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This volume is dedicated to the 80" anniversary of Ladislaus Alexander
Banyai - Laci, for his many friends -, (retired) extraordinary professor
at the Johann Wolfgang Goethe Universitat, Frankfurt am Main. This
volume contains a biographic and a scientific part. The biographic one
starts with a discussion with him. He recounts some significant events
of his life including his remembrance about friends and coworkers.

The scientific part includes a selection of his papers with their short
presentation, as well as a list of his about 140 scientific papers and
3 physics books. An English translation of his early (1968) but still
relevant review on the quantum mechanical transport theory is also
included.

Ladislaus Banyai: Profile in Motion _






Contents

Part L The MAN ... .. o e 9
.1. Who are you, Mr. Banyai?
Conversations with Victor Barsan ..o, 11
1.2. H. Haug: Laci’s years in Frankfurt startingin 1984 .......................... 32
1.3. Paul Gartner: A Selfiewith Laci ... 36
4. Luca Mezincescu: From Bucharest to Miami ....................cooiiiiants. 38
PartILThe WORK . ... e 41
L1, SCIentific PAPETS . vttt e 43
I1.2. Short introduction to my papers reproduced in this volume ................. 51
I1.3. Reprints - Elementary particles......... ..ot 53
L. Banyai, N. Marinescu, I. Raszillier; and V. Rittenberg: Irreducible
tensors for the group SU3. Comm. Math. Phys. 2, 121 (1966).............. 55
L. Banyai, V. Rittenberg: The rho - 4 pi vertex in chiral dynamics.
Phys. Rev. 184, 1903 (1969) ... ceviiii i 67
L. Banyai, L. Mezincescu: Null-plane field algebra.
Phys. ReV. D8, 417 (1973) ...ttt 70

11.4.

L. Banyai, S. Marculescu, and T. Vescan: Again, on the gauge
dependence of the renormalization group parameters.

Lett. Nuovo Cim. 11, 151 (1974) .o veee e e e 77
L. Banyai, S. Marculescu: On t'Hooft’s renormalization procedure

in gauge theories. Nucl. Phys. B93,355 (1975) ........coviiiiiiiiinnnnn. 82
Reprints - Solid state and statistical physics...........covviiiiiiiiiininn... 93

G. Ciobanu, L. Banyai: On the kinetic theory of magneto-optical
phenomena by Green function method. Phys. Stat. Sol. 3, 2299 (1963)...... 94

L. Banyai: On the theory of electric conduction in amorphous
semiconductors. Proc. 7" Int. Conf. Physics of Semiconductors,

Paris 1964, D417 ..ot 100
L. Banyai, A. Aldea: Theory of the Hall effect in disordered systems:

Impurity band conduction. Phys. Rev. 143, 652 (1966) ................... 105
L. Banyai: The quantum theory of transport coefficients.

Seminar Fiz. Teor. 1, 13 (1968) ... .o .oeiii i 110
A. Aldea, L. Banyai, and V. Capek: Importance of Coulomb effects in transport

phenomena on localized states. Czech. ]. Phys. B26,717 (1976) ............ 137
L. Banyai, P. Gartner, and V. Protopopescu: Macroscopic behaviour

of a charged Boltzmann gas. Physica A107,166 (1981).................. 141
L. Banyai, P. Gartner: The macroscopic electrodynamic behaviour

of a soluble hopping model. Physica 1154, 169 (1982) ................... 154

Ladislaus Banyai: Profile in Motion _



L. Banyai, P. Gartner: The Clausius-Mosotti limit of the quantum theory
of the electronic dielectric constant in crystals.
Phys. Rev.B29, 728 (1984) . ... .oiii e

L. Banyai, P. Gartner: The Meissner effect in gauge-invariant,
self-consistent pairing theories. Phys. Rev. B29, 4992 (1984) .............

L. Banyai, A. Aldea, and P. Gartner: On the Nyquist noise.
Z.Phys.B58, 161 (1985) ...ttt ittt

L. Banyai, S. W. Koch: Absorbtion Blue Shift in Laser-Excited
Semiconductor Microspheres. Phys. Rev. Lett. 57,2722 ..................

L. Banyai: Asymptotic biexciton “binding energy “ in quantum dots.
Phys. Rev. B39, 8022 (1989) .. ....iiiiiii e

L. Banyai, P. Gilliot, Y. Z. Hu, and S. W. Koch: Surface-polarisation
instabilities of electron-hole states in quantum dots.
Phys.Rev. B45, 14136, 1992 .. .. ..ot

L. Banyai: Motion of a classical polaron in a d.c. electric field.
Phys. Rev. Lett. 70, 1674 (1993) . ..o oviiiri i

L. Banyai and K. El Sayed: Time Reversal and Many-Body Non-Equilibrium
Green Functions. Annals of Physics 233,165 (1994) .....................

L. Banyai, D. B. Tran Thoai, E. Reitsamer, H. Haug, D. Steinbach, M. U. Wehner,
and M. Wegener: Exciton - LO-Phonon Quantum Kinetics: Evidence
of Memory Effects in Bulk GaAs. Phys. Rev. Lett. 75,2188 (1995) ..........

F. X. Camescasse, A. Alexandrou, D. Hulin, L. Banyai, D. B. Tran Thoai, H. Haug:
Ultrafast electron redistribution through Coulomb scattering in undoped
GaAs: Experiment and theory. Phys. Rev. Lett. 77,5429 (1996) ............

G. Meinert, L. Banyai, P. Gartner, and H. Haug: Theory of THz emission from
optically excited semiconductors in crossed electric and magnetic fields.
Phys. Rev. B62, 5003 (2000) ... .cevueeee e

0. M. Schmitt, D. B. Tran Thoai, L. Banyai, P. Gartner, and H. Haug:
Bose-Einstein Condensation Quantum Kinetics for a Gas of Interacting
Excitons. Phys. Rev. Lett. 86,3839 (2001) .....c.ovviriiiiiiiiiieieeenns

M. Betz, G. Gorger, A. Leitenstorfer, P. Gartner, L. Banyai, and H. Haug,
Virtual Carrier-LO Phonon Interaction in the Intermediate Coupling
Region: The Quantum Dynamical Formation of Polarons.

Physica B314, 76 (2002) ... vuutiee ettt

L. Banyai and P. Gartner: Real-time Bose-Einstein condensation in a finite
volume with a discrete spectrum. Phys. Rev. Lett. 88, 210404-1, (2002) ...
L. Banyai: About the c-number approximation of the Macroscopical

Boson Degrees of Freedom within a Solvable Model.
phys. stat.sol. (b)234, 14 (2002) ... ovoinieie e

L. Banyai, A. M. Bundaru and H. Haug: Quasiclassical approach to Bose
condensation in a finite potential well. Phys. Rev. B70, 045201 (2004)....

m Ladislaus Banyai: Profile in Motion



Part I. The MAN

Ladislaus Banyai: Profile in Motion _



m Ladislaus Banyai: Profile in Motion



Who are you, Mr. Banyai?

Conversations with Victor Barsan

VB: Dear Laci, I think, it would be interesting for those who want to learn about your
activity, to get also some biographical marks. Life is strongly related to work and you
went through many domains of science, got a wealth of personal experience in scientific
centers, countries and political systems.

LB: I was born in Cluj, in a family of Hungarian intellectuals. My father, after his
university studies in France, adhered in the thirties to the communist ideology and
was for a while even jailed for communist propaganda. After the second world war,
he had several important, but not political positions, for instance that of the Rector
of the Bolyai Hungarian university in Cluj. My parents taught me internationalism,
humanism, dignity and political courage. The latter contradicted their own political
stances, however they accepted mine. By the end of his life my father became
disillusioned with communism. His last words to me were: “I put my life on a wrong
card!”.

VB: Can you give a glimpse at the history of the today Babes-Bolyai University, which is
Romanian, but has also a Hungarian section?

LB: Since the end ofthe 16" century Clujis a university town. The Academies under the
auspices of the catholic church educated in the German and Latin languages. In 1881
the Hungarian Royal Franz Josef University (the second in Hungary) was founded in
Cluj. Among the students of this university were also famous Romanian intellectuals
like [uliu Maniu, luliu Hatieganu and George Cosbuc. After 1918 Transylvania became
part of Romania and the Hungarian university was transferred to Debrecen. The
Romanian King Ferdinand I University was founded on its place. After the Dictate
of Vienna in 1940 the Romanian university was transferred to Sibiu and Timisoara,
while in Cluj the Hungarian University was reopened. However, due to the 22-year
long lack of continuity, with a heavy import of staff from Hungary. After the second
world war and the return of North-Transylvania to Romania, two universities were
simultaneously acting until 1959 in Cluj: the Romanian “Babes”-university and the
Hungarian “Bolyai”-university. There was a cordial, good relationship between the
two universities. My father for instance, during his time as a rector became life-long
friend with Constantin Daicoviciu, the rector of the Babes University (well-known
archeologist and historian of Dacian civilization).

VB: The multicultural character of Cluj always fascinated me, mostly for two of its
aspects. On the one hand, two catholic clerics (roughly in the 15-th century) there firstly
realized that the Romanian language belongs to the Romanic family. On the other hand
here spent his youth Farkas Bolyai and here was born his son Jdnos, (“the unhappiest
among the famous mathematicians”). It seems to me that this multicultural color of
Cluj unfortunately has paled since your childhood.

LB: The name of the city in Hungarian is Kolozsvar, respectively Klausenburg in
German (Claudiopolis in the middle-age Latin) and it was multi-ethnical along the
centuries, though less today. During the middle-ages the population was mostly
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Hungarian and German. In the 18" century became mostly Hungarian, while in
the 19% century it witnessed the development of the new Romanian bourgeoisie.
Besides these three main groups there was an important French colony (refugees
of the religious persecutions and of the French revolution). I should name also the
neighboring Dutch colonist’s village of Hochstadt. The last one supplied in abundance
the city with first class vegetables and fruits (until Ceausescu!). The Jews played an
important role both in the industrialization of the city, as well as in the cultural life,
however most of them died in the Holocaust.

VB: The collective memory, at least in Romania, blames Horthy for the deportation of
the Jews, but it seems, it is not totally correct.

LB: The anti-Jewish laws were introduced under Horthy and the deportation of the
rural Jews began also under his rule. Therefore, it would be difficult not to blame
him at all. It is also true, however, that after his anglophile youngest son presented
him evidence about the real purpose of the deportations, Horthy stopped the
deportations from Budapest. His son was kidnapped later by the Germans, Horthy’s
clumsy, slow efforts to get out Hungary from the war (he hoped the coming of the
British instead of that of the Soviets) ended with the German occupation of Hungary
and his arrest. The Germans brought the extremist “Nyilas” (Arrow Cross) party to
ruling, The Nyilas government continued enthusiastically the deportation of Jews,
even in the very last days of the war. The deportation of the Jews in Cluj occurred just
three months before the Russians entered Cluj. It is worth mentioning, that the Nazis
tried to hide the purpose of the deportations. They forced some of the deported Jews
to send post-cards with nice landscapes about their well-being to their acquaintances
in Cluj. On the other hand, in this period the Transylvanian catholic bishop of Alba-
Iulia, Marton Aron (himself son of simple peasants), visited Cluj and held a sermon in
the St. Michael cathedral against the persecution of the Jews. After the war, under the
communist rule, he was arrested and kept under home-arrest until his death.

VB: The bright personality of bishop Mdrton Aron was subject of many reports in
the Hungarian broadcast of the Romanian TV (with Romanian subtitles) in the early
nineties. But let us come back to the story of your life.

LB: The first four classes [ learned in Cluj in Hungarian, my mother tongue. The fifth
class I continued also in Hungarian, but in Bucharest, after my father in 1949 had
to move to the capital city as one of the leaders of the MNSz (Hungarian Popular
Union) and after its forced dissolution, as counselor in the ministry of education. In
the 6™ class I moved to a Romanian school for boys. Until that time, my knowledge
of the Romanian language reached only a rudimentary level. | learned Romanian in
a summer vacation camp. Nevertheless, [ had to fight for years with the grammatical
genders, lacking in Hungarian.

The 7" class I started inaspecial school for the children of the political elite, with special
emphasis on the Russian language. This school had a lot of highly competent Soviet
teachers. We really loved them as good pedagogues. Contrary to the expectations of
the regime, with a few exceptions, this school did not produce fervent adepts of the
communism, or of the Soviet Union. However; I learned the Russian language and
got respect for the classical Russian literature, since we went over it according to
the original Russian textbooks. Later I was able to read Solzhenitsyn, Ulitskaya and
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others in original, as well as the rich amount of physics books in Russian.

My break with the political indoctrination occurred immediately after my arrival for
study in the fatherland of socialism, in the famous year 1956. “This is what we must
build up?” I shall tell more about later, in describing my student years.

Strange enough, I discovered my skill in mathematics by a teacher with very poor
formation (former sport-teacher). She run in a dead end by the proof of a geometry
theorem at the blackboard an [ helped her to get out of the catch.

Afterwards I became aware of my mathematical success and by the written tests [
solved the problems of all my friends. To avoid cheating the teacher gave everyone a
different problem but did not care to look at and I had enough time to do the whole
job.

[ had also artistic ambitions and painted in the Pioneers Palace under the guidance
of Spiru Chintild. Unfortunately, he used me for propagandistic paintings like Stalin’s
portrait and Tito’s caricature and I lost my interest in painting. The last kick was my
acquaintance with Eugen Mihdescu, a true young artist, who later illustrated “The
New Yorker”. Now, at old age sometimes I again play around with painting.

=

I became a regular reader of the “Gazeta de Matematica si Fizica” (Journal for
Mathematics and Physics, a publication for schoolchildren), solving a lot of the
proposed mathematical problems just for fun. I remained until now just a passionate
problem solver. Pure mathematics was not my domain. However, as I learned that
mathematics plays an important role in physics, I have chosen physics for my future
studies. A book just published at that time in Russian by Jungk: “Thousands time
brighter than the sun” about the history of nuclear physics played a peculiar role in
this decision.

Here it is the right place to relate an important aspect of my school years. My father
was moved again to Cluj as rector of the Bolyai University from 1952 to 1956.
However, [ succeeded to convince my parents to let me further remain in Bucharest at
the preferred school, getting full lodging in a room of an acquaintance of my parents.
Thus, starting at the age of less than 14, I got my independence.

After graduating from high-school (that meant 10 years only in those times) I got
a Diploma cum Laude and the opportunity to start my university studies in the
Soviet Union. However, since there were no places in physics, I opted for the Physics
Department of the Bucharest University.

VB: Were you not rather attracted by the home city of Cluj?

LB: Of course, I felt and still feel myself deeply connected to Cluj (where I spent
also all my holydays), but the Bucharest University had a better fame, linked to the
existence of the Institute of Atomic Physiscs (IFA - Institutul de Fizica Atomica in
Romanian) and the names of Titeica and Hulubei. That's why I opted for Bucharest.

My first impressions were not positive though. In the first year we had no good
teachers. The one who read Analysis we called just “the convergent”, according to
a known theorem, since he was monotonous and bounded (in Romanian it means
also “narrow-minded”!). The Mechanics lecture was elementary and annoying. In
one of the Heat Physics lectures the professor showed us different thermometers
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lying on the desk. “This is the thermometer with mercury, this one is with alcohol,
and this one with sand ..” Due to a mistake of his labor-assistant, a clepsydra was
laying on the desk. We as students were very malign and defined the unit of stupidity
after his name, recommending for everyday use only its pico- variant. On the other
hand, together with other colleagues I frequented on free basis the beautiful Calculus
lectures of Miron Nicolescu for mathematicians.

During the first semester I was informed, that within a few months I could continue
my physics studies in the Soviet Union. In this first semester [ had to share aroom with
24 colleagues in the students hostel with primitive beds on straw mattresses with
bedbugs. The dishes in the refectory were hard to swallow. Under these conditions
I decided to spend these last months at home in better conditions and moved to the
Babes University in Cluj. I did not want to go to the Bolyai to avoid being the rector’s
son. The Babes University I enjoyed for his nice atmosphere, but I cannot recall very
much about it, since after two months I went to Leningrad.

VB: Tell me about your time as a student in the USSR.

