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Abstract 

We describe here the coherent formulation of electromagnetism in the non-relativistic 

quantum-mechanical many-body theory of interacting charged particles. We use the 

mathematical frame of the field theory and its quantization in the spirit of the quantum 

electrodynamics (QED). This is necessary because a manifold of misinterpretations emerged 

especially regarding the magnetic field and gauge invariance. The situation was determined 

by the historical development of quantum mechanics, starting from the Schrödinger 

equation of a single particle in the presence of given electromagnetic fields, followed by the 

many-body theories of many charged identical particles having just Coulomb interactions. 

Our approach to the non-relativistic QED emphasizes the role of the gauge-invariance and of 

the external fields. We develop further the 1/𝑐2 approximation of this theory allowing a 

closed description of the interacting charged particles without photons. The resulting 

Hamiltonian coincides with the quantized version of the Darwin Hamiltonian containing 

besides the Coulomb also a current-current diamagnetic interaction. We show on some 

examples the importance of this extension of the many-body theory. 
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1. Introduction 

The quantum mechanics of a single charged particle in the presence of applied electric and 

magnetic fields is based on the classical mechanics of a point-like charge derived from a Lagrange 

function, followed by a quantization according to the "Poisson-bracket into commutator" recipe. 

This scheme however failed for the electromagnetic interaction between charged particles. The 

classical electromagnetic theory of point-like charges has neither a Lagrangian nor Hamiltonian 

formulation. One eliminates by hand from the Lorentz force the action of the fields created by the 

particle itself. Nevertheless, one took over this recipe in order to include at least the Coulomb 

interaction between the particles. The constructed Hamiltonian lead to big successes as well in the 

theory of atomic structure, as in the solid-state theory. Of course, one had to include also the 

symmetry or anti-symmetry of the wave functions due to the bosonic, or fermionic nature of 

identical particles, as well as the spin, whose origin stems actually from the relativistic theory. This 

state of the solid-state theory however was unable to include the magnetic field and forces 

created by the charged particles themselves. The importance of this problem was waived out by 

an argument relying on the small velocities of the electrons and ions in matter as to be compared 

to the light velocity 𝑐. This argumentation is however false, since it is well-known that a slow flow 

of a macroscopic number of electrons may create enormous magnetic fields. 

A first attempt to construct a Lagrangian and Hamiltonian including velocity-dependent forces 

up to 1/𝑐2 in the classical theory of interacting charged point-like particles was made by Darwin 

Ref. [1] 100 years ago. His idea was to neglect the retardation from the Lenart-Wichert potentials 

in order to eliminate them in favor of the particle velocities and ignore the terms containing the 

velocity of the same particle. Later Landau and Lifshitz Ref. [2] as well as Jackson [3] realized, that 

one may not pursue this way without fixing the gauge. Both used implicitly or explicitly the 

Coulomb gauge in their derivations. This approach based mostly on physical intuition still does not 

offer a sound basis for a theory of interacting charged particles, since the so obtained Hamiltonian 

again cannot be integrated into a correct Lagrangian formulation due to the nonlinear velocity 

dependent forces it implies, as well as to the artificial exclusion of the self-interaction. It is 

therefore not surprising that the Darwin model had no impact on the quantum-mechanical many-

body theories of condensed matter developed in the second half of the 20th century. 

This is a very strange situation, since already in the mid 20th century Quantum Electrodynamics 

(QED) was successfully developed and its is considered as the basic theory for the relativistic, 

quantum mechanical description of electrons and positrons interacting with photons. Therefore, 

at least a non-relativistic quantum-mechanical description of electromagnetic interacting 

electrons is desirable as an approximation to the QED. Such a reduction however seems illusory 

and again leads to a deadlock, since without positive charges no matter is stable. The condensed 

matter we have to deal with is made up of electrons and nuclei (not positrons!). The nuclei are not 
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elementary particles in the present understanding of the quantum field theory, but composite 

objects made out of protons and neutrons bound together by non-electromagnetic forces. Even 

worse, the protons and neutrons themselves are not the ultimate basic pieces. A certain 

skepticism is justified regarding a derivation of condensed matter theory from the standard model 

of interacting elementary particles. 

After renouncing to the ill-defined classical theory of point-like charges one has to build a 

consistent electromagnetic theory of arbitrary charged quantum mechanical particles by following 

the mathematical pattern of the QED. Such a theory is compulsory non-relativistic, since it does 

not include antiparticles. Quantization of relativistic wave equations however implies 

antiparticles! 

The non-relativistic QED (including the relativistic concept of the spin and its magnetic 

moment) was not only formulated, but also widely used in quantum optics, where one treats 

photons interacting with atoms, molecules or solids. (See for example a recent presentation in 

Ref. [4].) 

In the same time, most theories of condensed matter still use many-body formulations 

including only Coulomb forces between the charged particles, while one avoids the original 

configuration-space formulation that excludes self-interaction. Nevertheless, by the second 

quantization on introduces self-interaction implicitly again. 

This rather unsatisfactory situation is due partly to the wide split between the solid state 

theorists and elementary particle theorists. The purpose of this paper (partly discussed in the book 

[5]) is to provide a clear Lagrangian presentation of the non-relativistic QED of charged particles 

and within this frame the derivation of a consistent reduced Hamiltonian valid up to order 1/𝑐2 

containing only the electromagnetically interacting charged particles and no photons. This 

derivation [6] is based essentially on the old paper of Holstein, Norton and Pincus [7] about the 

transverse photon exchange being at the origin of diamagnetism. It occurs that this Hamiltonian is 

nothing else as the quantum mechanical version of the Darwin Hamiltonian [1] in Jackson’s 

formulation [3]. 

We start with the classical field theory of electromagnetic fields interacting with a Schrödinger 

electron obeying the Maxwell equations. This approach is analogous to the starting point of the 

relativistic QED, which is based on the Dirac equation. The next step is the construction of the 

Lagrangian, which is not uniquely defined. 

An essential role in any field theory play the external sources. Without these macroscopic, 

classical entities, no measurement may be considered. Unfortunately, a certain confusion is still 

spread in the literature about the internal and external electromagnetic fields. (See however the 

50 years old book of Zubarev [8], where he already insisted on the importance of the general 

distinction between external and total fields in the frame of the linear response.) We insist here 

on this very important aspect since it is essential for the interpretation of experiments. 

There are two different ways to introduce the external fields or sources. The first considers the 

"internal" e.m. fields produced by the electron that interacts also with "external" fields (produced 

by external sources) by the minimal e.m. coupling and it gives rise to an explicitly gauge invariant 

Lagrange density. This version is used to build up a Hamiltonian. Since the Lagrangian is "singular" 

one needs to fix the gauge, namely by choosing the Coulomb one. This choice of gauge eliminates 

the spurious degrees of freedom, allowing to avoid the problems raised by Dirac’s theory of 

canonical formalism [9, 10] in the presence of constraints. The quantization of this Hamiltonian 
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leads to the usual non-relativistic QED. The gauge freedom here is restricted to the 

transformations of the external fields. This aspect is ignored in all the discussions of magnetic 

effects in solid state. 

The second way is to introduce explicitly a coupling of the e.m. fields directly to the external 

sources. The resulting electromagnetic fields are the "total" ones. The external electromagnetic 

potentials are eliminated in favor of their sources. The Lagrange density is not any more gauge 

invariant, but the action is still gauge invariant. This way is used in the functional integral 

formulation of the QED, which is defined just by the Lagrange density. No Hamiltonian is needed 

at all. The two approaches are equivalent, at least for simple connected systems. 

Thereafter we discuss the quantization of the first variant i.e. the non-relativistic QED in the 

Hamiltonian formulation and include also the ingredient of the spin-magnetic moment taken over 

from the relativistic QED. 

We describe also the 1/𝑐2 approximation of the non-relativistic QED in the absence of photons 

suitable for condensed matter theory. Within this frame already the magnetic interaction between 

the charged particles is taken into account. 

While formally we considered here just "electrons" the theory may be extended trivially to a 

system of negatively and positively charged particles (electrons with ions or electrons in 

conduction band with holes in the valence band). 

It is worth to mention here, that unlike in the relativistic QED, the divergences in the adiabatic 

perturbation theory of the S matrix were not yet treated systematically. The many-body theory of 

solid-state is used always in its cut-off form and not by a renormalization of the bare parameters. 

Helpful here are the "natural" cut-off parameters like the Debye wave-length or the band width in 

a crystal. 

Further, we describe the important role of this improved many-body theory for 

electromagnetic linear response, superconductivity and thermal noise. The transverse dielectric 

function (or conductivity) is meaningless in a pure Coulomb theory. Only the magnetic field 

created by the electrons may explain perfect diamagnetism shown in the Meissner effect. The 

thermal noise of electromagnetic origin must distinguish between the longitudinal/transverse 

fields or photon number measurements. All these fields need to consider magnetic forces 

between the charged particles, at least in the 1/𝑐2 approximation. 

2. Classical Field Theory 

In the classical field-theory one defines the action 𝒜 

𝒜 = ∫ 𝑑𝑥⃗∫ 𝑑𝑡ℒ(𝑥⃗, 𝑡) (1) 

by a Lagrange density ℒ(𝑥⃗, 𝑡) depending on some fields 𝜙𝑖(𝑥⃗, 𝑡) together with their first time and 

space derivatives. The variational principle 𝛿𝐴 = 0 gives rise to the generalized Euler-Lagrange 

equations 

𝜕

𝜕𝑡

𝛿ℒ

𝛿𝜙̇𝑖(𝑥⃗, 𝑡)
+

𝜕

𝜕𝑥𝜇

𝛿ℒ

𝛿
𝜕𝜙𝑖(𝑥⃗, 𝑡)
𝜕𝑥𝜇

−
𝛿ℒ

𝛿𝜙𝑖(𝑥⃗, 𝑡)
= 0. (2)
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Here the symbol ∂ means ordinary derivative, while the symbol 𝛿 means functional derivative. 

Two Lagrangian densities that differ by the time derivative or by the divergence of a function give 

rise to the same action and therefore are considered to be equivalent, taking into account the 

vanishing of the fields at infinity. 

The generalized canonical conjugate momenta for the fields 𝜙𝑖(𝑥⃗, 𝑡) are defined by 

Π𝜙𝑖
=

𝛿ℒ

𝛿𝜙̇𝑖

(3) 

and the Hamiltonian density is 

ℋ(𝜙,Π𝜙) = −ℒ + Π𝜙𝑖
𝜙̇𝑖, (4) 

provided no relations (constraints) appear between the canonical conjugate momenta. 

Lagrangians with constraints however have to be handled with Dirac’s canonical formalism [9, 10], 

that implies also a redefinition of the Poisson bracket. 

