) appears in the Dirac equation (2.4) it is convenient to replace x by the
variable3

σ = (M − V )2, ∂x =
dσ

dx
∂σ = −(M − V )∂σ. (2.8)

The Dirac equation then reads4, in the region where M − V (x) > 0,

i∂σχ(σ) =
(
1− m√

σ

)
ϕ(σ),

i∂σϕ(σ) =
(
1 +

m√
σ

)
χ(σ). (2.9)

We may combine ϕ and χ into the single complex function

φ(σ) ≡
[
ϕ(σ) + χ(σ)

]
eiσ and conversely ϕ(σ) = Re

[
φ(σ)e−iσ

]
, χ(σ) = i Im

[
φ(σ)e−iσ

]
. (2.10)

The second-order equation for φ(σ) is then

2σ ∂2
σφ+ (1− 4iσ)∂σφ− 2m2φ = 0, (2.11)

with the general solution

φ(σ) = (a1 + ib1) 1F1(− 1
2 im

2, 1
2 , 2iσ) + (a2 + ib2)

√
σ 1F1(

1
2 − 1

2 im
2, 3

2 , 2iσ), (2.12)

where 1F1 is the confluent hypergeometric function and the ai, bi are real constants. From (2.10) we find

ϕ(σ → 0) = a1 + a2
√
σ +O (σ) ,

χ(σ → 0) = ib1 + ib2
√
σ +O (σ) . (2.13)

Matching the terms of O (1/
√
σ) in (2.9) gives the relations

b2 = 2ma1, a2 = 2mb1. (2.14)

The general solution of the D = 1 + 1 Dirac equation (2.4) with the linear potential (2.3) of QED2 is thus given by

ψ(σ) ≡ ϕ(σ) + χ(σ) =

[
(a+ ib)1F1

(
− im2

2
,
1

2
, 2iσ

)
+ (b+ ia)2m ε(M − V )

√
σ 1F1

(1− im2

2
,
3

2
, 2iσ

)]
exp(−iσ),

(2.15)

3 We consider solutions only for x ≥ 0 in the following. The parity condition (2.5) gives the solutions for x < 0.
4 Here and in the following we use the shorthand notation ϕ(σ) ≡ ϕ[σ(x)], and similarly for χ(x).
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Dirac equation inclusive:
oscillations ↔ presence of pairs (e.g. Klein paradoxon)

retarded propagators give inclusive cross sections



solutions (m1=m2)

DDD

• oscillations as in Dirac

• only 1d subspace of solutions regular @ s=0 
opposed to Dirac

• selection of parity even or odd ⇒ spectrum
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FIG. 5: (a) Regge trajectories for ff̄ bound states with equal constituent masses, m = 0.1 (upper curve) and m = 4.0
(lower curve). The excitation number n of the first five symmetric (η = +1, n = 0, 2, . . . 8, blue lines) and antisymmetric
(η = −1, n = 1, 3, . . . 9, dashed red lines) states are plotted versus M2

n − (2m)2. (b) The wave function Φ0(x) of the η = −1
state with M = 0 [not included in (a)] for m = 0.1 and m = 4.0. The normalization is chosen arbitrarily such that Φ0 = −1 at
the first minimum.

For σ > 0 the integral can be expressed in terms of sine and cosine integral functions as

iσe−iσ/2

∫ 1

0
du eiσu log

(1− u

u

)
= 2 cos

(σ
2

)
[Ci(σ)− log(σ)− γE ] + 2 sin

(σ
2

)
Si(σ), (3.21)

where γE = 0.577216 is Euler’s constant, and

Si(z) =
π

2
−
∫ ∞

z
du

sin(u)

u
, Ci(z) = −

∫ ∞

z
du

cos(u)

u
. (3.22)

Imposing the continuity conditions (3.17) at x = 0 we find the spectrum

M2
n = πn+ 2m2

[
log(πn)− Ci(πn) + γE

]
+O

(
m4

)
; n = 0, 1, 2, . . . , (3.23)

where n is odd (even) for η = +1 (η = −1). The case n = 0 should be understood by taking the limit n → 0, which
gives M2

0 = 0, the solution shown in Fig. 5(b), which is exact for any m.

For m exactly equal to zero the full wave function (3.7) reduces to Φ(σ) = −2iN exp(iσ1σ/2), which is regular
at all σ. Hence there is no constraint on the spectrum when m = 0. On the other hand, (3.23) gives M2

n = πn in
the m → 0 limit. The discrete spectrum obtained for regular solutions when m #= 0 thus differs, even in the m → 0
limit, from the continuous spectrum found with m = 0. Furthermore, the original bound-state equation (3.2) implied
parity doubling when m1 = m2 = 0: The parity transformed wave function γ0Φ(−x)γ0 is a solution (with P → −P )
having the same eigenvalue E as Φ(x). To the contrary, the m → 0 states have parity η = (−1)n+1 and are not parity
degenerate.

B. ff̄ solutions for m1 "= m2

The general solution of (3.9) when

∆m2 ≡ m2
1 −m2

2 #= 0 (3.24)

is

Φ1(σ) + Φ0(σ) = eiσ/2
{
|σ|− i

2∆m2

(a+ib)m1 1F1(im
2
2, 1−i∆m2,−iσ)− |σ| i2∆m2

(a−ib)m2 1F1(im
2
1, 1+i∆m2,−iσ)

}
,

(3.25)

Φ1(σ)− Φ0(σ) = e−iσ/2
{
|σ| i2∆m2

(a−ib)m1 1F1(−im2
2, 1+i∆m2, iσ)− |σ|− i

2∆m2

(a+ib)m2 1F1(−im2
1, 1−i∆m2, iσ)

}
,
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solutions (m1≠m2)

DDD

• no solutions regular @ s=0

• orthogonality relations ✔

• duality normalisation for highly excited states 
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Densities vs. n and PCM
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summary

• objective: towards a Born term for hadrons

• valence quarks only

• no transverse gluons

• perturbation theory

• Poincaré invariance

• 1+1 qed as model

DDD
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