LB: Of course, in Leningrad (today Sankt Petersburg), as a foreign student I got much
better conditions. I shared a clean, well-heated room with a Chinese, a Czech and two
Russians, all of them studying journalism. At least one of the Russians of course was a
KGB stoolie. The student’s refectory was not good, but acceptable. Sometimes [ went
to a restaurant to get better dishes.

The Physics Department was less attractive, it was placed in the former stables of
czar Peter the Great. The lavatories had seats in tandem with a low fence in between.
One could conversate with his neighbor (student or teacher). Alot of primitive things
shocked me. The housing was a big problem in the cities. Several families had to share
a big apartment with only one bath-room and kitchen. The ugliest impressions came
however from the stories heard from my colleagues about the situation outside the
big cities. It was the time of the twentieth Conference of the Soviet Communist Party
with Khrushchev demystifying Stalin and revealing his crimes. This was a very hot
political period.

[ found interesting as well as useful, that all physicists had to learn minimal technical
skills (technical design, descriptive geometry, mechanical, glass and electric
workshops etc.). The general physics and mathematics lectures were taught by
lecturers according to good standard books. The professors did not lecture at
undergraduate level. Accordingly, one did not need to take notes or to read miserable
heliographed texts, as the state of the art was in Romania. Strangely enough, we
foreign students had to participate at the military training together with our Russian
colleagues. We learned how to mount and unmount a Kalashnikov and similar things.
(Later in Romania at the student’s military summer-trainings we learned almost
nothing useful. It was just a useless tormenting.) Since I already spoke well Russian, I
had no difficulties passing exams with good grades. Unfortunately, I did not reach the
interesting lectures, compelled to leave soon Russia.

During the Hungarian revolution in the fall of 1956, we kept us informed about the
events by listening Hungarian radio, as well as Free Europe and Voice of America. In
Leningrad the Hungarian and Romanian broadcasts were not jammed. The jamming
emitters had a finite radius of action and even in Romania there were some areas
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without jamming.

VB: Could you please explain for the younger readers something about the Hungarian
revolution?

LB: After Stalin’s death and the disclosure of his crimes in Hungary, agitations of
left-wing intellectuals and students started to reform socialism. Due to the rigidity
of the system finally a revolt emerged. In Hungary a new government was installed
under the leadership of Nagy Imre (an old communist very popular for his aura of
a reformer). Of course, the revolt was joined also by all anti-communists including
also extreme right. Nagy demanded the depart of Soviet troops and declared that
Hungary leaves the Warsaw Pact. The answer was an armed Soviet intervention, that
after heavy fights on the streets of Budapest reinstalled the old regime and arrested
the Nagy government. They were brought to Romania and lived some years detained
at Snagov, a small town not far from Bucharest. Later Kadar, the new leader installed
by the Soviets, arranged a political trial and Nagy together with some members of
his government were executed. Nevertheless, this revolution was not in vain. After a
few years of terror, the Kddar government had to loosen the grip. In a well-defined
frame in Hungary has been established a status that in the west one called “goulash
communism”, with a higher standard of life and a relative freedom of expression
and travel. Looking from Romania, it appeared as a dreamland. The Hungarians
themselves said that they are living in “the gayest shack of the camp”.

But let me return to my own story:

Not only in Hungary, but even in the USSR there were student movements in 1956,
with spontaneous readings of non-conventional poems at the statue of Mayakovski.
Some unorthodox novels got published like “Not the bread alone”. Our Marxism
assistant wanted to learn from me (between four eyes) about the events in Hungary.
Later I learned that the students were boiling also in Romania and this turned
into many arrestations, especially in Transylvania. At the general meeting of the
Romanian students in Leningrad, some students of philosophy required more
democracy. Soon after the defeat of the Hungarian revolution, a special committee
arrived from Bucharest inquiring the political behavior of the Romanian students in
the USSR and at the same time lecturing us about the right policies of the Romanian
communist party.

Many students and doctorands (called “aspirants”) were immediately called back to
Romania. Among them my friend from Cluj, Stephan Fischer. I was falling slowly in the
trap. | had to face the committee’s accusation that I am a Hungarian nationalist and,
in this way, to harm also my father. Of course, I denied it, but they insisted “perhaps
subconsciously?”. What could I answer to such insinuations? Finally, I was asked if
my level of political education deserves getting further a stipendium in the USSSR.
As I was naive and young I signed it, and that was it. My “unfriendly” comments
regarding the Soviet intervention in Hungary were transmitted by the KGB to this
committee and in March 1957 I received a telegram ordering me back into Romania
to continue my studies at the Bucharest University.

Totally I spent only a year in Leningrad. Before leaving, the vice-dean Novozhilov,
a theorist, advised me to continue in Romania theoretical and not experimental

physics.
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My departure caused lots of tears, since I had to leave behind my love (later my wife
for already 60 years). We met in the Bucharest-Moscow train among my classmate
girls.

VB: How long did this separation last?

LB: Until she got her engineer diploma in 1960. However, she came home in every
semester break and we spent those times together. After her return we married,
although I was still in my last year of studies. (1 lost a year due to a punishment [ am
going to tell about later.)

VB: Thus, you returned to Bucharest ...

LB: Indeed, however this time 1 was living with my parents, who were again
transferred to Bucharest. In the physics department now, I attended interesting
lectures and this time we had good teachers and many very good assistants.

[ was lucky having gifted colleagues like Adam Schwimmer, who became later a very
known and appreciated theorist after he left Romania and got with four years of
retardation his degree in Israel. We competed in problem solving. The mostimportant
lecture was the electrodynamics of Prof. Valeriu Novacu. His lecturing itself was not
good, buthe had a good choice of the thematic. Often, he was replaced by his lecturers
(Klarsfeld, Eftimiu) who gave a good performance. I took no notes but started to read
the best textbooks available both in Russian as well as in English (already available in
the library!). These lectures arose my passion for theoretical physics.

I have a nice recollection about Chaim Iusim (who left later for Israel), lecturing
about statistical mechanics, as well as about Viorel Sergiescu (emigrated to France in
1972) lecturing thermodynamics, both from Prof. Serban Titeica’s chair. Prof. Radu
Grigorovici’s lectures on optics were also remarkable due to the many impressive
experimental demonstrations.

VB: People lived with the illusion, that after Stalin’s death, things should improve ...

LB: Indeed, there was a hope until 1958 when the big cleansing started. That summer
Gheorghiu-Dej, prime secretary of the PMR (Romanian Workers’ Party) started a big
cleansing of cadres overall. People were fired for any or no reason at all. Gheorghiu-
Dej was afraid, that along the destalinization process, Khrushchev might want to
eliminate him also. Therefore, he eliminated his opponents from the party leadership
the “rightist deviationists” Miron Constantinescu, losif Chisinevschi and Gheorghe
Apostol.) and eliminated all those suspected for loyalty to the Soviets. (Before he
killed already his competitor Patrascanu.) To hide the purpose of this operation he
promoted chaotic reprisals. Afterwards he rehabilitated many of the victims.

That summer my parents were fired from the ministry of education and my later
father-in-law from the ministry of commerce.

I was expelled from all the universities for “adverse attitude towards the RPR
(Romanian People’s Republic)”, due to my old sins in the USSR. Fortunately, thanks
to the empathy of most of my colleagues I was not excluded from the UTM (Union of
Young Workers) and this was very important in those times.

The only way for saving itself was to try rehabilitation by “work at the basis”. This
rehabilitation was nothing more but a period of humiliation. I went as a lathe
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apprentice into a factory. In the beginning the workers looked at me with suspicion.
They felt, I am different. After a very short time [ got enough qualification to get
respected also by the older workers. Of course, for me it was easy to learn the art
from a textbook and I had also a natural skill for technics. I enjoyed solving not
only theoretical, but technical problems alike. Later I repaired my car Dacia in our
courtyard myself.

In the fall at the meeting of the Romanian students still returning to continue their
study in the USSR one has exposed in a speech “the right deviationist clique of
Fischer-Banyai”. Many years after indeed we both deviated to West-Germany.

VB: What happened to the “deviationist” Fischer in that summer of 19587

LB: After the “work at the basis” as a frigorific technician and “rehabilitation” he
got his diploma at the Bucharest Institute of Cinematography and worked as camera
man and editor at the Hungarian TV in Bucharest. He left for West-Germany before
me and worked for the German TV. He made a lot of very interesting documentaries
about many countries. Even one about the Papuans in the jungle. He was a well-
known and esteemed person among the Hungarian intellectuals in Romania as well
as in Hungary. He was a charming and talkative person. We stayed good friends until
his death two years ago in Aachen.

VB: What happened to you after the nightmare of “rehabilitation”?

LB: Next year the atmosphere got lighter and after my worker colleagues have
lifted my UTM (Union of Worker Youth) sanction, I could continue my university
studies.

During my work in the factory, as a headstrong [ read many books on quantum
mechanics and back in the university I felt myself above the level of my colleagues,
even above some of the professors. [ worked out my Thesis under the guidance of
the lecturer Meinhard Mayer form Novacu'’s chair about the renormalization group
in the quantum field theory. He had a good reputation after signing a paper with
Bogolyubov at Dubna and after publishing the first book on quantum field theory
in Romanian.

Despite my rehabilitation, at the Physics Department [ was continuously victimized
by the party secretary Smaranda, who treated me as a “spiteful element”. He forbad
me even a practicum at the IFA and although I had excellent grades, due to my
political case history, I got no job either in the University, nor in one of the physics
institutes IFA or IFB. I was offered only a job in the radio-active logging by Ploesti,
which I turned down. Six month I was hanging in the air, living on the salary of my
wife, who worked as engineer at IOR.

VB: It would be interesting to explain the meaning of IFA and IFB. These acronyms look
amazing, since the alphabetic order suggest a certain hierarchy, that incidentally was
not fictitious.

LB: Indeed IFA (Institutul de Fizicd Atomica) founded by Prof. Horia Hulubei (in
Magurele near Bucharest) had the first rang as importance (atomic reactor, betatron)
and dimensions, but had very severe political criteria for the personnel. Prof. Eugen
Badarau founded another more modest institute in Bucharest (Institutul de Fizica
Bucuresti) with research aims in gas discharges (a precursor of plasma physics) and
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solid state, with somewhat more liberal political personnel policy.

Let me return to my griefs: although I had excellent grades, due to my political case
history, I got only a job in the radio-active logging by Ploesti, which I turned down.
Six month I was hanging in the air, living on the salary of my wife, who worked as
engineer at IOR.

However, I got the support of Prof. Valeriu Novacu deputy member of the Romanian
Academy, head of one of the chairs of theoretical physics at the Bucharest University,
member of the central committee of the communist party and governor at IAEA). He
was an acquaintance of my father from the illegal times of the communist movement
before the war. He was one of the idealistic communists and helped gifted young
physicist without regard to their political sins. He stems also from Cluj and became,
like my father, communist during his studies in France. After 6 months indeed, I
succeeded to join the theoretical physics section of the IFB, that had been recently
founded by Novacu.

VB: How did it look this theory section and what kind of activities were on in the IFB?

LB: This section at that time comprised only six researchers. The unofficial boss
was Viorel Sergiescu, specialized in solid state theory (noise in solids), a former
lecturer at Titeica’s chair. During the 1958 cleansing he lost his faculty position, went
first to IFA, but landed finally at the IFB. There were also other researchers who
got transferred from IFA on political grounds: George Ciobanu worked on transport
theory and Alexandru Glodeanu on the theory of impurity states in semiconductors.
There was also Peter Handel, one year elder, working on the 1/f noise, that remained
his life-obsession. And there were the two novices: Lucian Brindus and me.

The orientation was determined by the experimental solid-state research in the
institute, but without any direct link.

I met here again Prof. Grigorovici, who also lost his faculty position and led an
experimental lab on semiconductors, something completely new for him.

VB: How did you integrate in this collective, and who guided you?

LB: Sergiescu showed me a list of solid-state theory books, but I interacted sparsely
with him. I respected him for his solid-state book in Romanian, as well as for his
courageous political mentality and his broad culture.

The two novices however cooperated from the beginning and we succeeded to
publish already in the first year in science two papers on the quantum theory of
transport in the Studii si Cercetari de Fizica (Studies and Research in Physics) and
Revue Roumaine de Physique. The first one, although correct, was a typical beginners
work. The next paper [ wrote already with a senior researcher, George Ciobanu, on
magneto-optical phenomena treated with the modern Green functions method. It
was published in English in the just started Physica Satus Solidi. [ was joined soon
this time as a senior by Alexandru Aldea from Grigorovici’s lab and we published a
paper in the Physical Review about the Hall effect in impurity band conduction.

VB: Soon you started to interact with the experimentalists from the IFB.

LB: Seemingly, it was rumored that there is a new researcher on his own feet and the
experimentalist, whose contact with the previous theorists failed, tried to contact
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me. First it was Cruceanu, but after some discussions with him I saw no common
interests. Then one nice summer evening after some event in the institute we walked
together with Grigorovici, Cruceanu (the scientific secretary) and Rodeanu (the party
secretary) along the Dorobanti street on a common home way. The conversation
was mainly a monologue of Grigorovici about his extremely interesting experimental
findings with thin layers of amorphous Germanium. First at all he observed, that
these had similar properties to the crystalline semiconductors. On the other hand,
the activation energy of the conduction was much greater than the optical gap. He
tried to convince me to solve theoretically this challenge.

VB: How did you react?

LB: The story of Grigorovici raised indeed my interest and I tried to build up myself
an image about the amorphous semiconductors. [ looked around at the literature
but found nothing relevant. Unfortunately, | missed Anderson’s paper. However,
the Koster-Slater model seemed to me the right tool. I tried to imagine building an
amorphous material out of a crystal by moving atoms out of their positions. Every
such a displacement had to create a localized state eliminating in the same time one
fromthe bands. In this way I concluded, that thisleads to partially “eaten” nonlocalized
(conducting) bands and a lot of localized states in the former gap. These states do
not conduct, but still contribute to optical transitions. Therefore, the conduction gap
should be greater than the optical one.

VB: How reacted Grigorovici to this theory of yours?

LB: Imadeapresentationin the seminar of Grigorovici’s lab, preceded by a description
of the Kubo formula. Until then everyone thought only in terms of Boltzmann’ theory.
Grigorovici was very excited and enthusiastic. He encouraged me to send a short
paper about my theory to the international semiconductor conference in Paris. I did
it, adding also another piece of theory to it. | extended the tight binding model to a
disordered lattice of atoms for the estimation of the band conductivity using also the
experimental X-ray results about the lattice structure. It came out surprisingly good,
but I could not really justify the approximations I used.

Grigorovici was extremely interested to have me with him at the Paris conference, but
with my background the chance to get a pass was just zero. Nevertheless, he made a
desperate attempt. Without telling me about it, he visited my parents knowing, that
they are old communists and convinced them about my scientific gift in the naive
hope they may move something through their connections. Anyway, my parents
were very impressed.

Although I could not attend the conference, the paper appeared in the Proceedings
and the later Nobel prize winner Sir Neville Mott read both the paper of Grigorovici
and of mine. He made a lot of publicity to my theory and of course thereafter it was
quoted in hundreds of other papers.

VB: As far as I know, the crowning of the success occurred at the first international
conference on amorphous semiconductors held in Bucharest.

LB: Grigorovici personally met Mott and as an old spice intellectual got his respect.
I do not know how it did happen, but Grigorovici succeeded to organize this first
amorphous semiconductor conference in Bucharest and Mott itself attended it. At

Ladislaus Banyai: Profile in Motion m



that time my mind was already on elementary particles.

What I do know however is that this project could not have occurred without the full
rehabilitation of Grigorovici. There were some intrigues against him and at a given
time he went to counter attack. He assembled all his publications in a nicely bound
book and with this in the hand succeeded to obtain an audience by Stefan Voitec
(one of the secretaries of the communist party, a former social-democrat, colleague
of Radu’s father, who died in prison). The time was probably rife and Voitec perhaps
wanted to calm down his own conscience. Anyway, he succeeded to promote Radu
Grigorovici to be a member of the Academy and nominated him as vice director of
IFB. Without these preliminaries the conference had no chances at all.

Mott visited also the IFB and gave a talk speaking at a given moment about professor
Banyai. He was shocked when he heard the audience laugh. Then, somebody explained
him, that Banyai was just a young research associate, not a professor. He replied, that
in America every young physicist is a professor, at least assistant professor.