3. Classical Maxwell Fields Coupled to a Quantum Mechanical Electron and External Sources 

The classical Maxwell equations are two with sources 𝜌 and 𝑗 

∇ × 𝐵⃗⃗ =
4𝜋

𝑐
𝑗 +

1

𝑐

∂

∂𝑡
𝐸⃗⃗ (5) 

∇𝐸⃗⃗ = 4𝜋𝜌 (6) 

and two without sources 

∇𝐵⃗⃗ = 0 (7) 

∇ × 𝐸⃗⃗ = −
1

𝑐

𝜕

𝜕𝑡
𝐵⃗⃗ (8) 

(we use Gaussian units like Ref. [2]). The equations without sources are automatically satisfied by 

the introduction of the electromagnetic potentials 

𝐵⃗⃗ = ∇ × 𝐴 (9) 

𝐸⃗⃗ = −∇𝑉 −
1

𝑐

𝜕

𝜕𝑡
𝐴. (10) 

Therefore we may concentrate on Eqs. 5 and 6 depending on the sources. 

We are looking for the "internal" electromagnetic fields produced by a single quantum 

mechanical electron. Thus the sources 𝜌 and 𝑗 are given by the quantum mechanical charge and 

current of an electron described by the wave function 𝜓(𝑥⃗, 𝑡) (for simplicity without spin) coupled 

to the (“internal”) electromagnetic fields 𝐴, 𝑉 as well as to some “external” classical fields 𝐴𝑒𝑥𝑡, 

𝑉𝑒𝑥𝑡 . The latter are supposed to satisfy their own Maxwell equations with the external 

macroscopic sources 𝜌𝑒𝑥𝑡 and 𝑗𝑒𝑥𝑡. 



Recent Progress in Materials 2022; 4(4), doi:10.21926/rpm.2204027 
 

Page 6/28 

Thus 

𝜌(𝑥⃗, 𝑡) = 𝑒𝜓(𝑥⃗, 𝑡)∗𝜓(𝑥⃗, 𝑡) (11) 

𝑗(𝑥⃗, 𝑡) =
𝑒

2𝑚
𝜓(𝑥⃗, 𝑡)∗ (−𝚤ℏ∇ +

𝑒

𝑐
(𝐴(𝑥⃗, 𝑡) + 𝐴𝑒𝑥𝑡(𝑥⃗, 𝑡)))𝜓(𝑥⃗, 𝑡) + 𝑐. 𝑐 (12) 

while the wave function 𝜓(𝑥⃗, 𝑡) satisfies the Schrödinger equation 

𝚤ℏ
𝜕

𝜕𝑡
𝜓(𝑥⃗, 𝑡) = (

1

2𝑚
(−𝚤ℏ∇ +

𝑒

𝑐
(𝐴(𝑥, 𝑡) + 𝐴𝑒𝑥𝑡))

2

+ 𝑒(𝑉(𝑥⃗, 𝑡) + 𝑉𝑒𝑥𝑡(𝑥⃗, 𝑡)))𝜓(𝑥⃗, 𝑡). (13) 

Using only this equation one gets the continuity equation 

∇𝑗 +
∂

∂𝑡
𝜌 = 0 (14) 

required for the consistency of Eqs. 5 and 6. 

The Schrödinger equation that couples to the e.m. fields, as well as the current density were 

introduced here according to the minimal recipe 

ℏ

𝚤
∇𝜓 → (

ℏ

𝚤
∇ +

𝑒

𝑐
(𝐴 + 𝐴𝑒𝑥𝑡))𝜓 (15) 

ℏ

𝚤

𝜕

𝜕𝑡
𝜓 → (

ℏ

𝚤

𝜕

𝜕𝑡
+ 𝑒(𝑉 + 𝑉𝑒𝑥𝑡)))𝜓. (16) 

This is a peculiar case of the covariant (here abelian) Yang-Mills derivative. 

An alternative formulation is to define the “total” electromagnetic potentials and fields as 

those produced by the electron and the external sources 

𝐴′ ≡ 𝐴 + 𝐴𝑒𝑥𝑡; 𝑉′ ≡ 𝑉 + 𝑉𝑒𝑥𝑡, (17) 

which are usually denoted with the same symbol as the internal ones that may lead to confusions. 

Their sources are given by the sum of the electron charge and current densities and the external 

charge and current densities. Then no external fields, but just their sources appear in the theory. 

However it is very important to discern the two descriptions, although formally they are 

equivalent. 

The electromagnetic potentials and the wave function are not uniquely defined, they allow a 

simultaneous gauge transformation 

𝑉(𝑥⃗, 𝑡) → 𝑉(𝑥⃗, 𝑡) +
1

𝑐
𝜒̇(𝑥⃗, 𝑡)

𝐴(𝑥⃗, 𝑡) → 𝐴(𝑥⃗, 𝑡) − ∇𝜒(𝑥⃗, 𝑡)

𝜓(𝑥⃗, 𝑡) → 𝜓(𝑥⃗, 𝑡)𝑒−
𝚤𝑒
ℏ𝑐
𝜒(𝑥⃗,𝑡)

(18) 
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with an arbitrary differentiable function 𝜒(𝑥⃗, 𝑡) that does not change neither the Maxwell fields 𝐵⃗⃗, 

𝐸⃗⃗, their sources 𝜌, 𝑗, nor the whole system of equations from Eq. 5 to Eq. 14. A similar gauge 

invariance is true with respect to the independent gauge transformations of the external 

potentials. 

This arbitrariness is not unexpected, since we actually introduced 4 degrees of freedom instead 

of the 3 independent degrees of freedom (the transverse magnetic field and the longitudinal 

electric field). 

4. Classical Lagrange Density 

The first problem is then to find a Lagrangian giving rise to these equation in terms of the fields 

𝑉(𝑥⃗, 𝑡), 𝐴(𝑥⃗, 𝑡) and 𝜓(𝑥⃗, 𝑡) as dynamical variables (generalized coordinates). 

It is easy to see, that the uncoupled Maxwell 

∇ × 𝐵⃗⃗ =
1

𝑐

∂

∂𝑡
𝐸⃗⃗ (19) 

∇𝐸⃗⃗ = 0 (20) 

and Schrödinger equations 

𝚤ℏ
∂

∂𝑡
𝜓(𝑥⃗, 𝑡) = −

ℏ2

2𝑚
∇2𝜓(𝑥⃗, 𝑡) (21) 

follow from the free Lagrangian density 

ℒ0(𝑥⃗, 𝑡) =
1

8𝜋
(∇𝑉(𝑥⃗, 𝑡) +

1

𝑐
𝐴̇(𝑥⃗, 𝑡))

2

−
1

8𝜋
(∇ × 𝐴(𝑥⃗, 𝑡))

2

−
ℏ2

2𝑚
𝛻𝜓∗(𝑥⃗, 𝑡)∇𝜓(𝑥⃗, 𝑡) −

𝚤ℏ

2
(𝜓̇(𝑥⃗, 𝑡)∗𝜓(𝑥⃗, 𝑡) − 𝜓(𝑥⃗, 𝑡)∗𝜓̇(𝑥⃗, 𝑡)) . (22)

 

The introduction of the e.m. fields by the minimal recipe Eqs. 15 and 16 into the free 

Lagrangian ℒ0 leads to the Lagrange density 

ℒ(𝑥⃗, 𝑡) =
1

8𝜋
(∇𝑉 +

1

𝑐

𝜕

𝜕𝑡
𝐴)

2

−
1

8𝜋
(∇ × 𝐴)

2

−
1

2𝑚
(−

ℏ

𝚤
∇ +

𝑒

𝑐
(𝐴 + 𝐴𝑒𝑥𝑡))𝜓

∗ (
ℏ

𝚤
∇ +

𝑒

𝑐
(𝐴 + 𝐴𝑒𝑥𝑡))𝜓

−
1

2
𝜓∗ (

ℏ

𝚤

𝜕

𝜕𝑡
+ 𝑒(𝑉 + 𝑉𝑒𝑥𝑡)𝜓 −

1

2
𝜓(−

ℏ

𝚤

𝜕

𝜕𝑡
+ 𝑒(𝑉 + 𝑉𝑒𝑥𝑡))𝜓

∗, (23)

 

that on his turn gives rise to the Maxwell Eqs. 5 and 6 as well as to the Schrödinger equation 13. 

This Lagrange density ℒ is by construction invariant against gauge transformations of the fields 𝐴, 

𝑉 and/or 𝐴𝑒𝑥𝑡, 𝑉𝑒𝑥𝑡. 

On the other hand, if one works with the "total" potentials 𝐴′, 𝑉′ of Eq. 17 the Lagrange density 

looks as 
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ℒ′(𝑥⃗, 𝑡) =
1

8𝜋
(∇𝑉′ +

1

𝑐

𝜕

𝜕𝑡
𝐴′)

2

−
1

8𝜋
(∇ × 𝐴′)

2

−
1

2𝑚
(−

ℏ

𝚤
∇ +

𝑒

𝑐
𝐴′)𝜓∗ (

ℏ

𝚤
∇ +

𝑒

𝑐
𝐴′)𝜓

−
1

2
𝜓∗ (

ℏ

𝚤

𝜕

𝜕𝑡
+ 𝑒𝑉′)𝜓 −

1

2
𝜓 (−

ℏ

𝚤

𝜕

𝜕𝑡
+ 𝑒𝑉′)𝜓∗

+𝑉′(𝑥⃗, 𝑡)𝜌𝑒𝑥𝑡(𝑥⃗, 𝑡) +
1

𝑐
𝐴′(𝑥⃗, 𝑡)𝑗𝑒𝑥𝑡(𝑥⃗, 𝑡). (24)

 

This alternative Lagrange density is not explicitly gauge invariant, but the corresponding action 

Eq. 1 is still gauge invariant. This may be shown after partial integration by using the continuity 

equation of the external sources. 

This version is used in the functional (path) integral formulation of the QED in the whole 

homogeneous space to define the generating functional of the Green functions. This formulation 

of the QED uses only the Lagrangian and needs no definition of any Hamiltonian. The two versions 

are however not completely equivalent. In what follows we shall develop a Hamiltonian formalism 

in the Fock space starting from the Lagrangian density Eq. 23 that is manifestly gauge invariant. 

This formulation is appropriate to include boundary conditions and multiple-connectivity. 

5. The Classical Hamiltonian in the Coulomb Gauge 

In this Section we build the classical Hamiltonian out of the Lagrangian Eq. 23, needed for an 

operator formulation of the non-relativistic QED. Unfortunately, this Lagrangian density is a so 

called singular one. The time derivative of the variable 𝑉 is not present in them and therefore the 

corresponding canonical momentum is vanishing i.e. we have a constraint in the canonical 

formalism. Lagrangians with constraints, as we already mentioned, have to be handled with 

Dirac’s canonical formalism [9, 10], that implies also a redefinition of the Poisson bracket. The 

simplest way out is however to use the choice of the gauge in such a way as to eliminate the 

spurious degrees of freedom from the Lagrangian before we could construct a Hamiltonian. 