VB: To my knowledge Mott invited you to Cambridge?

LB: Indeed, Mott invited me as a postdoc to Cambridge, but I politely declined it. It
may look strange, but | had a clear motivation in my head. In the meantime, within
the theory section Novacu initiated also a research group on elementary particles.
plunged myself into this new field having already several published papers at that
time. Even more, I obtained by competition a six-month grant at the ICTP (Trieste),
and I knew I had more chances to obtain a pass for that.

Besides this already important and passionate argument, there was another even one
weighting more heavily. 1 could not enjoy being under the authority of the famous
Mott dictating me what to do. Besides I did not like at all his style. Sure, it would have
helped my career, but I would have lost my freedom in choosing my research topics
and my coworkers. In Romania, under the conditions of a good connection to the
external scientific word (what seemed plausible at that time) I felt myself in a more
advantageous position.

Nevertheless. much later as I returned to solid state theory and worked together
with Paul Gartner and Alexandru Aldea on hopping conduction, I had a fruitful
correspondence with Mott.

VB: Please tell me more about that elementary particle theory group.

LB: Slowly Novacu brought a lot of new theorists into the IFB. First came Hans
Raszillier (my very gifted former university colleague), then Vladimir Rittenberg, a
former assistant at the chair of Novacu, who lost his university job due to the political
purge. Together with Niky Marinescu (also a former colleague of mine) who came
over from Grigorovici’'s experimental lab, we formed the nucleus of the elementary
particle theory group, later joined us also the younger Petre Ditd, Nucu Stamatescu
and Luca Mezincescu. The solid-state theory group grew also. Mircea Bundaru came
(a physicist with very bright mind), Tony Fazekas and Alex Friedmann. At these new
dimensions of the theoretical physics section one could already organize regular
seminars with well-prepared reports, published in a collection of volumes published
by the Romanian Academy. The dynamic soul of the elementary particle group was
my four years older friend Vladimir Rittenberg. He was an enthusiast, full of energy
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and thirst for knowledge and he had a true gift for organizing. A person with rare
intelligence and many human qualities. Around him assembled young physicists
not only from Bucharest, but also from Cluj and Craiova. The two of us quarreled
often about physics, but this did not at all affected our friendship, but just served for
a better understanding. (Later I learned about the Securitate records of my phone
conversations full, with mysterious terms like “Gamma function”, “beta”, “bootstrap”
and so on).

Rittenberg organized a weekly informative seminar on particle physics about new
papers in the Physical Review Letters. Each of us choose an article, worked it out and
presented it the next week. He also organized the editing of preprints of our own
works and that way also an exchange of preprints with important scientific centers.

After leaving Romania, Rittenberg spent 5 years in the USA as a postdoc and became a
university professor at the Bonn University, having a wide international recognition.
He died recently at the age of 84, but just a few months before, already having lost his
mobility, he still worked on physics with his Brazilian and Russian coworkers.

Here 1 would like to tell a few words about a phenomenon, typical in those years
for the science in socialist countries. [ was already at the IFB, but Rittenberg grew
crystals in a technical institute (ICET), while the excellent Adam Schwimmer was
substitute teacher in Slobozia, a small town at about 100km from Bucharest. He was
expelled also in 1958 from the university because his family applied for emigration to
Israel. Together with other physicists interested in elementary particles, [ organized
a private seminar at my home, trying to follow the evolution in that field.

After Rittenberg, Marinescu and Stamatescu left for the West, the group became
smaller and after the relocation of the institute, under the new name IFTM (Institute
for Physics and Thechnology of Materials) to Magurele it was even split, part of it
went to the IFA (renamed as IFIN (Institute for Physiscs and Nuclear Engineering).
I continued to work for a while with the 8 year younger Luca Mezincescu and we
remained good friends till now even being at a big distance from each other.

VB: Can you tell me more about the Novacu’s role in the theory section and in the
elementary particle group at the IFB?

LB: As [ already told, Novacu not only founded these collectives, but by his personal
intervention he brought here young gifted physicists regardless of their “personal
files”. In a way he offered them a “political asylum”. He was an idealist communist of
the old guard, who rejected any kind of discrimination.

Novacu had very clear moral principles he always kept. He was against exploitation
and never signed works of his coworkers. Therefore, had no scientific publications
at all. His enemies in the Academy hated him because he was a communist and tried
to mob him. Grigorovici heard about it and advised us to put his name at least on one
of our papers, otherwise the very existence of the theory section was endangered.
Novacu, like a virgin, held against, but in the end, we convinced him to do it for us,
the theorists of IFB.

Novacu was always present in our seminars but spoke rarely and was not nasty if we
rebuked him. He gave us free hands in our activity.

Although he was not a remarkable physicist, his role in the development of theoretical
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physics in Romania was extremely important.

VB: What was the general ambiance in Romania, that allowed this evolution of the
scientific activity?

LB: All this occurred in the frame of a slow opening under Gheorghiu-Dej regime.
The collections of the physics libraries were filled with western books and journals.
We succeeded to have in the IFTM even a better library than the one I found in
Frankfurt. Of course, we alone chose the titles. Already in the university library one
could read original books in English, not only the Russian translations. Nevertheless,
the Russian physics literature (translated, or original Russian) played an important
role for my generation. The Russian books (ignoring copy rights) were very cheap,
covered almost all domains of physics and contrasted with the poor print quality of
the Romanian books. I collected hundreds of physics books. Of these I succeeded to
bring about a hundred to Germany.

Moreover, our generation had already the possibility to publish in Western journals
and I was among the first who published a paper in The Physical Review.

We got foreign visitors. At the beginning only from the socialist countries, but later
also from the USA. The doors opened a little bit for scientific visits in the West.

The previous after war generation of scientists had to work under extremely difficult
circumstances. Especially those who did not managed the Russian language were
restricted to a few poor translations. The libraries were empty. Publishing was
restricted to local journals and of course any link to the West was blocked. No
conferences, no visits and no visitors. Not to speak about the ideological dogmas.
Quantum mechanics was hardly accepted because the indeterminacy relation.
Blohintsev’s famous book, translated into Romanian had to include a chapter
invoking Lenin. I do not have to recall the true political persecutions.

[ would say: I was lucky not to be born earlier!

VB: You sustained your PhD Thesis at the age of 29 with a subject concerning the theory
of elementary particles. Tell me something about the most interesting part of this work.

LB: I shall not mention the content of the Thesis. Today it lost its importance.
However, [ will tell you about the work done on this Thesis, since it influenced my
later evolution.

With Novacu’s help, Rittenberg and me could work two weeks at the DACIC
computer of the Mathematical Institute in Clu;j. It was a self-made computer built up
by enthusiastic local engineers and mathematicians out of occasional spare parts of
different origin and electronic tubes. It took two big rooms of space and was noisy as
a tractor. After several hours of work, it had to be shut down after having saved the
data. The neon lamps showed only 0 or 1 (not lightening or lightening). It allowed
programming in a primitive assembler language. The output was on punched bands
or on an old telefax inherited form the railways. A mathematician explained us on the
first day the meaning of programming and the use of the machine. Thereafter we had
the monster in our own hands. This was the start of my flirt with the computers and
they fascinated me up to this very time.

VB: In this period of opening of Romania you had the chance to “go West” frequently
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and you spent there even longer periods. How did influence you this new experience?

LB: Of course, the visits in Trieste at the ICTP (the first one of 6 months, followed by
shorter ones each of two months) impressed me very much and allowed to develop
contacts with western physicists. I got also several invitations. One of them was by
Ziman for a postdoc position at Bristol, but like by Mott I declined it, since I was
at that time interested strictly in elementary particles. However, 1 visited several
institutes in Italy giving seminar talks. I gave a talk also at CERN. While at the ICTP
[ published some papers, I worked out there. I lived with the hope that due to these
contacts with the physics world I can further work in the field of elementary particle
theory while still residing in Romania.

In 1974 I went to Marseille at the Centre de Physique Theorique du CNRS for a whole
year. Luca Mezincescu at the same time went to Dubna for several years with my
personal recommendation to Ogievetsky (during a short visit [ had in Dubna).

When I got back from France, I decided to turn slowly back to solid-state physics.
This change was motivated by many arguments. First of all, I understood that
unfortunately, with the weak contacts we had, we cannot keep the pace with the
rapid progresses in the field of elementary particles. Secondly, I felt already, that
the relative opening in Romania is coming to its end (the “mini cultural revolution”
just started). The third thought was also my disappointment regarding the quantum
theory of fields. It made big progresses predicting and discovering a lot of new
elementary particles, but there was no hope to compute anything, while the link to
the rest of the physics was rather confuse.

VB: A change of the research orientation might be rather traumatic. It seems, with you
it was quite different.

LB: It was not difficult. I enjoyed changing from time-to time my scientific interests.
Otherwise I would get bored. On the other hand, one has a big advantage entering
a new field. One is not yet impregnated with the prejudices that impede progresses
forward and one might bring in methods and approaches from other domains.
Changes of research objectives accompanied my whole life even in Germany.

Back in Romania I worked for a while on two fields. With Paul Gartner and Alexandru
Aldea on solid-state theory (hopping conduction) and with Sorin Marculescu from
Titeica’s chair, on quantum field theory. According to my opinion, he was the most
talented theorist from this chair. Of course, with the exception of the late Andrei
Mezincescu, who choose to change soon to the IFTM, since he was a creative mind
and had no people to talk with there and did not want to waste his time with
teaching. Besides, he heard from his younger brother Luca about the pleasant,
fertile atmosphere in our section. Previously he spent two years at the Moscow
university by the famous Tyablikov, who died before Andrei could have had finished
his PhD. Andrei was an encyclopedic mind with profound knowledge of physics and
mathematics. He could immediately name the paper, where one may find the right
answer to the given question. The only problem of communication with him was
the enormous amount of links opened by him and one had to bring him back to the
initial subject. Andrei spent two days in prison during the anti-Ceausescu upheaval
and afterwards led the IFTM for a while. I invited him to Frankfurt to give a talk,
mostly for mathematicians. He spent also some time in the USA and the two brothers
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published their only common paper, which is a dear memory for Luca about brother
who died so early.

During my collaboration with Marculescu we had often chats with Titeica, but he
avoided recent aspects of physics, even those related to his famous thesis.  remarked
a similar stand by other famous physicists in advanced age, as they could not follow
any more the evolution of science. Now [ am also old, and I can understand very well
their behavior.

In the same frame I recall the often heard allegation that Titeica did not create a
Romanian school of theoretical physics. The truth is that, after losing the link to
the world, it was not any more possible. While his former colleagues by Heisenberg
revolutionized physics in the USA, he satin a corner completely isolated. Later maybe
he could have compensated this, but he did it not. As I entered the IFB he was 53
old and for me it was already clear, he lost the link. On the other hand, he disposed
of no such strong political position as Novacu, nor had he the energy to organize
something. Titeica was a disappointed man, looking for refuge in music and only on
rare occasions showed the shining of his remarkable mind.

VB: Many of your colleauges left Romania and the institute underwent many changes,
IFB became IFTM. The political atmosphere also changed drastically. How did that
affect your scientific activity?

LB: Indeed, after the “mini-cultural revolution” of Ceausescu many things changed
in Romania and our Institute moved to Magurele near IFA. Despite the serious
worsening of the situation, without being a party member I still enjoyed support
from many persons in key positions. On local level I had to mention the late Florin
Ciorascu, a former director of the IFB, a man of outstanding qualities and Alexandru
Glodeanu, the party secretary in the IFTM. My big Maecenas however was lon Ursu
the president of the CNST. I enjoyed direct access to him and he even kissed me at one
of these encounters. I was also his intermediary connection to Abdus Salam (Nobel
prize winner and director of ICTP). Among others I transmitted to Ursu Salam’s
initiative to invite Chinese physicists to Trieste through the Romanian channel.
As a major action I got the support of the ICTP to organize in Bucharest the first
international conference on hopping conduction.

The theoretical physics section and the IFTM itself still conserved a pleasant
atmosphere of work. We lived in an ivory tower amid a gray society. In the IFTM
I worked with Gartner and Aldea on hopping transport and we won the prize of
the Academy. With Gartner I wrote also a series of papers about purely theoretical
problems at the edge to mathematical physics, like the quantum mechanical proof
of the Clausius-Mosotti formula, the Meissner effect and the connection between
the kinetic and hydrodynamic levels of description of semiconductors. Mircea
Bundaru, Andrei Mezincescu and Paul Gartner established a bridge to the excellent
mathematical physicists of the IFIN: the late Nae Angelescu, George Nenciu and Vlad
Protopopescu. We hold several common seminars with them.

Otherwise, the connection to the external word was very reduced and we got less and
less foreign journals in the library. For a xerox copy one needed a special approval.
There was a shortage of writing paper. Instead coffee we drank a mixture of chickpea
and rye coffee substitute. One mobbed us with meaningless “voluntary” works at the
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weekends. During the draught we had to irrigate the tomato fields with cups of water.
The toughest torture were the winters without heating in the institute building. We
worked with mantles and gloves on and hid small electric heaters under the desk.

VB: How it went the cooperation with the socialist countries?

LB: There were agreements between the academies including visits and cooperation.
Although they did not compensate the lack of links to the West, they played an
important role. [ went for short visits to Czechoslovakia, Hungary and the USSR.

We had two important visitors from my point of view: Vladek Capek from
Czechoslovakia and Harald Boéttger from the GDR. With both I got soon a common
language not only in physics, but also in politics. I really don’t know by what kind of
miracle we had an immediate confidence to each other and remained good friends
even after my emigration to Germany. With Capek, Aldea and Gartner we wrote also
a paper to explain the very low temperature plateau of the Seebeck coefficient in
amorphous semiconductors. This effect was observed also by Lili Vescan and [ heard
about during my morning coffee drinking by Tia Belu directly from Grigorovici.

At that time, I still had a close relationship to Grigorovici. He wanted to convince
me to become his successor as the “virtual boss” of solid-state physics in Romania. I
decidedly refused his proposal as I had no ambitions for any leadership. I wished to
do research for my own pleasure. My wife always used to tell about me that [ never
worked but just played my whole life long. There is some truth in it.

VB: You had the chance after many years to visit again the USSR. What kind of
impression you got this time?

LB: The one-week visits each in Moscow and Leningrad proved to be very interesting
as well as from the scientific side as from the general view of the country. At the
Moscow university I met Igor Zvyagin and we became friends. He was formerly a
colleague with Ciobanu at de Noziéres in Paris. Later he was one of the external
referees for my Professor title in Frankfurt.

In Moscow I visited also FIAN (Physics Institute of the Academy of Sciences) and
got an enthusiastic receival by Maximov and his coworkers. With them we had some
common topics on the theory of dielectric response. The welcome resulted in a lot of
vodka drinking. I managed to keep myself sober, but Maximov drunk out of his mind
and one stopped him at the Metro entrance. After recovering a little bit, he took me
against all my resistance to his home outside the city to show me as an outer space
being to his family. Only before returning to Moscow he told me that the place he
was living was forbidden for foreigners and I must keep my mouth closed during
my travel. | felt a little bit cold in my back but succeeded to return without incidents.

In Leningrad I gave a seminar talk at the Joffe institute and got new friends Efros and
Shklovsky. Both invited me to their homes. Their living conditions were decent. One of
them had a renovated flat separated from a former huge apartment (“kommunalka”),
the other one was the owner of two small (“koopertivnye”) flats in a new building.
One of them served as his office. The theorists worked mainly at home and met at the
institute only for the seminars.

I made a visit also at a former colleague of my wife. They also lived on a decent
standard. However, during the dinner her man looked often out of the windows to
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check if their car, they brought out of the garage for me, was not stolen. There were
still some bizarre things, as the long years of wait for a car and its use only in the
summer collecting mushrooms in the woods. The way they could spend their state
organized summer vacations sounded also strange to me.

Compared to Ceausescu’s Romania, things looked still better. The people carried
not any more the permanent fear with them, discussing freely. I was lodged in a
new modern hotel built by the Finns on the Neva river-shore. (But the supervising
ladies still sat at every floor at their small tables.) Both Moscow and Leningrad were
brightly lightened in the night and everywhere [ saw modern color TV-s.