The Coulomb gauge defined by 

∇𝐴(𝑥⃗, 𝑡) = 0 (25) 

leaves only the physical transverse degrees of freedom of the photons and simultaneously 

eliminates the scalar potential in favor of the electron charge density 

𝑉(𝑥⃗, 𝑡) = ∫ 𝑑𝑥⃗′
𝜌(𝑥⃗′, 𝑡)

|𝑥⃗ − 𝑥⃗′|
. (26) 

We shall construct the Hamiltonian the usual way, however taking into account of the above 

constraint and define the canonical conjugate momenta as 

Π𝜓 ≡
𝛿ℒ

𝛿𝜓̇
=
𝚤ℏ

2
𝜓∗ (27) 
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Π𝜓∗ ≡
𝛿ℒ

𝛿𝜓̇∗
= −

𝚤ℏ

2
𝜓 (28) 

Π𝐴𝜇
𝜇

≡
ℒ

𝛿𝐴̇𝜇
=

1

4𝜋𝑐
(
𝜕

𝑥𝜇
𝑉 +

1

𝑐
𝐴̇𝜇) ; (𝜇 = 1, 2, 3) (29) 

Π𝑉 ≡ 0. (30) 

and the Hamiltonian density is 

ℋ = −ℒ + Π⃗⃗⃗𝐴⃗𝐴̇ + Π𝜓𝜓̇ + Π𝜓∗𝜓̇∗. (31) 

Using the notation 𝐴⊥ for the vector potential in the Coulomb gauge we have explicitly 

ℋ = −
1

8𝜋
(∇𝑉 +

1

𝑐
𝐴̇⊥)

2

+
1

8𝜋
(∇ × 𝐴⊥)

2
+

1

4𝜋𝑐
𝐴̇⊥ (∇𝑉 +

1

𝑐
𝐴̇ ⊥)

+
1

2𝑚
(−

ℏ

𝚤
∇𝜓∗ +

𝑒

𝑐
(𝐴⊥ + 𝐴𝑒𝑥𝑡)𝜓

∗) (
ℏ

𝚤
∇𝜓 +

𝑒

𝑐
(𝐴⊥ + 𝐴𝑒𝑥𝑡)𝜓) + 𝑒(𝑉 + 𝑉𝑒𝑥𝑡)𝜓

∗𝜓 (32)

 

or 

ℋ =
1

8𝜋
(∇𝑉 +

1

𝑐
𝐴̇⊥)

2

+
1

8𝜋
(∇ × 𝐴⊥)

2
−

1

4𝜋
∇𝑉 (∇𝑉 +

1

𝑐
𝐴̇⊥)

+
1

2𝑚
(−

ℏ

𝚤
∇𝜓∗ +

𝑒

𝑐
(𝐴⊥ + 𝐴𝑒𝑥𝑡)𝜓

∗) (
ℏ

𝚤
∇𝜓 +

𝑒

𝑐
(𝐴⊥ + 𝐴𝑒𝑥𝑡)𝜓) + 𝑒(𝑉 + 𝑉𝑒𝑥𝑡)𝜓

∗𝜓. (33)

 

In the Hamiltonian 

𝐻 ≡ ∫ 𝑑𝑥⃗ℋ(𝑥⃗) (34) 

one may use a partial integration in order to obtain 

𝐻 = ∫ 𝑑𝑥⃗ [
1

8𝜋
(∇𝑉 +

1

𝑐
𝐴̇⊥)

2

+
1

8𝜋
(∇ × 𝐴⊥)

2
+

1

4𝜋
𝑉∇ (∇𝑉 +

1

𝑐
𝐴̇)

+
1

2𝑚
(−

ℏ

𝚤
∇𝜓∗ +

𝑒

𝑐
(𝐴⊥ + 𝐴𝑒𝑥𝑡)𝜓

∗) (
ℏ

𝚤
∇𝜓 +

𝑒

𝑐
(𝐴⊥ + 𝐴𝑒𝑥𝑡)𝜓) + 𝑒(𝑉 + 𝑉𝑒𝑥𝑡)𝜓

∗𝜓] . (35)

 

Due to the transversality of the vector potential and expressing the scalar potential through the 

total charge density Eq. 26 one gets further 

𝐻 = ∫ 𝑑𝑥⃗ [
1

8𝜋
(∇𝑉 +

1

𝑐
𝐴̇⊥)

2

+
1

8𝜋
(∇ × 𝐴⊥)

2

+
1

2𝑚
(−

ℏ

𝚤
∇𝜓∗ +

𝑒

𝑐
(𝐴⊥ + 𝐴𝑒𝑥𝑡)𝜓

∗) (
ℏ

𝚤
∇𝜓 +

𝑒

𝑐
(𝐴⊥ + 𝐴𝑒𝑥𝑡)𝜓) + 𝑒𝑉𝑒𝑥𝑡𝜓

∗𝜓] , (36)

 

or 
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𝐻 = ∫ 𝑑𝑥⃗ [
1

8𝜋
(𝐸⃗⃗2 + 𝐵⃗⃗2) +

1

2𝑚
(−

ℏ

𝚤
∇𝜓∗ +

𝑒

𝑐
(𝐴⊥ + 𝐴𝑒𝑥𝑡)𝜓

∗) (
ℏ

𝚤
∇𝜓 +

𝑒

𝑐
(𝐴⊥ + 𝐴𝑒𝑥𝑡)𝜓)

+𝑉𝑒𝑥𝑡𝜓
∗𝜓]. (37)

 

Apparently the Coulomb interaction 𝑒𝑉𝜓∗𝜓 disappeared, but actually it is contained properly 

in the energy of the longitudinal electric field. Since under the integral 

𝐸⃗⃗2 = (∇𝑉)2 + (
1

𝑐
𝐴̇⊥)

2

 

and after a partial integration 

(∇𝑉)2 → −𝑉∇2𝑉 

we get 

𝐻 = ∫ 𝑑𝑥⃗ [
1

8𝜋
(𝐸⃗⃗⊥

2 + 𝐵⃗⃗2) + 𝑒𝜓∗𝜓 (
1

2
𝑉 + 𝑉𝑒𝑥𝑡) + 

1

2𝑚
(−

ℏ

𝚤
∇𝜓∗ +

𝑒

𝑐
(𝐴⊥ + 𝐴𝑒𝑥𝑡)𝜓

∗) (
ℏ

𝚤
∇𝜓 +

𝑒

𝑐
(𝐴⊥ + 𝐴𝑒𝑥𝑡)𝜓)] . (38) 

The first term represents the energy of the transverse “photon” (radiation-) field. 

Obviously, while the "internal" potentials are already fixed, one has still a restricted gauge 

invariance of the Hamiltonian against the gauge transformations of the external potentials. 

6. Quantization 

Starting from our classical Hamiltonian in Coulomb gauge Eq. 38, after the usual equal-time 

quantization of the anti-commuting electron wave functions 

[𝜓(𝑥⃗, 𝑡), 𝜓+(𝑥⃗′, 𝑡)]+ = 𝛿(𝑥⃗ − 𝑥⃗′) 

and the introduction of creation and annihilation operators 𝑏𝑞⃗⃗,𝜆
+  and 𝑏𝑞⃗⃗,𝜆  of photons of 

polarization 𝜆 and momentum 𝑞⃗ one defines the quantized transverse e.m. vector potential 

𝐴⊥(𝑥⃗) = ∑ √
ℏ𝑐

Ω
𝜆=1,2

∑
1

√|𝑞⃗|
𝑞⃗⃗

𝑒𝑞⃗⃗
(𝜆)
𝑒−𝚤𝑞⃗⃗𝑥⃗(𝑏𝑞⃗⃗,𝜆 + 𝑏−𝑞⃗⃗,𝜆

+ ) (39) 

taken with periodical boundary conditions. This definition brings the photon part of the 

Hamiltonian to a diagonal form. Here the bosonic commutators are 

[𝑏𝑞⃗⃗,𝜆, 𝑏𝑞⃗⃗ ′,𝜆′
+ ] = 𝛿𝑞⃗⃗,𝑞⃗⃗′ 𝛿𝜆𝜆′  

and the unit vectors 𝑒𝑞⃗⃗
(𝜆)

 are orthogonal to the wave vector 𝑞⃗ and to each other 

𝑞⃗𝑒
𝑞⃗⃗

(𝜆)
= 0 ; 𝑒

𝑞⃗⃗

(𝜆)
𝑒
𝑞⃗⃗

(𝜆′)
= 𝛿𝜆𝜆′ ; 𝑒

𝑞⃗⃗

(𝜆)
= 𝑒

−𝑞⃗⃗

(𝜆)
 ; (𝜆, 𝜆′ = 1,2). 
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With these ingredients and normal ordering the operators one gets the non-relativistic QED 

Hamiltonian 

𝐻𝑄𝐸𝐷 =∑ℏ𝜔𝑞𝑏𝑞⃗⃗,𝜆
+ 𝑏𝑞⃗⃗,𝜆

𝑞⃗⃗,𝜆

+∫ 𝑑𝑥⃗𝑁 [
1

2𝑚
(𝚤ℏ∇𝜓+(𝑥⃗) +

𝑒

𝑐
(𝐴⊥(𝑥⃗) + 𝐴𝑒𝑥𝑡(𝑥⃗, 𝑡))𝜓

+(𝑥⃗)) ×

(
ℏ

𝚤
∇𝜓(𝑥⃗, 𝑡) +

𝑒

𝑐
(𝐴⊥(𝑥⃗) + 𝐴𝑒𝑥𝑡(𝑥⃗, 𝑡)))𝜓(𝑥⃗))]

+
1

2
∫ 𝑑𝑥⃗∫ 𝑑𝑥⃗′𝜓+(𝑥⃗)𝜓+(𝑥⃗′)

𝑒2

|𝑥⃗ − 𝑥⃗′|
𝜓(𝑥⃗⃗

′
)𝜓(𝑥⃗) + 𝑒∫ 𝑑𝑥⃗𝑉𝑒𝑥𝑡(𝑥⃗, 𝑡)𝜓

+(𝑥⃗)𝜓(𝑥⃗). (40)

 

Here according to the general recipe of second quantization a normal ordering 𝑁(. . . ) had to 

be introduced also with respect to the photon creation and annihilation operators 𝑏𝑞⃗⃗,𝜆
+ , 𝑏𝑞⃗⃗,𝜆 and 

the photon frequency is 𝜔𝑞 = 𝑐|𝑞|. 