Another funny experience [ had as [ went on my own money, out of curiosity to the
amorphous semiconductor conference of the socialist countries in Chisindu. In the
Ungheni border station the Soviet officer could not conceive how one can combine
two such things as a scientific visit and a private pass. As a private person I had to go
through the Intourist offices and as a scientist | must have had an official pass. He led
me to the commanding officer’s office. I showed him my invitation to the conference,
but at night around two o’clock he could reach nobody. I told him in an amused tone,
that I am ready to take the next train back to Bucharest to relate about not being
allowed to participate at an international conference. After that he got angry and
greeted me with “idite k chortu (go to hell)” and I could continue my travel.

The Moldavians were very kind with us and again [ met a lot of relevant soviet
physicists like Dneprovskyi, with whom I kept also later the contact. The city itself
- Chisindu - was not very attractive. I had an interesting private visit by a Moldavian
family and learned a lot about their fate and lives.

VB: Although you spent longer periods in the West, even together with you wife, you
always returned to Romania. What determined you later to change your mind and how
did you managed to emigrate?

LB: During my six months Trieste visit in 1970 my wife could visit me and with our
Dacia 1100 car we travelled through Italy (Venice, Rome, Florence, Napoli, Capri,
Amalfi, ...). On our way I gave also a seminar talk at FRASCATI and from the fees |
bought new tires. I accompanied her by the return until Vienna and made a nice
guided tour of the city. It was wonderful, but we never thought at all about remaining
in the West. We believed, from now on everything would turn to be better.

In France where [ stayed a whole year from March 1973 my wife got the permission to
visit me for two months. [ waited her in Switzerland at my old friend Victor lonescu
and we travelled through the beautiful landscapes of the Alps with my small, used
Citroen “deux chevaux”. Later we travelled around in France (Paris, Vallée du Loire,
Nizza, Monte Carlo, Avignon, Arles, ...). It was wonderful in France, but in Romania
the things were not any more looking pink. My wife had the first thoughts not to
return. I was less pessimistic and still was for returning. Anyway, it was not a well-
defined option. Our 10-year-old son and our parents would not understand such a
step and [ had no immediate job options.

After returning to Romania the changes I felt were so disastrous, that I was depressed
for months. I succeeded however to change the direction of research and to adapt
myself to the new conditions.
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As I already mentioned, [ was in the graces of Ursu and in August 1983 I was to
travel to Trieste as lecturer at a summer school and in the same time to finalize
the organization of the international conference on “hopping” I initiated with the
support of the ICTP. I felt myself too sure in the “saddle” and convinced Ursu to let
my coworkers (Gartner and Aldea) to accompany me. They already went to Trieste,
but I still did not get a pass. I went to Ursu to complain about and he reassured me to
solve the problem by phoning to the Securitate. I should call him the next day. Next
day his secretary told me that Ursu was not in. [t went on like this for days. My wife
suggested me to clarify the situation and check the “absence” of Ursu. I placed in the
early morning my Dacia 1300 at a corner with a nearby public phone and a good
visibility towards the CNST entrance. | saw Ursu climbing the steps and ten minutes
later I called his secretary. Although she covered the phone micro with her hands,
I could overhear as she was asking, “What shall I say to this guy?”. Things got clear
for us, I fell in disgrace due to something the Securitate told Ursu. (Here I have to
mention, that during the same summer [ was summoned twice by the Securitate to
cooperate with them and I flatly refused it.)

You might understand how frightened and depressed we became. But things did not
end that way. Since [ applied for a private pass for this scientific visit, I applied for an
audience at the passport office. The audience came fortunately at a time, when Ursu
left Romania with an official delegation to South America. I brought with me all the
correspondence regarding the future conference and bluffed saying: If they do not
deliver my pass within two days, they must share the responsibility for the failure
of this international event. Seemingly nobody wanted that, Ursu was not there to be
asked and the next day I got a phone call to get my pass. The day Ursu landed at the
Bucharest airport I was already in the train toward Budapest. Just before (under the
blanket) my wife told me: “If you return I shall divorce you!”. She was ready to wait
despite all the risks but did not want to remain any further in Romania.

I told my mother about our decision only on the way to the railway station and our
son only as the train started. From Budapest, being at my uncle, I phoned home, that
[ am already outside.

A poignant detail expected me in Trieste. As Salam saw me, he got confused saying: “I
just met Ursu a few days ago and he excused himself of not being able to support you
anymore and nevertheless you are here!”

VB: You felt no remorse to leave your old mothers alone?

LB: Even, too much! However, my mother and later the mother of my wife were in
good hands. From the West we were able to help them more efficiently with money,
parcels of food, medicine, as well as all kind of gifts for those who took care of them.
Both visited us in Germany and we tried to show to them from the Western world,
as much as they could enjoy. After the borders opened for us we went twice a year
to visit them. My wife and me, we loved enormously our parents and always keep
them in our heart and mind. Nevertheless, we think, it would have not been right to
sacrifice our future and our mothers also encouraged us in our endeavor.

VB: Tell me about your first steps as a physicist in the West. How did you succeeded to
get into the first lines of solid-state theory?

LB: After my arrival in Trieste, I called my old friend Vladimir Rittenberg, who was
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a professor at the Bonn University and told him, that I decided not to return to
Romania. He sent me immediately an invitation for three weeks to give a series of
lectures at his university. On this basis [ got immediately a visa for West Germany. In
the meantime, at the ICTP in the frame of the summer school Prof. Franz Wegener
from the Heidelberg University gave a lecture about disorder and he wrote my name
on the blackboard quoting my Paris paper. After that it I met him, introduced myself
and told him, that I would be glad if he could offer me some months at Heidelberg
to put my feet in Germany. He promised and indeed he offered me later a 6 months’
work contract in his theory group.

In Bonn I stayed more than three weeks. My friend Vladimir Rittenberg succeeded
to get some financial support to prolongate my stay until the Heidelberg invitation
could start. He was extremely generous with me and I lived in his apartment for
almost all this time. I have to mention here, that in the 14 years of separation our
ways in physics splat far away and he could not offer me any perspectives, besides
the human solidarity.

In the meantime, | renewed my contacts with the German physicists I already met
at the ICTP. Prof. Peter Thomas invited me to give a seminar talk at the Marburg
University and | was a guest in his house for a couple of days. He recommended me a
young coworker of him, who went to Heidelberg as a postdoc. In Heidelberg I wrote a
paper together with him and a mathematician, that was published in Phys. Rew.

I had several invitations for seminar talks and in Kéln even for a colloquium. Prof.
Hajdu told me, that he knew two papers of mine: the one at the Paris Conference and
my review paper about Kubo's theory in Novacu’s Seminars, included as a reprint in
this volume. Although it was in Romanian, he somehow managed to understand it.

Still being in Heidelberg I got an invitation to lecture at a summer school in Santa
Fe (Arizona) about the scaling connection between the kinetic and hydrodynamic
descriptions we published with Paul Gartner. I spent a month in the USA and got
also a job proposal from Prof. Scully, which I declined, since I did not understand the
American system. He told me to prepare a research proposal and I had no Idea how
to do it. In Europe you should adhere to the subjects of the group and the proposal for
the financial support is forwarded by the inviting Professor not by the guest. Anyway,
[ was not very attracted by the American way of life and rather wanted to remain in
Europe. In my Eastern naivete I thought the farther one goes westward, the higher is
the living standard and civilization, but it was not that way.

After returning to Germany I got soon two positive answers at my job applications.
The first one came from Prof. Gétze at the Technical University in Miinchen. We met
in Trieste and he worked on “hopping” like me. The position however was limited
to two years. I visited him, gave a seminar talk and even got a lodging offer of a
small furnished flat in the villa of another professor. A few days after I got by post
the contract to sign. Before posting it, I got a phone call from the secretary of Prof.
Hartmut Haug of the Frankfurt University inviting me to meet him the next day. We
went to a small restaurant and had a pleasant conversation. At the end he offered
me a position that could be extended up to 5 years. His condition was, that I must
turn my activity toward his new, modern research orientation (non-linear optics
of semiconductors). I decidedly preferred Haug's variant, while the new research
field attracted me. On the other hand, 5 years gave me the needed stability, since as |
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expected to get within a year or so my family out of Romania.

During the two and half years of waiting, my wife could keep her job and my son
continued his architecture studies. Before leaving Romania, my wife succeeded to
change our spacious apartment, where we lived together with her mother into a
small one not far away of her sister. She took over the burden of caring.

The choice of Haug was a very lucky one, although [ knew almost nothing about him
before. He was already an important person in the optics of semiconductors. A field
with growing actuality due to the new lasers of high intensity with ultra-short pulses
as well as the new low dimensional semiconductor structures. His field became
soon one of the most important ones in solid state theory. I had luck also sharing the
office with Stephan Koch preparing his habilitation. He was a bright ambitious young
physicist and later he got to be one of the most important scientists and science
organizers in Germany and the USA. We soon developed a friendship and published
within a year together with him and Haug a successful paper. The cooperation with
him went on over the years and [ was his scientific guest at the Optical Science Center
in Tucson for several months, while together with my wife we lived in his splendid
villa in the Sonora desert.

By Haug I could benefit also of similar advantages I had in Romania. I got enough
freedom in the research and I had several young gifted students and doctorands to
supervise and work with me. Haug was an extremely active, stimulating physicist,
being always up to date with the latest most important and interesting theoretical
and experimental problems and I was glad to join him in solving these. We were
complementary to each other. He also appreciated my experience with the quantum
theory of fields as well as my mathematical skill. I participated at his broad
cooperation, with many theoretical and experimental groups in the whole world and
got also some appreciation. In the same time, he offered me and even encouraged me
to have my own different, independent fields of research with own coworkers and
invited scientists. He cared to equip the group with the most up-to-date computers,
so we were the first to solve many new difficult problems.

As I came to Germany the prospects to get a professorship were just zero, due to
formal aspects as well as to the lack of large contacts and knowledge of science
organization. For a C2 or C3 professor [ was too old, while for a C4 I had to follow a
longer path. In Germany before getting the professor title one has to get the title of a
“Privat-Dozent”, implying the publication of a scientific monography. Therefore, only
a position of a “wissenschaftlicher Mitarbeiter” (scientific coworker) was available
for me. It was well payed, but its duration is limited to 5 years. Haug got me on such a
job but also pushed me forward to get the Privat- Dozent title followed with that of an
extraordinary Professor. Moreover, in order to keep me in the Institute he succeeded
to obtain the exceptional approval of the Ministry of Education to transform my
position into a permanent one. I was not keen to be a globetrotter and [ remained
here.

[ had various invitations for seminar talks at many universities. In Cambridge I met
again Mottas abronze statue. My most successful talk was at The Humboldt University
in Berlin at the invitation of Prof. Zimmermann. The first day I had a Colloquium
about quantum kinetics with many experimental illustrations and the next day I gave
a supplementary seminar talk about irreversibility in a solvable classical polaron
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model, intended for a restricted auditory of theorists. To my greatest surprise, it
turned out that so many were interested in my lecture, that they filled the room.

[ held many years along the solid-state theory lecture in Frankfurt, 6 months also at
the university of Strasbourg and I gave a series of lectures about low dimensional
semiconductors at the University of Lausanne and about quantum Kkinetics at the
university of Marburg. I had also an invited talk at the Spring meeting of the American
Physical Society.

My old tradition to cooperate with experimentalist in the IFB continued also being
in Germany with experimental groups in Frankfurt, Karlsruhe, Stuttgart, Miinchen,
Strasbourg, Paris and Tucson. We used often to publish joint papers with them
(experimental results and the theoretical interpretation). On the other hand,
sometimes [ worked on pure theoretical topics as Bose condensation in real time,
biexciton in a quantum dot or motion of a classical polaron in an electric field.

[ spent exceptionally interesting years with Hartmut Haug and we remained good
friends, meeting often at our common office at the university.

VB: As far as I know, you kept along this time also a strong link with the old coworkers
in Bucharest.

LB: After the regime change in Romania I invited Paul Gartner to Frankfurt and we
worked again together for two and half years and published together with Haug and
some of the doctorands 12 papers in Phys. Rev. and Phys. Rev. Letters. Thereafter Paul
was already so known in Germany, that he got immediately a job at the University
of Bremen, where he worked until his retirement. Just before my own retirement I
invited also Mircea Bundaru for 6 months and we worked out together with Haug a
nice paper on Bose condensation in a finite potential well. I invited also old friends
to give seminar talks in Frankfurt like Luca and Andrei Mezincescu, Alexandru Aldea
and some of my Russian acquaintances.

VB: Runs scientific research in Germany different compared to the one you experienced
in Romania? What are the main differences?

LB: The most important difference is that scientific research occurs mostly in the
universities and not in independent scientific centers. A professor most have had
a research record and his main activity is still doing research. Pedagogy is merely
a secondary task. His efficiency depends on the quality and number of coworkers
(graduate students, doctorands and postdocs), on the technical equipment (by
theorist -modern computers), on the good contacts with other research groups, the
number and quality of visiting scientists and the possibilities to attend important
conferences. To fulfill all these requirements, beyond the minimum offered by the
finances of the university one has to apply for founding at the DFG (German Physical
Society), EU or DAAG (Foundation for international cooperation) or other sources.

Generally, in Western Europe physicists prefer to work in large groups of theorists
and experimentalists from different universities. In this way one forms clubs around
a certain thematic. This collective activity is encouraged by getting easily financial
support for their projects. Individual projects have less chance to get approved.

Of course, in the very last years in Romania we had to have research contracts, but for
the theorists it was a formal game, while for the experimentalist it was detrimental
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guiding them toward industrial applications. The result was the drop of the scientific
quality. Here the link to the industry is a spontaneous one. For example, Koch himself,
together with some experimentalists is active as businessman trying to get money
from their discoveries.

VB: Tell me something about the typical way of a young physicist in the West.

LB: This is a very relevant question since it differs essentially from the one used to be
in the former socialist countries. As a young physicist at the IFB I envied the Western
colleagues moving around at various scientific centers in the world. Actually, there
is not too much to envy. Stable jobs do not exist for the young scientists. These are
always limited to a few years and may be prolongated only by looking for other
sources of support, in the frame of some of the mentioned projects. One is compelled
to look always for the next job and this mostly implies another country. To get any
job one must have good recommendations from important people. If one does not
succeed within a given time to get a professorship, one is lost for science. Then
one has to look for a job in the industry or elsewhere. Here one must add, that it is
forbidden to get a professorship at the university where one obtained the necessary
titles (PhD, Privat-Dozent, Extraordinary Professor). One has to be very talented and
very self-conscious to follow this path. Another aspect not to be ignored is that under
the above described conditions it is very difficult to get a stable partner and to ground
a family. This complicates especially the possibilities of women for a scientific career.

Along the years in Frankfurt [ had some gifted doctorands, but only two of them had
the courage to try an academic career and one of them failed soon. The best of my
doctorands had all the chances to make it to a professorship, but he chose industry,
although he was fond of science. He wanted to have a quiet life with a family and not
to migrate around the world. The Ericson company offered him a very good manager
position already before he got his PhD. Recently Paul read in a newspaper, that he
became the vice-president of German Wings. We congratulated him, and he replied,
that it was more difficult get through a university examination, than to make this
step.

I would like to add a few words about the number and quality of physics students.
Under the conditions of socialism, physics was one of the few domains of activity
more or less shielded from political pressure. Science attracted many talented young
people. As I arrived in Germany I met a completely different mentality. Due to the
intense (almost hysterical) anti-atom energy propaganda of the greens the public
opinion about physics was not at all positive. On the other hand, the youth chose
careers promising more money (lawyers, medical doctors, ...). Therefore, the number
of students in physics was relatively low and they were not the most intelligent ones.
In the same time the demands required from the students were rather low. On the
other hand, the graduate students were already included in the scientific activity and
got a desk and computer to work in the university.
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Laci’s years in Frankfurt starting in 1984

H. Haug!
*Institut f. Theoret. Physik, Goethe-Univ. Frankfurt

Laci Banyai came as a refugee in 1984 from Romania via short stays in Triest, Bonn
and Heidelberg to my group at the Institut f. Theoretische Physik, at the Goethe-
Uni. Frankfurt. Our main subject of interest was the theory of the optical properties
of semiconductors excited by intensive laser pulses. The excitations are a non-
equilibrium many-body system of electrons (e), holes (h), excitons (x) and bi-excitons
interacting with the phonons and with each other by Coulomb forces. The optical
response was in general nonlinear. The laser pulses have been in the 60ties in the
nanosecond range, became picosecond pulses in the 80ties and became as short as
femtoseconds at the end of the century. Many body theory in quasi-equilibrium and
more and more in non-equilibrium were the tools required to understand the optical
properties of laser excited semiconductors. Simultaneously the decreasing size of
the samples made quantum confinement more and more important: Quasi-two-
dimensional quantum well structures, quantum wires and quantum dots reduced
the translational degrees of freedom of the excited carriers more and more.