This non-relativistic QED Hamiltonian coincides with the standard one obtained directly from 

the second quantized Hamilton operator of electrons interacting with a classical electromagnetic 

field in the Coulomb gauge, after the quantization of the transverse vector potential according to 

Eq. 39 and adding the energy of the photons, as it is given for example in [7], while in most papers 

external potentials are not included. 

The interaction terms in the Hamiltonian Eq. 40 (in the absence of external fields!) are besides 

the usual Coulomb one of the many-body theories, a current-(transverse) field interaction 
1

𝑐
𝑗𝐴⊥ 

and a "sea-gull" term 
𝑒2

2𝑚𝑐2
𝜓+𝜓𝐴⊥

2 . The corresponding vertexes of the Feynman diagram 

technique within the adiabatic perturbation theory are illustrated on Figure 1. 

 

Figure 1 The Feynman vertexes of the non-relativistic QED. The dashed line is the 

Coulomb potential, while the wavy line is the transverse photon. 

Obviously, this quantization procedure reintroduces electromagnetic self-interaction on a 

hidden way. Its manifestation is the much discussed self-energy in the Feynman diagrams of the 

adiabatic perturbation theory. This occurs also by the second-quantized version of the Coulomb 

interacting charged particles. The Hamiltonian in configuration space is not identical with the 

second quantized Coulomb Hamiltonian. Obviously their ground states (vacuum) are different. 

The Heisenberg equations of motion lead to the quantized (operator) coupled Maxwell and 

Schrödinger equations. However their gauge invariant form does not imply gauge invariance 

against arbitrary gauge transformation of the vector potential operator 𝐴(𝑥⃗) . Gauge 
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transformations like Eq. 18 are meaningful only with c-number functions 𝜒(𝑥⃗, 𝑡) for the external 

field. 

We have shown, how a field theoretical treatment allows the use of the Lagrange formalism in 

deriving the non-relativistic quantum mechanical many-body theory of charged particles 

interacting with photons avoiding the problems linked to point-like classical charges. Of course 

these results may be extended without problems to include also other charged particles, like the 

positive ions or holes of the solid state theory. 

7. Ingredients from the Relativistic Quantum Field Theory 

Until now we described the QED of non-relativistic particles characterized by their mass and 

charge. However, from the relativistic quantum-field theory one knows, that these are not the 

only basic properties of elementary or composite particles. Although the non-relativistic QED is 

not reducible to the relativistic QED, one must take into account some ingredients one has learned 

from the quantum-field theory. At least the spin and the associated magnetic moment of 

electrons and nuclei (or ions) are indispensable in a reasonable condensed matter theory. An 

essential role plays in this context the spin-statistic theorem of the relativistic theory stating that 

particles with integer spin are bosons, while those with half integer spin are fermions. 

For this sake one has to include in the classical Maxwell equations Eq. 5 also a magnetic (or 

spin) current 

𝑗𝑀(𝑥⃗) = 𝑐∇ × 𝑀⃗⃗⃗(𝑥⃗). (41) 

The magnetization 𝑀⃗⃗⃗(𝑥⃗) is given by the spin density. In the here discussed example of 

electrons with spin 1/2 

𝑀⃗⃗⃗(𝑥⃗) =
𝑒ℏ

2𝑚𝑐
𝜎⃗(𝑥⃗), (42) 

with the spin density 

𝜎⃗(𝑥⃗) = ∑ 𝜓𝜎(𝑥⃗)
∗𝜎̂⃗𝜎,𝜎′𝜓𝜎′(𝑥⃗)

𝜎,𝜎′=±1

(43) 

and the well-known 2 × 2 sigma matrices 𝜎̂⃗. 

To get the so extended Maxwell equations one has to add the piece 

−𝐵⃗⃗(𝑥⃗)𝑀⃗⃗⃗(𝑥⃗) (44) 

to the Lagrangian density Eq. 23 or Eq. 24, respectively with the opposite sign to the Hamiltonians 

Eq. 38 and Eq. 40. The wave functions 𝜓𝜎(𝑥⃗) will then satisfy the Pauli equation 

𝚤ℏ
𝜕

𝜕𝑡
𝜓(𝑥⃗, 𝑡) = (

1

2𝑚
(−𝚤ℏ∇ +

𝑒

𝑐
(𝐴(𝑥, 𝑡) + 𝐴𝑒𝑥𝑡))

2

 

+𝑒(𝑉(𝑥⃗, 𝑡) + 𝑉𝑒𝑥𝑡(𝑥⃗, 𝑡)) +
𝑒ℏ

2𝑚𝑐
𝐵⃗⃗(𝑥⃗)𝜎̂⃗) 𝜓(𝑥⃗, 𝑡), (45) 
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with the matrix-column notation 

𝜓(𝑥⃗, 𝑡) = (
𝜓+(𝑥⃗)

𝜓−(𝑥⃗)
) . (46) 

The added piece to the Lagrangians does not affect gauge-invariance and the quantization of 

this extended electromagnetic theory is trivial. Of course one has to take into account the 

connection between the spin and statistics (Fermi/Bose). Obviously, the scheme we described in 

these chapters may be easily extended to any system of particles with arbitrary masses, charges 

and spins. 

8. Non-relativistic Quantum-mechanical Many-body Hamiltonian without Photons Including 
𝟏

𝒄𝟐
 

Terms 

Only quantum optics uses up to these days the above described non-relativistic QED of 

ensembles of charged particles and photons. Many-body theories of solid-state or plasma restrict 

their task to the subspace of states containing no photons. In the description of electrical 

phenomena with longitudinal fields this theory hat enormous successes in understanding the 

properties of solids. However, the description of magnetic properties is not so consolidated, since 

the standard solid-state theory is still based just on Coulomb forces if we leave aside spin 

magnetism. 

The purpose of this Section is to derive from the non-relativistic QED the proper formulation of 

the 1/𝑐2 many-body theory containing already the magnetic interactions between electrons. 

More than that is not possible without inclusion of the photons. 

To simplify the discussion we omit here the external fields and reintroduce them again at the 

end according to the "minimal rule" and denote by 

𝚤(𝑥⃗, 𝑡) =
𝑒

2𝑚
𝜓(𝑥⃗, 𝑡)∗

1

𝚤
ℏ∇𝜓(𝑥⃗, 𝑡) + 𝑐. 𝑐 (47) 

the current density in the absence of a vector potential. 

We shall proceed in two steps: i) to look in the subspace of states without photons at the role 

of the different terms in the QED Hamiltonian we derived and ii) to neglect retardation effects, 

that are not tractable with a local Hamiltonian in this restricted subspace and anyway give rise to 

terms of higher order as 1/𝑐2. 

First we discuss the theory in the absence of external fields. The terms that do not contain the 

transverse vector potential 𝐴⊥ remain unchanged. The term describing the energy of the free 

photons of course has to be ignored. Then remains the Coulomb interaction and three other sort 

of interaction terms we have to discuss. First at all the quadratic, so called “sea-gull” term 
𝑒2

2𝑚𝑐2
𝜓+𝜓𝐴⊥

2 . It may be also ignored, since it communicates with the photon vacuum only with the 

help of the terms 
1

𝑐
𝚤𝐴⊥ and therefore may contribute only third order terms in 1/𝑐. Thus we 

remain only with these last interaction terms to discuss. 

We shall pursue the discussion within the frame of the adiabatic 𝑆-matrix theory (or of their 

Green functions). It is easy to see, that there is only one basic graph and its combinations that may 

contribute by this vertex to the 𝑆 matrix elements in the subspace of electron states. This is shown 
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in Figure 2. It describes the exchange of a transverse photon between two transverse electron 

currents mediated by the transverse photon propagator given in the 4-dimensional Fourier space 

𝜔, 𝑞⃗ by 

1

𝑞2 −𝜔2/𝑐2 − 𝚤0
(𝛿𝜇,𝜈 −

𝑞𝜇𝑞𝜈

𝑞2
) ; (𝜇, 𝜈 = 1,2,3) (48) 

and the vertexes contain momentum factors corresponding to the the currents (see Ref. [6]). 

 

Figure 2 The transverse photon exchange diagram in the QED. The wavy line 

represents the propagator of the transverse photon.  

After neglecting the term −𝜔2/𝑐2 in the denominator (i.e. ignoring retardation) one eliminates 

corrections of higher order as 1/𝑐2 and the photon propagator looks as 

1

𝑞2
(𝛿𝜇,𝜈 −

𝑞𝜇𝑞𝜈

𝑞2
) ; (𝜇, 𝜈 = 1,2,3). (49) 

Since no pole survived, the −𝚤0 term could have been also ignored and 
4𝜋

𝑞2
 is just the Fourier 

transform of the Coulomb potential. 

Then one may convince oneself that these graphs coincide with the basic vertexes of the S 

matrix of an 1/𝑐2 purely electron Hamiltonian containing besides the kinetic energy and the 

Coulomb interactions the interaction term 

−
1

2
∫ 𝑑𝑥⃗∫ 𝑑𝑥′⃗⃗⃗⃗

𝑁[𝚤⊥(𝑥⃗)𝚤⊥(𝑥⃗
′)]

𝑐2|𝑥⃗ − 𝑥⃗′|
. (50) 

This term has an appealing form analogous to the charge density-charge density Coulomb 

interaction. It is the microscopical expression of the important Biot-Savart law of interaction 

between currents in finite macroscopic samples, where light propagation effects may be ignored. 

One might argue that due to the smallness of the velocities in the condensed matter such an 

1/𝑐2 term may be neglected. This is obviously false. Our everyday experience teaches us, that a 

macroscopic number of slow electrons may create enormous magnetic fields. 

In order to keep gauge invariance with respect to an external field 𝐴𝑒𝑥𝑡 one has to use again 

the minimal recipe and this requires also its introduction not only in the kinetic energy term, but 

also in the current-current interaction. 

This transverse current-current interaction Eq. 50 was derived in Ref. [5, 6], within this QED 

frame. 
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Therefore, we may conclude that after reintroducing the external fields according to the 

minimal principle of Yang-Mills theories, the quantum mechanical 1/𝑐2 electron Hamiltonian that 

generates the diagrams of Figure 3.  

 

Figure 3 The basic density-density and current-current vertexes in the 1/𝑐2 S-matrix. 