Laci’s interest turned first to the understanding of eh pairs in quantum wires and
dots. As an example he showed that two eh pairs confined in a quantum dot lay
energetically always lower the two noninteracting e,h pairs. The work on quantum
dots had the nice advantage that Laci got invited for a few months by Stephan
Koch, a former coworker in my group, a professor at the Optical Sciences Center in
Tucson, Arizona with its beautifully saguaro cactus dessert. Obviously that scenery
stimulated Laci and Stephan so much that they wrote a book on Semiconductor
Quantum Dots, World Scientific, Singapore 1993. With these investigations Laci also
got his Habilitation at the Goethe-Uni. in Frankfurt, which in 1997 was upgraded to
an Extra-ordinary Professor position.

Naturally, the first years have been tough for Laci, because it took quite a long time
until his family was allowed to join him. Anni, his wife also found a position in industry
as an engineer, but because her company was outside of Frankfurt, they lived for
many years about 50 km north of Frankfurt. Laci was quite polyglot, particularly his
knowledge of the Russian language was very helpful for the conversation with our
Russian guests in my group.

As already mentioned we had to use a non-equilibrium many-body theory in order
to understand the femtosecond spectroscopy of semiconductors and semiconductor
nano-structures. Such a theory existed and has been developed in the Russia and
in the US, independently. Particularly, the real-time formulation of Leonid Keldysh
could be used directly to describe the non-equilibrium time-development on a
femtosecond time scale. Starting in the early 90ties, we calculated femtosecond four-
wave mixing (FWM) and pump and probe signals.

! Hartmut.Haug@t-online.de
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In non-equilibrium the Green functions depend truly on two-time arguments, and
furthermore one has to calculate not only the spectral properties e.g. in terms of the
retarded Green function G"but also the kinetic ones in terms of G*. One of the first
important results in which Laci was directly involved was the appearance of the LO-
phonon echo superimposed on the decaying four-wave mixing signal. Traditionally
the FWM has been used to measure the polarization decay expressed by the T,
time. A coherent oscillation on the decaying FWM signal was really something new.
Fortunately, we cooperated with one of the leading experimental groups of Martin
Wegener of the Uni. Karlsruhe. They observed the LO-phonon echo shortly after our
prediction! See Fig. 1. Laci’s excellent mathematical talent made him very valuable
in our group when it came to reliable numerical evaluations of complex systems of
integro-differential equations which one runs into in quantum kinetics.
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Figure 1: Measured (solid lines) and calculated (dashed lines) time-integrated four-
wave mixing signals versus delay time t showing the LO-phonon echoes for various
excitation densities. (L. Banyai, D.B. Tran Thoai, E. Reitsamer, H. Haug, D. Steinbach,
M.U. Wehner, M. Wegener, T. Marschner, W.Stolz, PRL 75, 2188 (1995))

Fortunately, we had Alex Ivanov as a Humboldt fellow and later as a scientific
coworker in my group. A. Ivanov was a student of Keldysh, so Keldysh came with a
Humboldt prize frequently to us, which obviously helped to develop our knowledge
of the quantum kinetics quite a bit. And as already mentioned, Laci’s ability to talk
to Keldysh in his own language was also very helpful. Another approach to non-
equilibrium many-body systems formulated by Karim El Sayed and Laci Banyai was
the use of a Monte Carlo kinetics for a 2D electron gas starting from a given non-
equilibrium distribution and following the loss of spatial correlation in time. As an
initial 2D electron distribution we choose the letters QK, where each dot corresponds
to one electron Very nicely Karim El Sayed and Laci could show that after a time
interval in which each particle had on an average one collision the structure was lost
(See Fig. 2).

We found out that if the pulse duration becomes shorter than the oscillation period
say of an optical phonon or of a plasmon of an e-h gas, we are in a range where
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quantum kinetics is absolutely necessary in order to explain various observations of
ultra-short time spectroscopy. Under high fs-excitation we studied in particular the
temporal build-up of the screening of the Coulomb interaction again in cooperation
with M. Wegener and another outstanding experimental group of A. Leitenstorfer
and R. Huber who used ultrashort THz pulses. With these THz pulses one could study
directly the build-up of the plasmon pole which were found in excellent agreement
with our calculations (see Fig. 3) Similarly the temporal build-up of the polaron, i.e.
the dressing of an excited carrier by LO-phonons have been studied successfully in
these cooperations. Quite a few Physical Review Letters resulted from these fruitful
cooperations. Most of these investigations were also supported by the collaboration
with Paul Gartner, an old friend and colleague of Laci from Bucharest, where the
two had been involved mainly in transport investigations. Fortunately, the DFG
allowed me to finance the stay of Paul Gartner with us, which resulted in a fruitful
collaboration with him for several years.

Figure 2: Monte-Carlo simulation of the Coulomb relaxation kinetics of a 2D electron
gas, according to K. El Sayed and A. Banyai, taken from H. Haug and A. -P. Jauho,
Quantum Kinetics for Transport and Optics of Semiconductors, Springer (1969), first ed.
The initial distribution of the 3600 electrons form the initial letters of Quantum Kinetics
(QK). This distribution relaxes under Coulomb scattering to a thermal distribution.
The three snapshots are taken at t = 0,55 and 145 femtoseconds. In the last picture
3000 scattering events, i.e. roughly one scattering event per particle, produce a nearly
thermal distribution.

In the last period before his retirement we studied the approach of a bosonic exciton
gas coupled to a thermal bath towards Bose-Einstein condensation. Similarly, the
kinetics of a dense interacting exciton gas towards the BEC was studied. While
these studies showed that exciton condensation is in principle possible, the crucial
question whether the critical density for exciton BEC is not higher than the Mott
density of exciton ionization remained unanswered. Only later it turned out that the
much smaller mass of an exciton polariton in a microcavity, which in turn causes
an increase of the quantum-mechanical zero-point energy, makes a non-equilibrium
BEC of microcavity exciton polaritons much easier compared to a BEC of the basic
excitons.
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Figure 3: Spectra of the imaginary (left) and real (right) parts of the inverse dielectric
function calculated for a wavenumber qa,= 1 and various times after the 15fs pulse at
t = 0. The plasma frequency of the excited carriers is about 31meV the corresponding
plasma period is about 100fs (L. Banyai, Q.T Vu, B. Mieck, H. Haug, PRL 81, 882 (1998))

It remains my pleasure to thank Laci for the fruitful cooperation over many years,
even in difficult times in which he struggled with an old Hepatitis C infection, which
fortunately has been healed recently with a modern medical treatment. I wish him
many more happy years with keen interest in many fields, such as science, computers,
politics, arts and many more!
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A Selfie with Laci

Paul Gartner

National Institute of Material Physics, Bucharest-Magurele

It is useful to start by declaring one's notations: Dr. Ladislaus Banyai is known to his
inner and broader circle of friends and acquaintances as Laci (read approximately
Lotzi), which is the Hungarian diminutive for Ladislaus.

In my life Laci's reputation preceded our actual encounter. After finishing my studies
[ learned that I could not get the security clearance for a position at the Institute for
Atomic Physics (IFA), but I could have one at the Institute of Physics "Bucharest”
(IFB). Presented like this, it sounded like a lower, less attractive option. I was hesitant,
but then [ was told that it cannot be that bad, since I would have Laci as a colleague.
This was comforting and I took the position without second thoughts.

Indeed Laci was known as the 'enfant terrible' of the theory group at IFB. Yet the
possibility to work with him had to wait for a while. In the early years of amorphous
semiconductors Laci was in close contact with the experimental research group lead
by Prof. Radu Grigorovici. They have reached paradoxical results: the optical gap
was not matching the conductivity gap, contradicting the long-established intuition
about semiconductors. But Laci went against the common wisdom and assumed the
existence of localized states, optically active but not taking part in transport. These
groundbreaking results were sent as a communication to the 7th Semiconductor
Conference, Paris, 1964. Unfortunately, he was not allowed to attend the conference.
The paper did appear in the conference proceedings ("On the theory of electric
conduction in amorphous semiconductors”, in "Physique des Semiconducteurs"
p-417, M. Hulin Ed. Dunod, Paris,1964) and enjoyed a well-deserved popularity. Not
presented by the author himself, the paper had instead the chance to be promoted
by Sir Nevill Mott (Nobel prize, 1977). Today it is well-known that disorder brings
localization (Anderson localization) but in the '60s this was new in the amorphous
physics community. Banyai has succeeded to make Romanian physics known abroad,
in spite of the semi-isolation conditions of the time.

The resulting frustration was endured discreetly: Laci abandoned for a while his
interest in condensed matter in favor of quantum field theory. He was the only
member of the group who was equally familiar and had contributions in both
domains. When I joined the group I found him working on field theory with L.
Mezincescu. (I remember that their collaboration involved a lot of friendly yelling at
each other.) The topic was beyond my depth so that no collaboration was possible.

Laci returned to the condensed matter theory only in the mid '70s. The topic was
again related to amorphous semiconductors. As mentioned above, the localized
states do not contribute to conduction in the usual quasi-free, weakly-scattered
carrier mechanism. But it turned out that they are active in another way, by
phonon-assisted hopping, a new transport channel specific for disordered systems.
This is when he invited me to work with him and A. Aldea on the subject. He was
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instrumental in establishing results concerning the hopping formalism, the role of
Coulomb interaction and of the magnetic field, as well as the connection between
the microscopic hopping parameters and the measurable macroscopic material
constants like conductivity and magnetoresistance.

In 1983 Laci emigrated to Germany and he worked until his retirement in Prof.
Hartmut Haug's group, at the Theoretical Physics Institute of the Frankfurt
University. That was the time of new experiments in heterojunctions under extreme
(strong, ultrashort) excitation conditions, for which new theoretical tools were
required. Laci contributed decisively to the pioneering effort of the Frankfurt group
in applying the methods of nonequilibrium Green's functions (Keldysh) to such novel
optical and kinetic effects. His amply quoted results concern ultrafast (femtosecond)
optical phenomena, which cannot be described by the usual Boltzmann equation.
The methods allowed the understanding of many effects like screening, the buildup
of plasmonic and polaronic modes, relaxation processes under interaction with
phonons a.s.o. Several types of heterostructures, quantum wells, wires, dots, could
be understood and modelled in a comprehensive framework. Also, Laci had a keen
interest in a broad spectrum of problems, like the Kinetics of the Bose-Einstein
condensation, Coulomb correlations in semiconductors, the classical polaron theory,
to name a few.

At his invitation I spent two and half years in the Frankfurt group. Professionally I
could call them formative years, even though I was not a young researcher any more.
Ilearned alot from Laci, especially quantum kinetics in the Keldysh formalism, which
was quite new for me. I had practically no previous experience with equilibrium
Green's functions, let alone Keldysh ones, but Laci had a gift for clarity which stripped
many so-called difficult problems of their mistique aura. First of all, he made sure to
have a good contact with his audience. This meant establishing a common ground
as a starting point. Then he was always checking that the contact is not lost. During
his explanation he had a verbal tic "intelegi? intelegi?" (do you understand? do you
understand?) while looking right into your eyes.

Also, when a problem captured his interest he was very focused and even obsessed.
In Frankfurt we shared the same room, so we were within hearing distance. Once I
had to tell him repeatedly that the coffee on his desk was getting cold. He was glued
to his monitor, absorbed in some problem, and answered mechanically "yes" but paid
no attention. I had to sent him an email from my desk to his desk, which popped up
on his screen as the only mean of communication left.

[ cannot overestimate his talent for finding and clearly formulating new problems.
think this is as important as finding the answers, if not more. Allways curious, he was
very creative, his enthusiasms contagious and inspiring.

After all these years, remembering my musing on IFA versus IFB, I recall Robert
Frost's poem:

Two roads diverged in a wood, and [
[ took the one less traveled by,
And that has made all the difference.
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From Bucharest to Miami

Luca Mezincescu
University of Miami

I dedicate the rows below to Ladislaus Bdnyai on his 80" birthday. He and the late
Vladimir Rittenberg where important pillars in my growth as a physicist.

At the end of the fourth year (1968) of study in the Physics Department of the
University of Bucharest we were supposed to undergo a month long of so called
“training “ | was specializing in Theoretical Physics and like many others was about
to make a choice which will lead to important consequences for my future. Most of
my colleagues were aiming for IFA (Institute of Atomic Physics), which was supposed
to be the star choice. My schoolmate, friend, colleague, the beloved, recently deceased
[ulian Uschersohn, and I, were thinking in a little different direction. As students
we heard about the very promising Particle Theory group under the leadership of
Valeriu Novacu at IFB (Institute of Physics - Bucharest) which at the time consisted
of L. Banyai, P. Dita, N. Marinescu, H. Raszillier, V. Rittenberg and 1.0- Stamatescu. We
also learned that the duo compo- sed of Ladislaus Banyai and Vladimir Rittenberg
were producing lots of interesting and successful papers. In fact, this Particle Physics
group was very active: every week they held a seminar discussing the latest news
from PRL, and beyond that there were also review sessions in which they were
presenting talks at introductory level in order to enlarge their horizon. In the first
few years of existence they also published a number of volumes in which they were
contributing these original review talks. I mention only two such review articles,
Bényai’s Veneziano amplitude and Rittenberg’s Effective Lagran-gians, both subjects
which survived for 50 years, Veneziano amplitude being the basis of string theory,
while effective Lagrangians being very important in QCD. Therefore, together with
[ulian we opted to train at IFB. Beyond the above-mentioned plusses IFB was also
located in the heart of Bucharest and as [ was going to learn, at its ground floor was
one of the best coffee shops in the Capital. As Laci was out of town, the trai-ning
was directed by the late V. Rittenberg. We were supposed to go over some chap-ters
of The Scattering Theory by Goldberger and Watson, and at least for me this was
an extremely fruitful experience. Every day we were presenting different sections
of the book and Vladimir was putting lots of questions. I was used to questions I did
not know how to answer, and what [ appreciated very much was, that Vladimir was
formulating them in such a manner, that I got the feeling I had a hope of giving the
answer in the right direction. With the training finished we decided to do our master
thesis under the supervision of V. Rittenberg. In April of the following year, before
we finished our thesis work, Vladimir left Romania for good, so that the completion
of our work was done under the supervision of L. Banyai. This is how an interaction
started which was going to become a lasting friendship for my whole life.