Here the dashed line indicates just a Coulomb potential.  

is just 

𝐇(𝑡) = ∫ 𝑑𝑥
→
𝜓+ (𝑥

→
) [

1

2𝑚
(
ℏ

𝚤
∇ −

𝑒

𝑐
𝐴
→

𝑒𝑥𝑡 (𝑥
→
, 𝑡))

2

+ 𝑒𝑉𝑒𝑥𝑡 (𝑥
→
, 𝑡)]𝜓 (𝑥

→
)

+
1

2
∫ 𝑑𝑥

→
∫ 𝑑𝑥

→′
𝒩 [𝜌 (𝑥

→
) 𝜌 (𝑥

→′)]

|𝑥
→
− 𝑥

→
′|

−
1

2
∫ 𝑑𝑥

→
∫ 𝑑𝑥

→′
𝒩 [𝑗

→

⊥ (𝑥
→
, 𝑡) 𝑗

→

⊥ (𝑥
→′, 𝑡)]

𝑐2 |𝑥
→
− 𝑥

→
′|

.

(51) 

Here 𝜌(𝑥⃗) denotes the charge density operator 

𝜌(𝑥⃗) = 𝑒𝜓+(𝑥⃗)𝜓(𝑥⃗), (52) 

while 𝑗⊥(𝑥⃗, 𝑡) denotes the transverse part of the current density operator in the presence of the 

external vector potential 

𝑗(𝑥⃗, 𝑡) =
𝑒

2𝑚
(𝜓+(𝑥⃗) (

ℏ

𝚤
∇ −

𝑒

𝑐
𝐴𝑒𝑥𝑡(𝑥⃗, 𝑡))𝜓(𝑥⃗) + ℎ. 𝑐. ) . (53) 

The continuity equation emerging from this charge conserving Hamiltonian is however 

∇𝐽 +
∂

∂𝑡
𝜌 = 0 (54) 

with the conserved current 

𝐽(𝑥⃗, 𝑡) =
𝑒

2𝑚
𝜓(𝑥⃗, 𝑡)∗ (−𝚤ℏ∇ +

𝑒

𝑐
(𝐴𝑒𝑥𝑡(𝑥⃗, 𝑡) + 𝐴⊥(𝑥⃗, 𝑡)))𝜓(𝑥⃗, 𝑡) + 𝑐. 𝑐, (55) 

where 
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𝐴⊥(𝑥⃗, 𝑡) ≐
1

𝑐
∫ 𝑑𝑥⃗ ′

𝑗⊥(𝑥⃗ 
′, 𝑡)

|𝑥⃗ − 𝑥⃗ ′|
(56) 

is (by neglecting the retardation!) the transverse vector potential generated by the electrons. 

The generalization of these results for a system of electrons and ions as constituents of the solid 

state is obvious. 

This new interaction in coordinate space, due to the additional integrals in the definition of the 

transverse part and the normal products, is difficult to handle. However, this term has a simple 

expression in the discrete 𝑘⃗⃗ - space basis (plane waves with periodical boundary conditions in a 

cube of volume Ω). It looks explicitly as 

−
𝑒2ℏ2

𝑚2𝑐2Ω
∑∑

2𝜋

𝑞2

𝑘⃗⃗,𝑝⃗,𝑞⃗⃗
𝜎,𝜎′=±1

(𝑘⃗⃗𝑝⃗ − 𝑞⃗𝑘⃗⃗
1

𝑞2
𝑞⃗𝑝⃗) 𝑎

𝑘⃗⃗,𝜎
+ 𝑎𝑝⃗,𝜎′

+ 𝑎𝑝⃗+𝑞⃗⃗,𝜎′𝑎𝑘⃗⃗−𝑞⃗⃗,𝜎. (57) 

For a better understanding of the underlying physics, let us consider now the Hartree 

approximation of this Hamiltonian. It looks as 

𝐇𝐻𝑎𝑟𝑡𝑟𝑒𝑒(𝑡) = ∫ 𝑑𝑥⃗𝜓+(𝑥⃗) [
1

2𝑚
(
ℏ

𝚤
∇ −

𝑒

𝑐
𝐴ext (𝑥⃗, 𝑡))

2

+ 𝑒𝑉ext(𝑥⃗, 𝑡)]𝜓(𝑥⃗)

+∫ 𝑑𝑥⃗∫ 𝑑𝑥⃗′
𝜌(𝑥⃗)〈𝜌(𝑥⃗′, 𝑡)〉

|𝑥⃗ − 𝑥⃗′|
− ∫ 𝑑𝑥⃗∫ 𝑑𝑥⃗′

𝑗⊥(𝑥⃗, 𝑡)⟨𝑗⊥(𝑥⃗
′, 𝑡)⟩

𝑐2|𝑥⃗ − 𝑥⃗′|
, (58)

 

where ⟨𝜌(𝑥⃗, 𝑡)⟩ and ⟨𝑗⊥(𝑥⃗, 𝑡)⟩ are the (chosen) ensemble averages of the charge and transverse 

current densities. 

One may here identify the s.c. internal scalar and vector potentials 

𝑉𝑖𝑛𝑡(𝑥⃗, 𝑡) = ∫ 𝑑𝑥⃗′
〈𝜌(𝑥⃗′, 𝑡)〉

|𝑥⃗ − 𝑥⃗′|
; 𝐴𝑖𝑛𝑡(𝑥⃗, 𝑡) = ∫ 𝑑𝑥⃗′

〈𝑗⊥(𝑥⃗
′, 𝑡)〉

𝑐|𝑥⃗ − 𝑥⃗′|
. (59) 

Of course, here in the definition of the internal vector potential the retardation is again 

missing! 

Eq. 51 and Eq. 58 together with the identifications of Eq. 59 show, that the average Coulomb 

field created by the electron results from the charge-charge interaction and the average (dia-) 

magnetic field created by the velocity of the electron results from the current-current 

interactions. This is analogous to the (ferro-) magnetic field of localized spins resulting from their 

mutual interaction in the Heisenberg spin model. 

One may rewrite Eq. 58 as  

𝐇𝐻𝑎𝑟𝑡𝑟𝑒𝑒(𝑡) = −∫ 𝑑𝑥⃗𝜓+(𝑥⃗) [
1

2𝑚
(
ℏ

𝚤
∇ −

𝑒

𝑐
𝐴𝑒𝑥𝑡(𝑥⃗, 𝑡))

2

+ 𝑒𝑉𝑡𝑜𝑡(𝑥⃗, 𝑡)] 𝜓(𝑥⃗)

−
1

𝑐
∫ 𝑑𝑥⃗∫ 𝑗⊥(𝑥⃗, 𝑡)𝐴𝑖𝑛𝑡(𝑥⃗, 𝑡). (60)
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The above Hartree Hamiltonian coincides only up to second order terms in the fields with the 

mean field Hamiltonian resulted from the QED Hamiltonian Eq. 40 by approximating the total 

vector potential 𝐴⊥(𝑥⃗) + 𝐴𝑒𝑥𝑡  by his average 𝐴𝑡𝑜𝑡  and the Coulomb term by its mean-field 

approximation. 

𝐻𝑚𝑒𝑎𝑛 = ∫ 𝑑𝑥⃗𝜓+(𝑥⃗) [
1

2𝑚
(
ℏ

𝚤
∇ −

𝑒

𝑐
𝐴𝑡𝑜𝑡(𝑥⃗, 𝑡))

2

+ 𝑒𝑉𝑡𝑜𝑡(𝑥⃗, 𝑡)]𝜓(𝑥⃗). (61) 

While the Hamiltonian Eq. 60 is invariant only against time-independent gauge transformations 

of the external fields, the mean-field Hamiltonian Eq. 61 is formally gauge invariant against time 

independent gauge transformations of the total field 𝐴𝑡𝑜𝑡 although actually the gauge of the 

internal vector potential 𝐴𝑖𝑛𝑡 is already fixed to be the Coulomb one. 

9. Darwin’s Classical Approach Revisited 

In this Section we show that Darwin’s reasoning within the classical electromagnetic theory of 

point-like charges, if properly formulated in the Coulomb gauge i.e. considering only the true 

physical degrees of freedom of the magnetic field, leads to a classical Hamiltonian analogous to 

the one we got in the previous Section. 

As it is well-known, one can not formulate a Lagrangian theory of classical point-like charged 

particles interacting with the electromagnetic field due to the divergent self-interaction.( From the 

Lorentz force one has to omit the action of the field created by each charged particle on itself!) 

This impedes also a proper derivation of an 1/𝑐2 Hamiltonian. 

Almost one hundred years ago Darwin [1] proposed nevertheless a closed classical Lagrangian 

for N point-like charges 𝑒𝑖 and mass 𝑚𝑖 (𝑖, 𝑗 = 1,…𝑁) including terms up to order 1/𝑐2 avoiding 

self-interaction and constructed the following Hamiltonian 

ℋ =∑
1

2𝑚𝑖

𝑖

𝑝𝚤⃗⃗⃗ ⃗
2
+∑

𝑒𝑖𝑒𝑗

|𝑟𝚤⃗⃗⃗ − 𝑟𝑗|
𝑖>𝑗

−∑
𝑒𝑖𝑒𝑗

2𝑐2𝑚𝑖𝑚𝑗|𝑟𝑖 − 𝑟𝑗|
𝑖>𝑗

[𝑝⃗𝑖 ⋅ 𝑝⃗𝑗 + (𝑝⃗𝑖 ⋅ 𝑛⃗⃗𝑖𝑗)(𝑝⃗𝑗 ⋅ 𝑛⃗⃗𝑖𝑗)], (62) 

where 𝑛⃗⃗𝑖𝑗 ≡
𝑟𝑖−𝑟𝑗

|𝑟𝑖−𝑟𝑗|
. His derivation is based on the expansion of the Liénard-Wiechert potentials to 

second order in 
1

𝑐
. 

The reasoning of Refs. [2] and [3] to derive the above Hamiltonian starts from the discussion of 

the potentials felt by one point-like particle in the field of another one at a distance 𝑅. Landau and 

Lifshitz [2] use the Lorentz gauge, perform an expansion of the scalar potential up to second order 

in the finite distance between two particles divided by the light velocity (𝑅/𝑐) and later perform a 

gauge transformation turning to the Coulomb gauge, without stating it explicitly. 

Jackson [3] starts in the Coulomb gauge, gets the transverse current - transverse current 

Lagrange function for two particles however performs an integration by parts of the vector 

potential of the two particles at a finite distance leaving aside the vanishing surface contribution 

and gets Darwin’s Hamiltonian. 
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Thus the two approaches are similar and their results are identical. Moreover, from Jackson’s 

derivation results that the transverse current - transverse current version is equivalent to Darwin’s 

version whenever the distances between the particles are finite. 