After the graduation I started to work at [FB under the supervision of L. Banyai and
soon | was admitted for the graduate studies which were also supervised by Laci. It
is from him that [ understood what means to be correct and precise. I collaborated
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with him on a number of projects, the most long lived of which was an application
of the Dirac method of quantization with constraints to the configuration space
quantization of the relativistic spinor field, which in the literature was presented in a
wishy-washy way. [ was very lucky that for the second of my PhD exam Laci picked up
the Yang Mills fields, their quantization and applications. This was around 1971 and
[ had the pleasure of learning the subject together with one of the examiners himself.
[ am not sure that I would have succeeded without his help. With some papers in the
back and the exams finished together with Laci we decided that I should meet some
other people. At arecent conference he met V.I. Ogievetsky with whom he established
an instant contact, and he suggested that if [ go to JINR-Dubna I should try to work
in his group and he also appropriately recommended me. [ spent a very fruitful
two-year period, getting acquainted with supersymmetry and producing together
with V. I. Ogievetsky one of the first reviews of supersymmetry (unfortunately
my wish to extend my stay in JINR was turned down and I think this did a serious
damage to my career!). As with Laci and Vladimir [ formed a solid bond with the late
Victor Isaakovich. I also had the pleasure of meeting Emery Sokatchev and getting
in friendly relations with Zhenya Ivanov. On the return to Romania I learned with
sadness that Laci was back in Solid State Physics his original passion. For me, there
remained just to write a paper by myself which I did, using exhaustively the help
of Mircea Bundaru. Then I wrote my PhD thesis and defended it in 1978, with Laci
being one of the referees. When I left Romania at the beginning of 1982, I had the
luck that Bruno Zumino knew my name and he suggested to contact (and called) in
SLAC, Sydney Drell. [ was also encouraged by lulian, and by the fact that Laci knew
Leonard Susskind, to ask him for help so that for a little more than a year [ will be in
Stanford University or SLAC with detours to UC Davis in Sacramento and University
of Michigan in Ann Arbor. In Ann Arbor I met Marc Grisaru which was giving some
lectures at a summer school, and [ remember that we looked together at some
papers related to the Harmonic Superspace, but nothing came out, however it was
the beginning of some collaborations which spanned over few years. In Ann Arbor [
also met Cosmas Zachos with whom latter [ will collaborate. Then [ was very lucky to
be offered a Post Doc position by Steven Weinberg who recently left Harvard for UT
Austin, Texas. This was basically the apotheosis of my career. Working in the Theory
Group was an unbelievable pleasure. Steven Weinberg was giving class as usual to
everything which he touched. Here I also met enormous number of very important
physicists and I collaborated with D.R.T. Jones, M. Henneaux S de Alwis and last but
by no means least Paul K. Townsend from University of Cambridge and through Paul
with Peter van Nieuwenhuizen. While at a conference in Cambridge UK I had the
pleasure of reestablishing contacts with Peter Freund and Adam Schwimmer. In the
same year the much-regretted Peter Freund invited me to give a talk at University of
Chicago, and this was one of the visits I enjoyed very much. Later with the help from
Peter Freund I succeeded to get a tenure track appointment with University of Miami
in the fall of 1986. From then on life went very fast between getting tenure, teaching,
doing research, obtaining grants and waiting for the Sabbaticals. My first Sabbatical
was spent at the University of Bonn as a guest of Vladimir Rittenberg during the
1995, it was an unbelievable nice sabbatical in the middle of which we spent two
weeks at the Weizmann Institute in Israel, | was going to repeat this endeavor in the
next two sabbaticals, thanks to Adam Schwimmer. Other very successful sabbatical
leaves endeavors were spent in University of Cambridge working with Paul at
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different always exquisite projects. I should also mention the wonderful time I had
in different occasions in JINR - Dubna as a guest of Zhenya Ivanov, always doing
wonderful research. In University of Miami I collaborated with R. I. Nepomechie and
T. L. Curtright.

To finish this text, I want to wish a Happy 80" Birthday to Laci and many more to
come!!!
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Short introduction to my papers
reproduced in this volume?

Out of my about 140 published scientific papers, mostly with coauthors I have
chosen 28 to be reprinted in this volume. Since half of my scientific career occurred
in Bucharest, while the other half in Frankfurt am Main, I selected 15 published in
the Romanian period and 13 ones from my time in Germany. Some of these last ones
were worked out together with my old colleagues from Bucharest, Paul Gartner and
Mircea Bundaru. Obviously, I am a product of the Romanian physics with German
improvements.

My scientific activity started in 1961, in Bucharest with papers dedicated to solid
state theory and after a ten-year break of work on elementary particles and quantum
field theory, it continued further on solid-state theory both in Bucharest, as well as in
Frankfurt am Main. For sake of transparency [ grouped the reprinted papers in these
two categories, starting with those dedicated to the first field. Thus, the presentation
is not strictly chronological.

In the IFB (The Physics Institute of the Academy in Bucharest) Prof. Valeriu Novacu
organized in 1964 a research group of Elementary Particles Theory. The actual leader
of the group was Vladimir Rittenberg (later professor at the University of Bonn)
and its founding members were Hans Raszillier (later professor at the University
of Erlangen) , Luca Mezincescu (still activ professor at the university of Miami)
and Nicolae Marinescu (got his professor title at the Heidelberg University, but left
physics). We published several papers of which here one finds one about the SU(3)
group (all of us together) [2], one about an application of the non-linear effective
Lagrangians (together with V.R.) [20] and another one on the null-plane quantization
(together with L.M.) [26].

After the members of this group left Romania I continued to work on the same field
together with Sorin Marculescu from the chair of Professor Serban Titeica and chose
for this volume two of our publications on the renormalization of gauge theories
[29], [30]. This was the end of my activity on that field.

As I already mentioned, I started on solid state theory and my first publication
abroad (about magneto-optical phenomena) was together with the elder theorist
George Ciobanu [34]. It is followed here by my paper about the conductivity gap in
amorphous semiconductors published in the Proceedings of the Paris Conference
on Semiconductors in 1964 [37] and a paper published with my younger colleague
Alexandru Aldea on the Hall effect in disordered semiconductors [38]. I included
here also the English translation of my old (add notated) review on Kubo’s theory of
electric conduction [39].

Returning to solid-state after the afore mentioned break, I published together
with my coworkers Alexandru Aldea and Paul Gartner several papers on hopping
conduction of which I chose one written together with the late Vladek Capek of
Prague on the very low temperature Seebeck effect in amorphous semiconductors

! The quotation numbers refer to the “Scientific Publications” in this volume.
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[41]. This period was followed by a series of papers on fundamental matters, close to
mathematical physics written together with Paul Gartner on the scaling connection
of the kinetic and hydrodynamic levels of which I chose two (one of them also with
Vlad Protopopescu)[51], [53]. Of the papers published together with Paul Gartner
I chose also a paper on the quantum mechanical derivation of the Clausius-Mosotti
formula [55] , as well as one concerning the theory of the Meissner effect [57]. 1
included here also my last paper I wrote in Bucharest (on the Nyquist noise) together
with Alexandru Aldea and Paul Gartner [58].

Of the many papers I published, while being at the Frankfurt University I chose first
some related to quantum dots [78]. These resulted partly in collaboration with my
friend Stephan Koch (first in Frankfurt, then in Tucson and Marburg) [66] and Pierre
Gilliot from the University of Strasbourg [86].

I chose here also a paper of mine published on a classical solvable polaron model,
where the dissipative motion of the electron results from the interaction with the
phonon bath without any assumptions or approximations [93].

Another paper here was written together with our talented doctorand Karim El
Sayed on the time reversal in many-body theories [94].

Then follow more papers of Hartmut Haug’s group on the analysis of ultra-short laser
spectroscopy of semiconductors in close cooperation with experimental groups in
Karlsruhe [99], Paris (Anthony) [116] and Miinchen [129] within the theoretical
approach of quantum Kkinetics. Another subject of the same period was on the THz
emission of laser excited semiconductors [126], already joined by Paul Gartner, who
spent two and a half years in Frankfurt. A very interesting topic of Haug’s group
was the real time description of the Bose-Einstein condensation [127]. Here our best
doctorand Oliver Schmitt played an important role. Together with Paul Gartner we
published also a paper [132] on a solvable model of Bose-condensation in real time.
Then I quote a short paper of mine about the c-number approximation for the Bose
condensate [134]. The papers from the Frankfurt period end with a paper together
with Hartmut Haug and Mircea Bundaru on Bose-Einstein condensation in a finite
potential well [136].

As one might have seen, the manifold of my papers had to do with the manifold of
talented coworkers, most of them becoming also close friends of mine.
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Irreducible Tensors for the Group SU;
L. BAwvar, N. Marivesov, I. Rasziniier, and V. RiTrENBERGH

Institute of Physics of the Academy, Bukarest, Rumania
Received October 5, 1965

Abstraet. The explicit determination of the matrix elements of the S U, irredu-
cible tensors is carried out by a purely algebraic method. These expressions may
be used to compute the Clebsch-Gordan coefficients by orthogoenalisation. For
the special case of (0, g) tensors simple formulas are derived.

1. Introduction

Recently compact Lie groups of rank = 2 have found wide applica-
tions in elementary particle physics. In view of concrete physical pro-
blems, for each group the following main problems have to be solved:
(a) determination of the irreducible representations (I.R.) and the matrix
elements of the group generators, (b) decomposition of the direct product
of two LR. and hence the computation of the Clebsch-Gordan (C.G.)
coefficients. It is well known that the groups of rank = 2 are not multi-
plicity-free (the same representation may occur in the direct product
more than once) so that the C.G. coefficients are not completely specified
by the basis vectors. The Wigner-Eckart theorem is also modified:
the number of reduced matrix elements appearing there is equal to the
multiplicity of the equivalent representations.

The simplest of the above groups is SU;. In this case the problem (a)
has already been solved by a number of authors [1, 2, 3,4, 5], while
problem (b) has received untili now only an incomplete solution.
Mosninsky [6] has derived a compact expression for the C.G. coeffi-
cients corresponding to the product (p,q) ® (p’,0), which is multi-
plicity-free, while Kur1aw, LUuRr1E and MACFARLANE [7] have tabulated
the coefficients for the simple product (p, ¢) ® (1, 1), BATRD and BIEDEN-
HARN [8] for the cases (p,9)® (1,0), (9,¢)® (0,1), (p,9) ® (1,1) and
Paxprr and Mukuwpa {9] for the case (p, q) ® (3,0). We must also
" mention the numerical tables of SU 3 C.G. coefficients [10, 11, 12, 13] for
the products of lowest representations. However, the general problem
of deriving a simple analytical formula analogous to the Wigner-Racah
expression for SU, has not yet been solved and it is doubtful if such a
task is really possible.

* In partial fulfillment for the requierements of the doctoral degree at the
Institute of Physics of the Academy.
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In the present paper we establish an analytic expression for the matrix
elements of an arbitrary irreducible tensor (I.T.). A method used by Luri#
and MacFARLANE [15] for the (1, 1) tensor is generalised. The method
consists in solving the commutation relations (C.R.) which define the
I.T. We obtain equations with finite differences whose solutions contain
the number of arbitrary constants corresponding to the equivalent
representations which occur in the direct product. The constants are
connected with the reduced matrix elements of the tensors. The C.G.
coefficients are obtained by orthogonalisation.

It seems that the method used in this paper for S U; may be extended
to other higher rank groups.

In the Sections II—V we establish the expression of the matrix ele-
ments of the 1.T. in the general case while in Sec. VI, the formula for the
(0, q) irreducible tensors, which are multiplicity-free, is derived. These
last expressions are obtained in a much easier way and are simpler than
those of MosHINSEY [6]. A brief version of the present paper has been
published elsewhere [14].

I, Preliminary remarks

The irreducible tensors T# corresponding to a representation u=(p,q)
of the SU; group and labelled by v = (I, I,, Y) are defined by their
C.R. with the infinitesimal operators X:

[X, T4] = (s, v' | X]| p, v) T )

The general structure of the eigenvalue diagram and hence the range
of I, 1, and Y may be deduced from the paper of Gixierr [16] and is
represented in Fig. 1.

The matrix elements of the eight infiaitesimal operators may be
found in DE Swarr’s paper [17]. We shall mention only those which
are used in the present paper,

(U, L+ 1/2, Y+ 1| K, u 1,1, Y)

: R By
= o [51 I+1/2 '(QT“—‘f{_a;))"u—z = Or,1-12 *@""rffr);} (2a)

(p; 1,1, +1/2, Y - 1|L_|p; 1,1, Y)

where C’;;,' f;:: 1, are the C.G. coefficients of the SU, group and
Au@)=[(a —2) b+ 2+ 2) (c+x+ P2 (3)
B =[a+y+1)(—y+1)(—c+ g} @
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where
1o _ 1 20 1 5
a=5Q2p+q); b=5@+29; c=5{-9 (5)
s=I+5Y; y=I—57Y. ©6)
From Fig. 1 follows
—c=2x=0; c=y=bh. (7)
I,

Fig. 1. Bigenvalue diagram for an irreducible representation (p, ¢). The numbers denote the eigen-
value multiplicity. The maximum multiplicity is m = 1 4+ min(p, ¢)

The matrix elements (2) being expressed in the variables z, y instead
of I, Y, we shall adopt the former to label the matrix elements of the
L.T. Using the Wigner-Eckart theorem for S U, we find [17]:

(‘ua; 13’ Iz,a Ya [T}‘:,Ig,,Y,l ,ul: I]_r Iz,r Yl)

(8)
= aY,, 7,4+ ¥ Of:;,lﬂ,lj,, (> 215 ¥y |12y T, Yo sy T) s
where we have used the well known triangle rule:
I3=11+I2—T (0‘=0, 1,...,2min(.[1,.[2)) (9)
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and the additivity of the hypercharge. The rather asymmetric notation
of the new matrix element is more fashionable; we shall return to a
symmetric notation in the final result.

We must also have in view the selection rules for g which are given
by Seriser’s [17] graphical multiplication rules or by the rather in-
tricate expressions in [18, 19, 20, 21, 22] and [9].

We shall mention only the following relations:

G+ — =1, b+by—by=0 (10)

where 7 and ¢ are nonnegative integers while the multiplicity of the
equivalent representations is given by the expression:

M=N+1-mn (11)

where 3
N =1b,—~c;+ 3 u;0(—u) (12)

with i=1

Up=Qg— A+ Cy; Ug=Dby— b3+ ¢y Up=06— 3+ ¢y (13)

and » is a nonnegative integer which vanishes for p, = p,, ¢, = ¢, and
whose concrete expression can be deduced from the above mentioned
papers.

A careful examination of the commutation relations (1) suggests
the following way of solving the system of equations which determine
the matrix elements of the I.T,:

a) Find the matrix elements with r=0 of the tensor
T 1 (B in Fig. 1).

g @it @), 5 (Bt .0

b) Determine by recurrence the matrix elements with r = 0 of the

tensor T4 ) (running from B to 4).
272"

¢) Solve the finite difference equations which determine all the matrix
elements of the tensor T'%: , {4 in Fig. 1),

2 e

d) Obtain by recurrence the tensors T4

1 (running
5 (pa+8) 7z (Ps+ 8), 05~ 8

from A to B).
¢} Determine by recurrence the matrix element of the tensors
T 1 (running parallel to BC).
g Wt s—thg@ats—Db—s—t

II1. The matrix elements of the tensor T ’;; »
22 22
2 2

Let us consider the matrix elements (ys, I, + -%— (P2 + g2+ 1),
1
Lg@+a+D) Yitexl...|mhL, Yl) of the C.R.:
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[K+, T ] =0 (14a)
(i"x + Q:); (Ds + )i 0s
[L , The ] =0 (14b)
(Ps + Qz)’ (P2 + 4a)s 02
and the change of function
(B2 %1s Y1 |00as s Dl 3, 0) = (15)

[(‘”1 + 9 + 1) f{as, B, €35 2, + a3} f (B, @5, — €53 9 4 by) }1!21;,( x )
(Zs + y1 -+ @+ by + 1)1 flag, by, 015 %) [0y, @1y €15 1) # %1 Y
where

b F+z4Hi(et o)t

Ha, b, ¢; x) = rp— (16)
we obtain the system of finite difference equations
Flu, i+ 1) = Flu, 2, ) (172)
Fu, 2,11+ 1) = F (1, 2, 91) (17b)
with the obvious solution
Fp, 2, 41) = F{p) . (18)

In the last expressions  stands for uy, py, pts. Consider now the matrix
1
elements (ya,l +5Wet+s+ 1), L, +5@m+s+1), Y1 +b,—5+

21 g I I, Yl) of the C.R.:
[K+, 7 ] 0 0<s<g,) (19a)
"(?’=+3) —(Pz+3) by —8

[L_, Th

(Ps + 3): (?a + 8}, by —'S]

196
— s+ 1) (g —snmfﬂg* (19%)
(Pz-?*s%l)x"’(ﬁz*;‘s‘i‘n,ba—ﬁ 1

we make the change of funetion

(tt15 %15 Y1 | g, @35 Co -+ 8| 123, 0)

[(b g g ~—8) 1 {2y ~+ 3y + 1) f{as, by, €55 %5 - @) by, @5 —C33 41 + € -+ 1) ]1/2
8@y + Yy -+ Ga + o+ 8-+ 1) flay, by, 045 7) F(Bys @1y — €13 91)

X Gy(pt, 21, 1) (20)

and find the system of finite difference equations
Gslp, 7 + 1, 91) = Gy, 20, 1) (21a)
Gylpt, o, 91 + 1) = Gl @, ) = — Copa (@ @ 91) - (21D)
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Since from (15), (18) and (20) it results that the function G, _, (1, %y, 4;)
is independent of x; and y,;, for 5 = 0 we get:

by —e;

Go(p, @1, 1) =?§0 Ty (w vi (22)
where T", (u) are undetermined constants.
Let us take now the matrix elements (;,53, I+ (pz +1) -
Lt 5@t 1), Yt byt 1] Iy, I, ¥y of the OR.:
[K_,,, TE . ] =0 (23)

and make the change of funct10n~.

(1> Tp> Y1 [thas Qgs Caf 3y 7)

[t u i Dt ta e gy
(@ + 9+ as+ Ca—2r 4+ DY 2y + 95— 1)t
f(“a, by 645 % + @y —1) (b, a1, —Cr3 1) ]
[ F@1s by, €15 1) f(bay Mgy — g5 4y + €2 — 1) fr (M’ T yl)
we obtain then the equations
1@y + e+ 1 — 12 [f (s 2 + 1, y1) — frs 24, 9]
ff”l(,"’: Lyy Yy — 1) (25)

- @ty + Dl o)

— fr—-l(ﬂ; :271: ?‘!1)
@+ g+ a+e—2r+3)w+y+0og+cg—2r+2)°

Equations (20) and (22) give

bx 2~ LB 1+ 2 b ']
folwe, 1, ) = folu, yy) = i ;(;3’ al’c_clll’ yI)C) yE T )yl (26)

One observes that for r = a, + ¢, -+ 1 the left side of (25) vanishes so that
we obtain an identity which is easily verified. Consider the function

(@ + =@y -+ B (2 93—y — ey}t
faa + e (‘LL, 2«'1, .7/1) = : (931 + ?/:“’}“ 1)! (11 _+_?;;1)! = H(xly ?!1) . {27)

From (25) we then obtain for r = a, + ¢, + 1:
H(@y, g+ 1) = H(z, y) = Hzy) (28)

The general solution of the system of equations (25) is

r r—1

Fr(@ 1) = __2 ‘_Z’ (—D*lag+ g — r+ DHr—HIP2 x

s 6@1+y1~76)'($1+y1+a2+62—-27'+2Z+1)' 1
Blr—k—Dt o+t aa+ e+ 1+ 1—r—k)! (z,+ ) P

— k)
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where @, = fo(p, 1) and @;(y;) (= 1,2, ..., r) are arbitrary functions.
One can see by direct calculation that for the supplementary condition
(28) we have @;(y,) =0 if I < 0 and f,(g, ,) must be a polinomial of
degree p, in %;. From the Speiser-Goldberg selection rules we then obtain
some relations between the constants 7', () so that instead of (26) we have

L —cu) &
folw, ¥1) = (55, G0 ) ?§0T7 () ¥ (29)

where
ay = ay + 0 () by = by — w4, 0(u5); ¢1=c; — u0(my);  (30)

T,(u) are arbitrary constants and N is given by (12).
Summarising the results, we have

N
(fh1> @15 Yy gy Gy, Col Y1, 7) = Z% Ty (@) (ugs %15 Y1 | ogs Ogs Cof g, )y (31)
? £
whers:

(#11, @1, Y1 | o> Tgs Ca| fhgs T)y

it at o+ l—r)
:[(az+03"r)!r!(x’+y1+” = yl(xl-liz—aylfr)! % x

f (@35 bsy €35 %y + @y — 1) f(by, @y — 02y ) ]112
Ha, by, 043 7) F(boy @gy — 53 hte,—r)

(32)

4 (& 4+ 9 — By — &)
— 1Yk
X2 D e Th T atat = =B
f(by, a1, — 15 4 — k)
Ot —es—8) °

X

IV. The matrix elements for an arbitrary L. T.

Let us consider the matrix elements (ys, I+ —;— (pg+8+1)—r,
Lt Pats+1), Yitby—s—1... 0 I, L, yl) of the C.R (19b)
and make the change of functions:

(15 @15 ¥y |2y @y Cg + 8] pig ,7)y

=[r!(az—f—cz«{—&——r)!(a2+cz+s+1) (e +y.+ 1) x
(@ 41+ ag4cg+ 84+ 1—r)! Flay, by, €45 %)
X (@) + 4 — 1)} Heg by, c33 23 + 0y —7) X (33)

X F{Bss @y — €33 9y b €3 F 8 1)
Flbg Ay, —Ca5 04 -+ 8) f{by, Gy 21501

172
)] g% (1, 21, 41) -
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We obtain the recurrence relation

9%+ 1,0 (18, 20 Y1) (34)
— gh. (45 21 )+ g1 — 1 (. 20 1) . ghels 1)+ ghe (1 — 1, 4)
@y Yy Gyt S 2 2y 2y 41

in which g3 , (4, 21, y1) is known from (32) and (33). The solution of the
recurrence relation is:
S’ﬁ,r(@a 2y, Y1)
8
J (= lymestmon s f(mo,+ Mg,q+ G+ — 1) I8, 0 %
i=1

i, 20
x {é’mt 1,007 ”%m0+ 6’”4 xal)x
(x1+y1+8+1~—-2r+a3+02+m,z—m“)m”“m’ 1 Mg~ Mig,s

(331+91+1+mz3—*m )mi e Py W — W X
X Gh. ¢ — o, — 1o, (s By — Mg, 45 Y1 -+ Mg, 5) )
(€=1,23,4; i=0,1,...,8; &= 3 m;.,. (35)
&= 1

Choosing I, == I; — r and taking the matrix elements
1
(ﬂaall‘*“‘f(?z +s—t—-1)—r I+

1
g pts—t—1) -1, Y1+bz——s—t—-1{*H],ul,LIl—r,Yl)

of the C.R.
[K—_’ TS‘:

’“‘(Pa"t‘s t);%“(p;-i-s—-t),b,—s-—t)}
:[ (s + 1) (gs—s) {p, + 54 2) ]1/2
pr+es—t+)(p+s—1t+2)
x T4 + (36)
W(P:+8*3+1).~(?,+s—~t-1),b,—~s~t-—
4 [t a—tiner bR
pt8—i+1

X T ;
R Rt LR A

we make the change of function

(2> @3, Yy e Gy — b, Ca + 8] s, T)y
={r)yMas+cg+s—t+ 1) (& + 4+ 1) (& + 9 — )I2 %
><[(x1+y1+a2+cz+3-t—r+1}!(a2+cz+.s-—t—r)§ ®

« flag, by, €35 @y — 8} flay, by, 6,5 2,)
Filbgs tgy —C25 € -4 8) fl@s, By, C33 %y + @y — 7 — 1)
Fibgs gy —Cas Yy -+ €4 -+ 5 —1)]32
f(bv Qyy ——Cy ;3 yl) ] kg:s’r(‘u’ Lo yl)

(37

X

X
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and find the recurrence relation
; s, Ao zny) = t-—-l,s+l ey Flag+co+8— 8-+ 2) x
X [BY_ g s p(pes ) + (@ + 9 + 1)1 x (38)
X(h _137.;.1(#’%1:3,1'}'1) z-lsr(i"'ixl 1:.’91)];
where h{ , (1, 2, ¥;) is known from (33)—(35) and (38).

The solution of the recurrence equation is:

ht’:s,r(% Ty, Yy) = 20( L)t Mioe au’n:to(xl + Y= 1 Ny, — Mg, a) X
%, ﬁg

X 6(b2—62""3 n')l)?gé‘” t—j(é ﬁﬁnj.ﬁ’o—kan-l.ﬁw 5»ﬂ'1) X
(@s + ¢ + 8 4 ny0 —j + 21 H M~ Mins %
AR A B TP Sk T L e T A

X hg,s F Morns? + Tows + Mars (s ®1 — N0 Yg T+ No,3) (39)

4
(ﬁ=112:3:4; i20:17"':t)1 CUj=an,{3
f=1

and so all the matrix elements are known.

Y. Final result

Noting that z; + z, — 23 = ¥, + y5 — y3 = r, we shall write the final
result in a more symmetric manner:

(!‘37 13’ Iz,3’ Ys iTpI': Iza, Y,; x“l; z,: y})

(40)
= OI”IB;I}; (s 20, 91 Iﬂz’ Ty, Yol s T, Y3) -
The expression derived for the I -independent matrix element is
(p1> T1, Y1 2> T, Yal fi3> T35 ¥s)
(41)

N
= ZO TP (s thas th3) (tys @15 Yy If"z! T, Yo l/"an 3, ya)v
'J}:

The coefficients 7', are related to the reduced matrix element. The formula
for the (nonorthonormalized) isoscalar coefficients is:

(181 @1, Yy oy Tay Yo Has T35 Ys)y (42a)
= [(351‘3' Bt D@+t G-t a) (—a+ v+ 2)! X
(@ + 2, + ¥s + D ey, by, 043 74) flay, by, €55 2,) f{bs, @5, €55 43)

{2y -+ 23 — 25) ! f(@5, B3, €33 25) f{By, 15 15 Y1) [(Bas Qg —C€23 ¥5) ] y(/" Y)
where

FJ’ (”3 z, y) = 2 2 (_ 1 )nm + s & Mo o Mous 6“1«,% —Zy 65«.1!: ~Cy + No,1 X

o ™08

X
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X 0(by — yy — mg,3) 0(ag + €3 — @ — Tp+ Ty — Mg 3 — Mg 3+ Mg,p+ Mg y) X

X¢(n0'¢; ﬂ’ x’ y) 'p(n‘)y“’ mo;ﬁ; lu’ x’ y) X?(,“t’; .271 - n0y4 - mo»&’ (42b}

(%1 + @y — T3 -+ Mgy + Noz}!
(#1— % + T3 — 7y 1 — 7,0}

Y1+ Mgz + My,g, T3 -+ Mg p + Mg, Yg — Myg,q)
and

a;— 2,
Q(Rg, a3 Y T, Y) = Z 17 5«»‘, u;—93,~'i(6ﬂ—i-1.a,—mcx,0+ 5m-1.a-ne.w1) X

T, 1=1
(3 + ¢a + Zmiy + Bip + Mg+ 0y g+ 2RI : (42¢)
(@ -+ g+ myp — my g F 1) T BT Ry
(¢=1,2,3,4)
Y2 —L3F My
?’(n’g,a, mo,ﬁ; ou’ Z, y) =m%; j—1 a‘j»yz"‘az'f‘”u,l"?- (67” ~h5%m5'ﬂ,0 + (42(1}

(@5 + Y5 + Mo — My — myy - T2 F M= M0 = Myose
(@ + Y1 + Noa— Mg+ My My L)t It s
($=1,2,3,4)
1 (@ b3, €35 %) F(b1y @y — €15 1)
K\t @1, Yss Ty Ya) = (@, by, €45 ) {Bs, @5, — €33 93) % (42¢)
% Z’ (— L) 7i (B £ 41— B! (g2 — ) f(b1s a1, —c13 9, — k) )

P Hey—as+ ap— B!y + 25+ ¢, — &k + 1)1 f(by, @y, —y3 k)

We note that if the selection rules correspond to a multiplicity smaller
than N -+ 1, the functions appearing in (40) are no longer linearly in-
dependent,

The expression given above may be used to compute the C.G.
coefficients if we use the orthonormality relations [17]. The computation
of the general expression for the C.G. coefficients, a very difficult task,
must be done for each concrete case individually.

+ 6mi-1.ﬁ‘“m:l.ﬂ»1)

V1. The special L T. corresponding to the representation (0, ¢)

The matrix elements of these tensors which are multiplicity-free
can be obtained directly without making use of the general formula given
in Sec. V. This is preferable because it is difficult to observe the simpli-
fications which occur in this case in the intricate expression (42). We

shall return to Sec. III observing that in the present case the sum (31)
contains a single term:

(ﬂfv 1 Yy ﬂm%”—, ‘:ggllﬂa; 'r)= To(p) (ﬂz» T, % ﬂs:%s ':3% Mas 'r)e (43)
while eq. (32) gives
@@ —4q
(ﬂl’ Ty, Y1 (M2 Ta’ _31— H3 T)O
(44)

=8 [/(aaa by 033 @y + ) (B, @, —055 Y ]1’2
70 flay, by, €43 2) F(Bys @gy — €33 91 + €4) ’
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Ty(u) is an undetermined constant. To determine the matrix elements of

the other tensors we shall use a method other than that of See. IV. From

the commutation relation (19b) and the change of functions (33) we

shall determine the matrix elements (uy, %3, ¥y | [y, @, €5 + 8| fi3, 0)g.
The recurrence relation (34) with r = 0 is:

- Go0lZu 1) Guo@Lp + 1)
gs-l'x'u(xl: yl) - 2+t 82 2y +1 (45)

We make the change of function:

(3 + yi)!

gs, O(xb Z!) = (xl o+ s+ )1 U (xh Zl;) (4’6)

and obtain the recurrence relation
Ugpy ('1"1: yl} = us(xls yl) - us(xl’ Y1 + 1) (47)

which has the solution:
A 8!

ux(xb yl) = Iaé:(] (— 1)16 Wue(%a yl + k) . (48)

From (46) and (48) we find finally:

(xy + )t i 8!

gs,0 = @+ g+ s+ 1)1 k§0 (— 1)"W X (49)

X+ +k+1) gl + k).
The function g ¢ (2, %) is derived from (33) and (44):
1 @y, by, €35 a5 + 2) by, 0, —c15 Y
go,o(xv?h) = (@0 @ +y + 1) };Eav by, ¢1; %1) f(by, a5, —Ca3 0 + ) (50)
Using the relations (33), (49) and (50), the matrix elements
(p1> Ty, Yy [phas Qg, €5 + 8| g, 0)g are completely determined. To find the
other ones we consider the C.R.:

[K+: 7O ] =0 (51)
278 T

and the same method as in Sec. IIT. We than obtain the matrix elements

(,uv 1 Y1 Mo '%z‘ > Y| U3 T3, ys) expressed in terms of (u;, 2y, ¥y |ua, @,
¢y + 8| g, 0) derived above.
Expressed in the variables x and y the final result is:

(#1, AT A ?!3) (52)

=T e+ + D@+ o+ g+ D H (=2 + v+ 2,)! X
) (21 + @y — #5) ! F(@, By Ca3 %) F Oy, a4y —055 31) J2/2
X (Qz - xlz ;?2)1 (41~ T3 + 23)1 o, Oy, €35 1) f{bsy @, —C3 '.‘/a)]
X 2(—_) [y + @y — 23— B)! (mg+ 92—~ DI %
k1

AR
& + g — B! fbu @y, s 4y~ & -+ 1) (B3, a3, —Ca5 70 + a2 — k)
@+ 2+ v:—h)! [yt —Csth+—k+ ) fbya,—es—k)

X
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To compare the present result for the I.T. corresponding to a re-
presentation (0, ¢) with MosHINSKY’s one [6] corresponding to a re-
presentation (g, 0) we have to use the symmetry properties of the C.G.
coefficients [17]. We then observe that the former is more convenient,
containing fewer terms.

Acknowledgement. The authors would like to express their gratitude to Pro.
fessor V. Novaou for eritical discussions.
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The p — 4 vertex has been computed assuming vector-meson dominance, and the resulting interaction
is described by a chiral-symmetric nonlinear Lagrangian plus a symmetry-breaking term with tensorial
properties. The vertex function is used to compute an approximative analytical expression for the e*e~ — 41
cross section which is valid from the threshold up to 850 MeV. For the four-pion decay of the p meson,
we have obtained the following branching ratios: I'p0,er*se=/T0mrts~ = 1074; T 000004~/ T 00 2~ =1;
Tp*oerts™a9/T0usc,~=4. Experiment indicates upper limits of the order 1.5X 103 for the four-pion

decay-mode branching ratios.

ONE of the most interesting results of the nonlinear
chiral SU,XSU, effective-Lagrangian model is
the prediction of various many-pion vertices. Recently
Olsson and Turner! have shown that chiral SU,XSU,
symmetry with (3,3) tensorial breaking (s model) gives
fairly good results for the production reaction =—p —
mtrn at the threshold. In order to test the model
further, we might consider many-pion production in
pion-nucleon collisions. This type of calculation is,
however, hard to perform since the contributions of
different resonances are important and their couplings
are unknown; thus supplementary assumptions would
be necessary. This is why we have considered the
p— 4m vertex, which does not imply new coupling con-
stants and which can be directly measured in the
p— 4x decay and (in the vector-meson-dominance
model) in the reaction ete~ — 4.