Without the mentioned partial integration Jackson’s Hamiltonian [3] looks as 

𝐻 =∑
𝑝𝚤⃗⃗⃗ ⃗
2

2𝑚𝑖
+∑

𝑒𝑖𝑒𝑗

|𝑟𝚤⃗⃗⃗ − 𝑟𝑗|𝑖>𝑗𝑖

−∑
𝑒𝑖𝑒𝑗

𝑐2𝑚𝑖𝑚𝑗
𝑖>𝑗

𝑝⃗𝑖 [
𝑝⃗𝑗

|𝑟𝑖 − 𝑟𝑗|
−

1

4𝜋
∫ 𝑑𝑥⃗

1

|𝑟𝑖 − 𝑥⃗|
∇ (𝑝𝑗∇

1

|𝑥⃗ − 𝑟𝑗|
)] (63) 

and consists of transverse current - transverse current terms for 𝑖 ≠ 𝑗. 

By introducing the charge and current densities: 

𝜌(𝑥⃗) =∑𝑒𝑖
𝑖

𝛿(𝑥⃗ − 𝑟𝑖); 𝚤(𝑥⃗) =∑
𝑒𝑖
𝑚𝑖

𝑖

𝑝⃗𝑖𝛿(𝑥⃗ − 𝑟𝑖) (64) 

and ignoring the missing 𝑖 = 𝑗 terms one might rewrite this classical Hamiltonian Eq. 63 as 

∑
1

2𝑚𝑖

𝑖

𝑝𝚤⃗⃗⃗ ⃗
2
+
1

2
∫ 𝑑𝑥⃗∫ 𝑑𝑥⃗′

𝜌(𝑥⃗)𝜌(𝑥⃗′)

|𝑥⃗ − 𝑥⃗′)|
−
1

2
∫ 𝑑𝑥⃗∫ 𝑑𝑥′⃗⃗⃗⃗

𝚤⊥(𝑥⃗)𝚤⊥(𝑥⃗
′)

𝑐2|𝑥⃗ − 𝑥⃗′|
, (65) 

where 𝚤⊥(𝑥⃗) is the transverse part of the current density 

𝚤⊥(𝑟, 𝑡) ≡ 𝚤(𝑟, 𝑡) +
1

4𝜋
∇∫ 𝑑𝑟′

∇′𝚤(𝑟′, 𝑡)

|𝑟 − 𝑟′|
. (66) 

Under this form it looks similar to the result we obtained before (in the absence of other 

external fields). A quantization of the classical Hamiltonian of the point-like charged particles Eq. 

63 is then immediate by second quantization of Eq. 65 as it was done in Refs. [5], [6] avoiding the 

configuration space quantization either of Eq. 63 or Eq. 62. This leads to the same Hamiltonian Eq. 

51 as we deduced from the non-relativistic QED. 

10. The Importance of the Diamagnetic Current-current Interaction in Many-body Theories 

10.1 Superconductivity 

According to Bardeen, Cooper and Schrieffer [11] the origin of the superconductive phase 

transition lies in the correlation between electrons of opposite momenta and spin resulting from 

phonon exchange. However, to pursue this idea within the many-body theory of electrons 

interacting with phonons seems too difficult. Therefore, one tried to construct pure electron 

many-body theories with a built-in two-particle “attractive” potential 𝑊(𝑥⃗) giving rise to no 

bound states, but just to such correlations and implicitly to a superconducting phase transition. 

Such a model Hamiltonian is due to Rickayzen [12, 13] that we shortly describe here. (The specific 

version of Bogolyubov-de Gennes [14] is included in the same frame.) The superconductive phase 

transition is thought to be accompanied by a spontaneous breaking of the phase invariance due to 

the non-vanishing anomalous average ⟨𝜓1

2

+(𝑥⃗)𝜓
−
1

2

+ (𝑥′⃗⃗⃗ ⃗)⟩. 
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Rickayzen’s self-consistent Hamiltonian for a homogeneous electron system in the presence of 

a magnetic field described by the potential vector 𝒜(𝑥⃗) is 

ℋs.c. =∑∫𝑑𝑥⃗
𝑑

𝜓𝜎
+(𝑥⃗) {

1

2𝑚
(−𝚤ℏ𝛻 −

𝑒

𝑐
𝒜(𝑥⃗))

2

− 𝜇}

𝜎=±
1
2

𝜓𝜎(𝑥⃗)

+
1

2
∫ 𝑑𝑥⃗∫ 𝑑𝑥⃗′𝑊(𝑥⃗ − 𝑥⃗′) [〈𝜓1

2

+(𝑥⃗)𝜓
−
1
2

+ (𝑥⃗′)〉𝜓
−
1
2

(𝑥⃗′)𝜓1
2

(𝑥⃗)

+ 〈𝜓
−
1
2

(𝑥⃗′)𝜓1
2

(𝑥⃗)〉𝜓1
2

+(𝑥⃗)𝜓
−
1
2

+ (𝑥⃗′) − 〈𝜓1
2

+(𝑥⃗)𝜓
−
1
2

+ (𝑥⃗′)〉 〈𝜓
−
1
2

(𝑥⃗′)𝜓1
2

(𝑥⃗)〉] .

(67) 

One can show that in the absence of the field 𝒜(𝑥⃗) a phase transition may occur below a 

critical temperature, provided the potential 𝑊(𝑥⃗) ensures a non-vanishing solution for the 

symmetry breaking gap parameter of the largely described "gap equation" we do not give here. 

This condition is equivalent to the vanishing of the first derivative of the free energy with respect 

to the same parameter. 

In order to prove the ideal diamagnetism (Meissner effect) one uses equilibrium linear 

response. Here it is essential to understand the magnetic perturbation. In the Hamiltonian of Eq. 

67 the (transverse) vector potential 𝒜 is a classical field that was introduced just by the minimal 

principle, without any deeper justification. 

According to our previous Sections (see Eqs. 58 and 59) the correct s.c. Hamiltonian [15] 

derived from the QED in the absence of photons is quite different, namely the kinetic energy term 

of Eq. 67 in the presence of a transverse external vector potential is replaced by 

𝜓𝜎
+(𝑥⃗)

1

2𝑚
(−𝚤ℏ∇ −

𝑒

𝑐
𝐴𝑒𝑥𝑡(𝑥⃗))

2

𝜓𝜎(𝑥⃗) −
1

𝑐
𝐴𝑖𝑛𝑡(𝑥⃗)𝑗⊥(𝑥⃗). (68) 

In the linear approximation with respect to 𝐴𝑒𝑥𝑡 one gets the magnetic perturbing term 

−
1

𝑐
(𝐴𝑒𝑥𝑡(𝑥⃗) + 𝐴𝑖𝑛𝑡(𝑥⃗)) 𝑗⊥(𝑥⃗) = −

1

𝑐
𝐴𝑡𝑜𝑡(𝑥⃗)𝑗⊥(𝑥⃗). (69) 

Therefore, at least at the level of the linear response one should identify the vector potential 𝒜 

not with the external but with total one. 

Taking also into account the peculiarity of the linear response within self-consistent theories 

that the deviation of the averages from their equilibrium values constitute so called induced 

perturbations one may derive the relation between the average induced current and this total 

field (in Fourier transforms) of the two transverse vectors reads as 

〈𝑗𝜇̃(𝑘⃗⃗)〉 = 𝜅(𝑘)𝒜̃𝜇(𝑘⃗⃗) ; (𝜇 = 1,2,3) (70) 

with the scalar coefficient 𝜅(𝑘) in an infinite homogeneous, isotropic system being a function of 

𝑘 = √𝑘⃗⃗2. Although this coefficient cannot be calculated explicitly, it has been proven [16] that for 

any potential 𝑊(𝑥⃗) that leads to a stable superconductive phase in the absence of a magnetic 
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field the coefficient 𝜅(0) is finite. This was early stipulated by Schafroth [17] as being the 

necessary condition for superconductivity. 

Thus we may conclude that 

〈𝑗̃⃗(𝑘⃗⃗)〉 = 𝜅(𝑘) (𝐴⃗̃𝑒𝑥𝑡(𝑘⃗⃗) + 𝐴⃗̃𝑖𝑛𝑡(𝑘⃗⃗)) ; (𝜇 = 1,2,3). (71) 

Now, in the absence of retardation we have the relation of the internal vector potential to the 

average transverse current density: 

𝐴⃗̃𝑖𝑛𝑡(𝑘⃗⃗) =
4𝜋

𝑐𝑘2
〈𝑗̃⃗⊥(𝑘⃗⃗)〉. (72) 

Using this relationship in the previous equation we get 

𝐴̃𝑖𝑛𝑡
𝜇
(𝑘⃗⃗) =

4𝜋
𝑐𝑘2

𝜅(𝑘)

1 −
4𝜋
𝑐𝑘2

𝜅(𝑘)
𝐴̃𝑒𝑥𝑡
𝜇

(𝑘⃗⃗) ; (𝜇 = 1,2,3). (73) 

For the internal and external magnetic fields holds similarly 

𝐵̃𝑖𝑛𝑡
𝜇
(𝑘⃗⃗) =

4𝜋
𝑐𝑘2

𝜅(𝑘)

1 −
4𝜋
𝑐𝑘2

𝜅(𝑘)
𝐵̃𝑒𝑥𝑡
𝜇
(𝑘⃗⃗) ; (𝜇 = 1,2,3). (74) 

This last equation has been obtained also by Tinkham [18] assuming the interpretation of the 

vector potential 𝒜 in Eq. 58 as being the total vector potential as in Eq. 61. Although it was just an 

educated guess, it occurred to be correct within the linear approximation. The same is true about 

the Ginzburg-Landau non-linear theory of superconductivity. 

The same relation Eq. 74 may be obtained through Zubarev’s [8] early reasoning based just on 

the macroscopic Maxwell equations, without any reference to a Hamiltonian. 

Since 𝜅(0) ≠ 0, from Eq. 74 follows 

𝐵̃𝑖𝑛𝑡
𝜇 (0) = −𝐵̃𝑒𝑥𝑡

𝜇 (0) (75) 

i.e. a homogeneous external magnetic field is perfectly compensated by the internal magnetic 

field of the electrons. This shows that at least against a homogeneous magnetic field the system 

behaves as an ideal diamagnet. 

As we have seen, although the correct electromagnetic formulation at the level of the linear 

response did not predict unexpected results, it eliminated some conceptual confusions. On the 

other hand, by strong magnetic fields, where linear response does not work, the correct 1/𝑐2 

Hamiltonian Eq. 51 may be very important. 
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10.2 Linear Response and Thermal Noise 

10.2.1 Linear Response of Charged Particles 

Non-equilibrium linear response and the related problem of thermal fluctuations is another 

field where the proper treatment of the magnetic field within many-body theory is important. 

Originally Kubo [19] developed adiabatic linear response only with respect to a homogeneous 

electric field. However, it may be extended within the non-relativistic QED to a general external 

electromagnetic perturbation due to applied electromagnetic scalar 𝑉𝑒𝑥𝑡(𝑥⃗, 𝑡)  and vector 

potentials 𝐴𝑒𝑥𝑡(𝑥⃗, 𝑡) 

𝐻′(𝑡) = ∫ 𝑑𝑥⃗{𝜌(𝑥⃗)𝑉𝑒𝑥𝑡(𝑥⃗, 𝑡) − 𝑗(𝑥⃗)𝐴𝑒𝑥𝑡(𝑥⃗, 𝑡)}, (76) 

the average of the current density operator 𝑗(𝑥⃗, 𝑡) being given by 

〈𝑗𝜇(𝑥⃗, 𝑡)〉 = lim
𝑠→+0

∫ 𝑑𝑡′
𝑡

−∞

𝑒𝑠𝑡
′
∫ 𝑑𝜆
𝛽

0

∫ 𝑑𝑥⃗′〈𝑗𝜈(𝑥⃗
′, −𝚤ℏ𝜆)𝑗𝜇(𝑥⃗, 𝑡 − 𝑡′)〉0𝐸𝜈

𝑒𝑥𝑡(𝑥⃗′, 𝑡′), (77) 

where 𝜇, 𝜈 = 1,2,3 are vector-indices and summation over double indices is understood, while 𝑠 is 

the adiabatic parameter we shall omit for simplicity in the following. 

In translation and rotation (in space) invariant systems one has in Fourier transforms a local 

relationship 

⟨𝑗𝜇̃(𝑘⃗⃗, 𝜔)⟩ = 𝜅(𝑘⃗⃗, 𝜔)
𝜇𝜈
𝐸̃𝜈
𝑒𝑥𝑡(𝜔, 𝑘⃗⃗) (78) 

with 

𝜅(𝑘⃗⃗, 𝜔)
𝜇𝜈

= ∫ 𝑑𝑡
∞

0

∫ 𝑑𝜆
𝛽

0

∫ 𝑑𝑥⃗𝑒𝚤(𝑘⃗⃗𝑥⃗+𝜔𝑡)⟨𝑗𝜈(0,0)𝑗𝜇(𝑥⃗, 𝑡 + 𝚤ℏ𝜆)⟩
0
. (79) 

If the system under consideration is isotropic, then one may separate the longitudinal and 

transverse parts 

𝜅(𝑘⃗⃗, 𝜔)
𝜇𝜈

=
𝑘𝜇𝑘𝜈

𝑘2
𝜅𝐿(𝑘, 𝜔) + (𝛿𝜇𝜈 −

𝑘𝜇𝑘𝜈

𝑘2
)𝜅𝑇(𝑘, 𝜔). (80) 

It is important to remark here that the frequency and the wave vector in the transverse case 

are not independent (𝜔 = 𝑐𝑘). 

The next important point, first remarked by Izuyama [20] and [8] is that 𝜅(𝑘⃗⃗) does not coincide 

with the complex conductivity 𝜎(𝜔, 𝑘⃗⃗), since this one characterizes the response to the total 

electric field in matter to which the electrons also contribute. This total electric field is given by 

adding the average internal field to the external field 

𝐸⃗⃗(𝑘⃗⃗, 𝑡) = 𝐸⃗⃗𝑒𝑥𝑡(𝑘⃗⃗, 𝑡) + 𝐸⃗⃗𝑖𝑛𝑡(𝑘⃗⃗, 𝑡). (81) 
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According to the Maxwell equations of the non-relativistic QED the Fourier transforms of the 

internal longitudinal and transverse electric fields are given by 

𝚤𝑘⃗⃗𝐸⃗⃗̃𝐿(𝑘⃗⃗, 𝑡) =
4𝜋

𝑘
𝜌̃(𝑘⃗⃗, 𝑡) (82) 

and 

𝐸⃗⃗𝑇(𝑥⃗, 𝑡) = −
1

𝑐

𝜕

𝜕𝑡
𝐴𝑇(𝑥⃗, 𝑡), (83) 

with the transverse vector potential operator (radiation field) given by Eq. 39. After neglecting 

retardation the transverse electric field may be expressed directly through the transverse current 

density 

𝐸⃗⃗̃𝑇(𝑘⃗⃗, 𝑡) = −
4𝜋

(𝑐𝑘)2
𝜕

𝜕𝑡
𝑗̃⃗𝑇(𝑘⃗⃗, 𝑡). (84) 

The internal fields are then defined by the average charge, respectively current densities 

𝚤𝑘⃗⃗𝐸⃗⃗̃𝐿
𝑖𝑛𝑡(𝑘⃗⃗, 𝑡) =

4𝜋

𝑘
〈𝜌̃(𝑘⃗⃗, 𝑡)〉 (85) 

𝐸⃗⃗̃𝑇
𝑖𝑛𝑡(𝑘⃗⃗, 𝑡) = −

4𝜋

(𝑐𝑘)2
𝜕

𝜕𝑡
〈𝑗̃⃗𝑇(𝑘⃗⃗, 𝑡)〉. (86) 

As a consequence the longitudinal and transverse conductivities are related to the coefficients 
𝜅𝐿/𝑇(𝑘, 𝜔) by 

𝜎𝐿(𝑘, 𝜔) =
𝜅𝐿(𝑘, 𝜔)

1 − 𝚤
4𝜋
𝜔 𝜅𝐿(𝑘, 𝜔)

, (87) 

respectively 

𝜎𝑇(𝑘, 𝜔) =
𝜅𝑇(𝑘, 𝜔)

1 + 𝚤
4𝜋
𝑐2𝑘2

𝜅𝑇(𝑘, 𝜔)
. (88) 

Since the transverse external electric field obeys the wave equation, in the last equation the 

variables 𝜔 and 𝑘 are related by 𝜔 = 𝑐𝑘 ! Therefore one might speak only about a frequency 

dependent transverse conductivity 

𝜎𝑇(𝜔) =
𝜅𝑇 (

𝜔
𝑐 , 𝜔)

1 + 𝚤
4𝜋
𝜔 𝜅𝑇 (

𝜔
𝑐 , 𝜔)

. (89) 

In Eq. 84 relating the internal transverse electric field to the average transverse electronic 

current we already neglected the retardation, therefore it is consequent to neglect it also in 
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calculating the coefficient 𝜅𝑇(𝑘, 𝜔) within the 1/𝑐2 Hamiltonian of Eq. 51 (including possible other 

terms due to interaction with phonons or impurities). 

10.2.2 Electromagnetic Thermal Noise 

There is an interesting relationship between these conductivities given by the consequent 

linear response theory of charged particles and their thermal noise. Such a connection was first 

shown in a fluctuation-dissipation theorem by Callen and Welton [21]. However, in their 

derivation the electromagnetic field of the charged particles was ignored. A proper 

electromagnetic analysis for Coulomb interacting particles was performed in Ref. [22] and recently 

[23] extended to include the transverse case with diamagnetic interaction. 

The time fluctuation Δ𝑋(𝑡) of a given observable (hermitian operator) 𝑋 in thermal equilibrium 

is defined [24] as the average square deviation 

Δ𝑋(𝑡) = ⟨(𝑋(𝑡) − 𝑋(0))
2
⟩
0
≥ 0, (90) 

where the average is taken over the macro-canonical equilibrium density matrix. This is analogous 

to the general definition of a fluctuation both in classical- or quantum-statistics. 

Leaving apart the constant 2⟨𝑋(0)2⟩ usually chosen to be vanishing, the entity of interest is 

𝛿𝑋(𝑡) = ⟨𝑋(𝑡)𝑋(0) + 𝑋(0)𝑋(𝑡)⟩0, (91) 

which is a real and even function of 𝑡. As a consequence its Fourier transform 

𝛿𝑋(𝜔) = ∫ 𝑑𝑡
∞

−∞

𝑒𝚤𝜔𝑡𝛿𝑋(𝑡) = 2∫ 𝑑𝑡
∞

0

cos(𝜔𝑡)𝛿𝑋(𝑡) (92) 

is also real and even. Moreover, according to the Wiener-Khinchin Theorem [25, 26], [27] it is 

positive. This is defined [24] as the “noise” spectrum of 𝑋 in quantum statistics. 

It is easy to show, by expansion in the basis of the eigenfunctions of the Hamiltonian for any 

observable 𝑋 (here 𝑋 ≡ 𝑋(0)) the following identity 

𝛿𝑋(𝜔) = 2ℏ𝜔coth⁡(
𝛽ℏ𝜔

2
)ℜ∫ 𝑑𝑡

∞

0

𝑒−𝚤𝜔𝑡∫ 𝑑𝜆
𝛽

0

⟨𝑋𝑋(𝑡 + 𝚤ℏ𝜆⟩0. (93) 

As we have seen, this kind of correlators appear in the linear response theory. 

Now, let us consider the noise spectrum of an electric field. In Fourier transforms it is easy to 

define the scalars characterizing the longitudinal, respectively its transverse components 𝐸𝐿(𝑘⃗⃗) ≡
𝑘⃗⃗

𝑘
𝐸⃗⃗̃(𝑘⃗⃗, 𝑡) and 𝐸𝑇(𝜆) ≡ 𝑒𝜆⃗⃗⃗⃗ 𝐸⃗⃗̃(𝑘⃗⃗, 𝑡) with 𝑒

𝑘⃗⃗

(𝜆)
= 𝑒

−𝑘⃗⃗

(𝜆)
 (𝜆 = 1,2) being the two unit vectors defining the 

independent polarizations of the transverse field. 

From the hermiticity of the operator 𝐸⃗⃗(𝑥⃗, 𝑡) it follows that its Fourier transform obeys 

𝐸⃗⃗̃(−𝑘⃗⃗, 𝑡)
+
= 𝐸⃗⃗̃(𝑘⃗⃗, 𝑡). We may define however two hermitian scalar operators (observables) as the 

“real” and “imaginary” parts of the operators. In what follows we shall omit the index 𝜆 since due 

to isotropy neither the proof nor the results depend and consider the noise of the observables 
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𝐸𝐿
𝑅(𝑘⃗⃗, 𝑡) =

𝑘⃗⃗

2𝑘
(𝐸⃗⃗̃(𝑘⃗⃗, 𝑡) + 𝐸⃗⃗̃(−𝑘⃗⃗, 𝑡)) (94) 

𝐸𝐿
𝐼(𝑘⃗⃗, 𝑡) =

𝑘⃗⃗

2𝑘𝚤
(𝐸⃗⃗̃(𝑘⃗⃗, 𝑡) − 𝐸⃗⃗̃(−𝑘⃗⃗, 𝑡)) , (95) 

respectively 

𝐸𝑇
𝑅(𝑘⃗⃗, 𝑡) =

1

2
𝑒𝑘⃗⃗ (𝐸⃗⃗̃𝑇(𝑘⃗⃗, 𝑡) + 𝐸⃗⃗̃𝑇(−𝑘⃗⃗, 𝑡)) (96) 

𝐸𝑇
𝐼 (𝑘⃗⃗, 𝑡) = 𝚤

1

2𝚤
𝑒𝑘⃗⃗ (𝐸⃗⃗̃𝑇(𝑘⃗⃗, 𝑡) − 𝐸⃗⃗̃𝑇(−𝑘⃗⃗, 𝑡)) . (97) 

Then we use Eqs. 82, 84 that express these operators through the charge density and current 

density operators while neglecting the retardation and consequently considering the time 

evolution also in the 1/𝑐2 approximation i.e. in the frame of the Hamiltonian Eq. 51. 

Starting from definition of the above defined hermitian field operators and of the noise spectral 

density Eq. 92, after some algebra using translation and rotation invariance in the coordinate 

space, as well as some partial integrations one gets for the longitudinal and transverse noise 

spectra relationships to the complex conductivities defined by Eqs. 79, 87, 89. 

𝛿𝐸𝐿(𝜔, 𝑘) = −8𝜋Ωℏcoth (
𝛽ℏ𝜔

2
)ℑ

1

1 +
4𝜋𝚤
𝜔

𝜎𝐿(𝑘, 𝜔)
= −8𝜋Ωℏcoth (

𝛽ℏ𝜔

2
)ℑ

1

𝜖𝐿(𝑘, 𝜔)
, (98) 

respectively 

𝛿𝐸𝑇(𝜔, 𝑘)|𝑘=𝜔
𝑐
= 8𝜋Ωℏcoth (

𝛽ℏ𝜔

2
)ℑ

1

1 −
4𝜋𝚤
𝜔 𝜎𝑇(𝜔)

(99) 

In Eq. 98 we used the relation between the complex dielectric function and the complex 

conductivity 

𝜖(𝑘, 𝜔) = 1 +
4𝜋𝚤

𝜔
𝜎(𝑘, 𝜔) (100) 

and the inverted order of arguments (𝜔, 𝑘) in the notation underlines that 𝑘⃗⃗ is the wave-vector of 

the electric field, while 𝜔 is the frequency of the noise spectrum. 

These are the most general results for the noise spectrum of the electric field of wave vector 𝑘⃗⃗. 

From Eqs. 98, 99 and the positivity of the noise spectral density follows also the positivity of the 

real part of the longitudinal/transversal conductivity (ℜ𝜎(𝜔, 𝑘) ≥ 0) within the frame of the linear 

response theory. 

In the ℏ → 0 limit one gets the results of the classical plasma theory [28]. 

In the peculiar case of a homogeneous in space longitudinal electric field ℰ(𝑡) (having a Fourier 

transform in space proportional to the volume Ω = 𝐿𝑆) one gets for the potential drop 𝑈(𝑡) =

ℰ(𝑡)𝐿 the noise spectral density 
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𝛿𝑈(𝜔, 0) = −8𝜋ℏ
𝐿

𝑆
coth (

𝛽ℏ𝜔

2
)ℑ

1

1 +
4𝜋𝚤
𝜔 𝜎𝐿(𝜔)

(101) 

Now, one has the frequency dependent resistance 

𝑅(𝜔) =
𝐿

𝑆ℜ𝜎𝐿(𝜔)
(102) 

along the 𝑧 direction and one may define a capacity between the end cross-sections of the sample 

𝐶(𝜔) =
𝑆

𝐿4𝜋
ℜ𝜖𝐿(𝜔) =

𝑆

𝐿4𝜋
(1 −

4𝜋

𝜔
ℑ𝜎𝐿(𝜔)) . (103) 

If the resistance and the capacitor are parallel linked, then the resulting impedance 𝑍(𝜔) is 

1

𝑍(𝜔)
=

1

𝑅(𝜔)
+ 𝚤𝜔𝐶(𝜔) (104) 

then one gets from Eq.101.  

𝛿𝑈(𝜔, 0) = 2ℏ𝜔coth (
𝛽ℏ𝜔

2
)ℜ𝑍(𝜔) = 2ℏ𝜔coth (

𝛽ℏ𝜔

2
)

𝑅(𝜔)

1 + (𝜔𝑅(𝜔)𝐶(𝜔))
2 . (105) 

For vanishing noise frequency 

𝛿𝑈(0,0) = 4𝑅𝑘𝐵𝑇 (106) 

and one recovers the old Nyquist theorem [29]. 

Beside the field noises one might consider also the noise of the photon occupation numbers. 

The noise spectral density of the photon occupation numbers 𝑛𝑘⃗⃗  (with an arbitrary chosen 

polarization not mentioned) is given by 

𝛿𝑛
𝑘⃗⃗⃗
(𝜔) = 2ℏ𝜔coth⁡(

𝛽ℏ𝜔

2
)ℜ∫ 𝑑𝑡

∞

0

𝑒−𝚤𝜔𝑡∫ 𝑑𝜆
𝛽

0

⟨𝑛̂𝑘⃗⃗𝑛̂𝑘⃗⃗(𝑡 + 𝚤ℏ𝜆⟩0, (107) 

where 𝑛̂𝑘⃗⃗ ≡ 𝑏
𝑘⃗⃗
+𝑏𝑘⃗⃗ is the operator of the number of photons of wave vector 𝑘⃗⃗ and the given 

polarization we do not mention in the notation. 

On the other hand, by two partial integrations (using time translation invariance and the 

assumed decay of the correlations) one may show that 

∫ 𝑑𝑡
∞

0

𝑒−𝚤𝜔𝑡⟨𝑛̂𝑘⃗⃗(0)𝑛̂𝑘⃗⃗(𝑡 + 𝚤ℏ𝜆)⟩
0
=

1

𝜔2
∫ 𝑑𝑡
∞

0

𝑒−𝚤𝜔𝑡⟨𝑛̇̂𝑘⃗⃗(0)𝑛̇̂𝑘⃗⃗(𝑡 + 𝚤ℏ𝜆)⟩
0
. (108) 

However, retaining the lowest order in 
1

𝑐
 from the full QED Hamiltonian 

1

𝑐
𝑗𝑇(𝑥⃗, 𝑡)𝐴𝑇 (109) 
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we have 

𝑛̇𝑘⃗⃗(𝑡) =
𝚤

ℏ𝑐
∫𝑑𝑥⃗[𝑗𝑇(𝑥⃗, 𝑡)𝐴𝑇(𝑥⃗, 𝑡), 𝑛𝑘⃗⃗(𝑡)] (110) 

and 

∫ 𝑑𝑡
∞

0

𝑒−𝚤𝜔𝑡〈𝑛𝑘⃗⃗(0)𝑛𝑘⃗⃗(𝑡 + 𝚤ℏ𝜆)〉0 = −
1

(ℏ𝜔𝑐)2
∫ 𝑑𝑡
∞

0

𝑒−𝚤𝜔𝑡∫ 𝑑𝑥⃗∫ 𝑑𝑥⃗′

〈[𝑗𝑇(𝑥⃗, 0)𝐴𝑇(𝑥⃗, 0), 𝑛𝑘⃗⃗(0)][𝑗𝑇(𝑥⃗
′, 𝑡 + 𝚤ℏ𝜆)𝐴𝑇(𝑥⃗

′, 𝑡 + 𝚤ℏ𝜆), 𝑛𝑘⃗⃗(𝑡 + 𝚤ℏ𝜆)]〉0,

(111) 

where the transverse vector potential operator is defined by Eq. 39. 

In what follows one may neglect as before retardation and ignore consequently terms higher 

order than 1/𝑐2. Within this approximation one remains only with an approximate Hamiltonian 

being the sum of the 
1

𝑐2
 e.m Hamiltonian Eq. 51 (as well as some other interactions) for electrons 

and of the free Hamiltonian of the photons both in the averaging over equilibrium as in the time 

evolution. 

Performing the commutations and taking again into account the translation, rotation and 

reflection invariance (in the coordinate space) we get after some algebra 

𝛿𝑛
𝑘⃗⃗⃗
(𝜔) = 2

coth (
𝛽ℏ𝜔
2

)

𝑐𝑘𝜔
ℜ∫ 𝑑𝑡𝑒−𝚤𝜔𝑡

∞

0

∫ 𝑑𝜆
𝛽

0

⟨𝑗̃(𝑘⃗⃗, 0)𝑗𝑇(0, 𝑡 + 𝚤ℏ𝜆)⟩
0

𝑒
× 

[𝑒−𝚤(𝜔−𝑐𝑘)𝑡− 𝑐𝑘𝜆(1 + 𝑁𝑘) + 𝑒−𝚤(𝜔+𝑐𝑘)𝑡+𝑐𝑘𝜆)𝑁𝑘], (112) 

where 

𝑁𝑘 ≡
1

𝑒𝛽𝑘𝑐 − 1
(113) 

is the Bose distribution of photons. 

In the above expression again the electronic current-current correlator appears as in the case 

of the noise of the transverse electric field, however they differ essentially due to the presence of 

the Bose functions under the integrals. Therefore, it cannot be related to the transverse 

conductivity. Nevertheless, Eq. 112 may be the starting point for the direct computation of the 

photon number noise spectrum within given solid state models or mesoscopic systems. 

The thermal noise spectra of the longitudinal and transverse electric fields together with this 

last discussed case of photon number fluctuations exhaust the possible thermal noise 

measurements. 

11. Conclusions 

We have discussed in some details the implementation of electromagnetism in quantum 

mechanics. The purpose of this analysis was to avoid the misinterpretations persistent in the 

treatment of the magnetic field in solid state theory. The basic ideas are length well-known, 

nevertheless there is a total confusion in the literature about the distinction between the 
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magnetic field in the matter and the applied classical macroscopic (external) magnetic field. 

Another misunderstanding even at the textbook level is about gauge transformations in the 

Hamiltonian. We stress also the essential role of the classical, macroscopic external fields in the 

description of any electromagnetic experiment. 

In order to bring clarity in this important matter one has to drop the old-fashioned 

presentation of the quantum mechanics of electromagnetically interacting charged particles based 

on the classical theory of point-like charges. One must choose the formalism of the quantum field 

theory in a non-relativistic frame. This is mandatory, since in condensed matter one has to do with 

ions (or nuclei) that are not elementary particles, therefore one cannot resort to the relativistic 

QED. The non-relativistic QED was length used in quantum optics, but not yet in many-body 

theories of condensed matter. An intermediary role might play the 1/𝑐2 approximation of this 

non-relativistic QED that separates the motion of the electrons from that of the photons. The so 

obtained Coulomb gauge Hamiltonian includes the microscopic variant of the Biot-Savart law and 

is in concordance with the 100 year old proposal of Darwin [1]. We show, that a proper discussion 

of superconductivity and of the electromagnetic noise spectra may not ignore this ingredient. 
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