Choosing the nonlinear transformations of the fields
as in the ¢ model and assuming vector-meson domi-
nance, the chiral-symmetric Lagrangian? is

Lvm=—1 (f,.,-{-ga,. Xa,)*—%(D,a, —D,a,)?
—im? (02 +a,%) — (9uotgma,)*— (Dym —goa,)?

go
+—2'[(fw+gaﬂ Xa,): (Dum—goa,) X (D —goa,)
My

+2(D.a,—D,a,): (D;x—goa,)(d,0+gx-a,)],
where

1
fo=ewtgouXe, a,=A,+—Du y Du=0dutgouX,
ma

o=(fl—m) = frm ...
2fr  8f.
ma
Je=r—= (ma=m;\2).
2%

We consider that the symmetry-breaking part of the
Lagrangian is composed of two parts: one depending
only on the pion field, containing also the pion mass

!M. G. Olsson and L. Turner, Phys. Rev. Letters 20, 1126

(1968).
*S. Gasiorowicz and D. A. Geffen (unpublished).

184

term, and the other containing the wpr vertex. Both
these parts can be written as (V/2,N/2) tensors,*~% but
the former will modify the partial conservation of axial-
vector current (PCAC).® For our purpose it is enough
to retain only the pion mass term, the four-pion inter-
action, and the wpr interaction:

ma? gh
Lbresk= —fmtn? — E—mt+——pumincenet
8f.2  dm,

where for an (V/2,N/2) tensorial breaking
E=[8-N(NV+2)1/5,

and for Schwinger’s mass-term breaking £=4, while
h=2 from the w — my decay width.

With these Lagrangians, we have in the tree-diagram
approximation eight Feynman graphs (see Fig. 1) to
describe the effective p— 47 vertex. (However, the last
two diagrams do not contribute to the most interesting
p°— 2wt 27~ vertex.)

We define an effective p-4r Lagrangian by summing
the contributions of all these diagrams. We shall work
in the momentum space, using the notation

/ dx £(2)=(2m)* / dpr+-dpad (S AL (bry 1),
igt
£ par =—;I‘u‘“""5 (g:p1,2,05,4)
m,
XpaH(Q)m(p)nf (po)m (pa)wt (pa) -

Because we are not too far from the threshold (the
mean kinetic energy per pion being 50 MeV), even
for the physical mass of the p meson, we feel content to
evaluate the form factors at the threshold. We believe
that the error introduced in this way is not important,
but it introduces essential simplifications especially
when computing the phase-space integrals. At the
threshold (¢*= —16m,?), we find

I“‘iaﬂ'yJ p— Cayaeiaﬂp“l s

#S. Weinberg, Phys. Rev. 166, 1568 (1968).

* W. Sollfrey, Phys. Rev. 173, 1805 (1968).

¢ L. Bényai, V. Novacu, and V. Rittenberg (unpublished).

¢ D. Arnowitt, M. H. Friedman, and P. Nath, Phys. Letters
27B, 657 (1968).
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(a)

Fic. 1. Feynman graphs con-
sidered in the calculation of the
effective p — 4 vertex.

where the constant C is equal to 1 for m,=0. For the of diagrams f, g, and h vanish at the threshold. The most
actual pion mass its value is important diagrams are a, b, and c, all being of the same
_ order of magnitude, but the last two are of opposite
C=1.074+0.2162¢+ (0.1557+0.03336) . sign, so that the contribution of the contact graph is
—0.00558*—0.00018".  3ominant (in the soft-pion limit it alone gives C=1).
For 0<6<1 and N not too high, C is close to its soft- Now, according to the vector-meson-dominance
pion value. graphs of Fig. 2 the ratio of the cross sections for the
It is interesting to remark here that the contributions processes ete™ — 47 and ete — 27 is

otearrtar (W) /8%\2 w
(—) C —I(W)
Cetemaeta-(W)  \dn)  [1— (W2/4m,2) (1—8) P(W2—dm.2)3" wom,*
Tetes2xtxts~ (W) X
—_——=1,

Cetemartar (W)
where W=+/(—g% is the c.m. energy, and
11'3 0 00 11— '2 5— 12 WZ_ 2 2 2 1— 9 2 1/2
1(W)=——/ dn/ dle(s 4m?) (sa—4m AW — (V/s1+v/s)* W2 — (/s \/S)]} !
4W? J smes Amg?

S152

S1— 352
X (51—4m12)<1+v> XO(W —+/s1—4/52) .

In the vicinity of the threshold (first nonvanishing order in W —4m.) the integral can be computed exactly and

F1G. 2. p-meson dominance graphs
for the processes e*e~— 4r and
ete™ — 2.
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gives

(W)=

IN CHIRAL DYNAMICS

1905

(W —4m,)¥2 VI
w 5

It can be shown that this formula is valid up to W =6m. with a precision of 20%,.

Thus we finally have

(W —4m, )0
21074,

Oete~>onton W) 2\ 2
2x*2r( =<§—>C2
Ootearta~ (W)  \4m.

Of course, this ratio for %= m,? also gives the branch-
ing ratio of the corresponding decay modes of the o°
meson. For g%/4r=~2, =1, and {=1 (¢ model), we
have

I‘p“-»?w*z:'/rp“-w*r‘z 1074,

to be compared with the experimental’ upper limit
1.5X107%. For completeness we give here also the

7 A. H. Rosenfeld ef al., Rev. Mod. Phys. 40, 77 (1968).

[1—(W*/4m,?) (1 —8) F (W2 —4om 2)*2m, 12

results for other decay modes:

1 p—
Totnontata~/Tosarter—=2%, Totuontart/Toosortar=3.

Thus, if chiral predictions are correct, the branching
ratios for the 4r decay modes of the p meson are
extremely small.

Note added in manuscript. Since completing this paper
we have been informed that B. Renner (private com-
munication) has done a similar calculation using hard-
pion techniques.
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Field-algebra current commutators on the null plane are deduced using Dirac’s canonical
quantization method. The corresponding scaling relations are F,(w) = —2wF ((w), Fg3(w)=0.

INTRODUCTION

In view of the recent interest in the study of the
light-cone structure of current commutators, re-
lated to the scaling properties of deep-inelastic
experiments, canonical quantization on the null
plane of the field-theoretical models has proved
very instructive. Along these lines the quark mod-
el has been extensively studied.!

In this paper we obtain the null-plane commuta-
tors of the field-algebra model of Lee, Weinberg,
and Zumino.? Our results show the singularity
structure needed for Bjorken® scaling.

For quantizing the theory we use a null-plane
version of Dirac’s* general method of quantizing
the theories with constraints, which is based on
the redefinition of the classical Poisson bracket
and the correspondence principle.

In Sec. I we give a brief account of Dirac’s can-
onical formalism. After presenting the field-alge-
bra Lagrangian in Sec. II we analyze the second-
class constraints that emerge. The redefinition
of the Poisson bracket enables us to obtain the
relevant current commutators.

Section III is devoted to the analysis of the sin-
gularity structures of the matrix elements of the
commutator to deduce the scaling properties of
deep-inelastic scattering.

1. CANONICAL FORMALISM

When passing from the Lagrangian form of a
classical theory to the canonical one, it may hap-
pen that the equations that define the canonical
momenta

oL
oq,

b, , n=1,...,N (1.1)

are not all consistent with each other unless some
constraints

¢,(p,9)=0, r=1,...,R (1.2)

between the canonically conjugate variables are
satisfied. .
(This is generally the situation in the null-plane

8

formulation of relativistic field theories.)
However, the usual Poisson bracket of ¢, with
an arbitrary dynamical variable A,

Y fag, 0A 00 aA)
- Ty 22 Sy T2
{6,,4} g(aqn oA ),

may not vanish. Therefore Eq. (1.2) must be con-
sidered only in a certain “weak” sense. Clearly,
if we would establish a correspondence principle
(1/3X,} ~[, ] as is usually done in canonical quan-
tization, we would have inconsistencies with im-
posing (1.2) as an operator relation.

According to Dirac? we call the constraints (1.2)
obtained from (1.1) primary constraints, whereas
those obtained by imposing their conservation in
time are called secondary constraints. The whole
system of primary and secondary constraints may
be divided into constraints of the first class and
the second class. A constraint is said to be of the
first class if

{95, 6,1 =85 @,

for any other constraint ¢, .

Let us suppose that we have succeeded in sepa-
rating all the first-class constraints, so that no
linear combinations of the other can be made of
the first class. Then these remaining constraints
are called second-class constraints.

The first-class constraints remain weak con-
straints, whereas the second-class ones can be
made strong ones by defining a new Poisson brack-
et according to

{4, Bl*={4, B} - Zs), {4, etCdeg, BY,  (13)

where

S

Y Cognidgny bgrk =045r 5 (1.4)

&

Cyr==Cyrg (1.5)
and ¢, (s=1,...,S) are all the second-class con-
straints.

It can be shown that the new Poisson bracket

417
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418 L. BANYAI AND L. MEZINCESCU 8

has all the properties of a usual Poisson bracket
and conserves the form of the equation of motion.
Furthermore, as can be shown, for any second-
class constraint ¢,,

{0, Ap*=0.

Therefore, when quantizing the theory, accord-
ing to the correspondence principle

1
k=01,

the second-class constraints can be looked upon as
operational relations while the first-class ones
may be imposed only as constraints on the admis-
sible states.

Fortunately, in our example, there will be no
first-class constraints and the whole problem is
reduced to the redefinition of the Poisson bracket.

An original aspect of our case is that we study
a canonical formalism with the “null” time

x*_x°+x3
V2

in the three-dimensional space defined by the
“null” coordinates

x4 =x" (a=1,2).

The Dirac equations (1.4) for bosons here are
first-order differential equations, but there are
enough conditions to fix the solutions.

This procedure of quantization on the null plane
gives the correct result for free field theories;
however, its equivalence to ordinary (equal-time)
quantization in the general case is not so obvious.

II. SECOND-CLASS CONSTRAINTS

We consider a field-algebra Lagrangian built
from vector and axial-vector fields V¥, Al (i
=1,..., 8) transforming as the regular represen-
tation of the chiral SU, XSU, group in minimal in-
teraction with some massless spinor fields ¢,
(@=1,..., N) that together with® y,y, transform
according to the (N, 1)+ (1, N) representation. That
is, with the definitions

1
ViRt == (Vi AY), @.1)

PED = 5(1 2 iys), (2.1)

corresponding to the right and left SU; groups gen-
erated by the charges

QP =3(Q,+Qs,) ,

we have

[QER'L)’ Vg'R'L)F 1=, ingR'Lw ,
(2.2)
[0, ViRm0,

(R0, i) = gy

[Q{ER, y®D]=0 (2.2)

N
El (th )t g =ttt ) =if s ths
=

Introducing the notations
F‘(S,L)i =9, VLR,L);' _ BVVLR'L“

+g\/'2—f”k V‘(IR.L):'V;R,L)» s (2.3)
ELR,L)w(R,L) =(9, - igV2 1 V;‘R,L)i)w(R,L) (2.3%)

for the covariant rotors and derivatives, our La-
grangian is the sum of two Lagrangians:

L=LR+ el (2.4)

where
A . :
LRI = -ZFf,ﬁ'L)'FER'L)W +%mz V‘(‘R,L)z VER'L”‘

+%Z‘$(R.L) D ‘(‘R‘L)yﬂw(R,L) (5 =D - 5) .

(2.5)

This Lagrangian gives rise to the current-field
identities

) m?
]i“=—? vy,

(2.6)
mz
== s Al

for the conserved currents. [Note that in our nota-
tion this corresponds to j{FL¥ = —(m?/gV2 )V ELH |

Since the variables of the two Lagrangians £F
and £ are independent and uncoupled, our SU,
XSU, problem decouples into two independent SU,
problems.

In what follows we shall omit therefore the R and
L indices, working out the commutators inside one
group of variables, keeping in mind that

35 =3 4GP
@.7
=3P =GPy,

and

[5®H(x), 55" ()] =0 . (2.8)
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8 NULL-PLANE FIELD ALGEBRA 419

It is useful for null-plane purposes to introduce®

=Py,
(2.9)

1 *
wt-@ vy

Then the canonical conjugate momenta (on the null
plane) of our fields are

9L
[ T oo
I Tea, v
o__ 0L
b, 20,00 (2.10)
so__ 08
R

satisfying the nonvanishing Poisson bracket rela-
tions

V), T} (9o oys =6476,,6%(x = 3) ,
{lﬂf(x),l’f(y)}w =yt =P, 6&563("" y),
B2, BE (9, =g+ =P 6468 (x = 9) .

As is easy to see, Eqs. (2.10) give rise to the
primary constraints

¢, =1} =0,
¢4=N5-Fi=0,

¢?EP3{—%1'$3“/‘ =0,

(2.11)

e o (2.12)
Pe=pi+ziytys =0,

¢.=p_=0,

$_=p_=0.

The only nonvanishing Poisson brackets of these

constraints are {¢3(x), $3()}, {¢2(x), 3%(»)}. The
Hamiltonian’ is

3= f d3x[I} 311 +D}, V7)) +14DE, V5 + 5(FPP - m(2V; Vi = V3 V)

+igV2 V(P t, = 9,P.) 3@y~ D Y_= .7 D%_- Py Hy,)]

Now we have to impose the conservation condition
for our primary constraints. From {¢,(x), 3¢} =0
we get a new constraint

X; =Dj;11; +D§ 1%+ m* V]

—igV2 (p.t'9, - P,£5,)=0 (2.14)

and from {x,(x), 5} =0 another one
X;=20%V; -8 ViaegV2 £, ViV, +11] =0 . (2.15)

Similarly we get two new constraints x % and ¥
from {¢ 3¢} =0 and {$%, 3¢} =0. The remaining
constraint conservation equations fix the arbitrari-
ness of the Hamiltonian® or reduce to previous con-
straints. As can be seen, there are no first-class
constraints in our problem. Furthermore, we do
not have to work with all the constraints ¢;, ¢{,

% Y 0% B Xy Xi X%, XO. If a constraint
just states the vanishing of a given canonical mo-
mentum then the redefinition of the Poisson brack-
et is equivalent with respect to this variable to ex-
press this canonical coordinate through the other
canonical variables using another constraint equa-
tion.* In our case in this manner we get rid of
three variables and six cooresponding constraints.
(The fields V;, 9% 3* whose canonical conjugate

(DY;=06,,0" +gV2 7, V¥). (2.13)

momenta vanish we shall consider as functions
of the other fields® through the relations ¥, =0,
x2=0, ¥2=0.)

Thus we remain with the constraints ¢$, x,, ¢$,
$% and their only nonvanishing Poisson brackets

{650x), @59+ 2y ==284,D7,0%(x = 9)

X x (9her ey (2.16)

==m?(@2D},+gV2 f,, Vi (2))03(x =),

{0%00), DH DNt oys = =178 g0%(x = 3)

to work out the redefinition of the Poisson brack-
et. Therefore the index s of the formulas (1.3)-
(1.5) in our problem goes through values corre-
sponding to ¢, x;, ¢, #%and to the continuum
X, X,.

Since the spinor constraints ¢%, $< have vanish-
ing Poisson brackets with the vector-meson con-
straints ¢%, x;, the quantization of the basic spinor
fields ¥ is completely decoupled from that of the
basic boson fields (V;, V4). The result for the
spinor fields ¥ is the same as is given in Ref. 9.
Here we are interested only in the commutator of
the fields V;, V§; thus we consider the equations
[ef. (1.4)]
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[ @2 ¢y iny.elitate), 0, (0} =083 3)
[ a2y e doda), #3000,

' (2.17)
fdazC¢rlx,,;xk,,{xk(z),xj(y)}=0 ,

fdach:‘;,x;qag,z{fp:(z), Y =0,,0,,0%(x =),

1o

using (2.16), Eqs. (2.17) may be written as

¥ +30" (0)]C(x, y) =

[
[6* +0"(x)]C%(x,y) =0,
[
(

1

2 2
(2.21)

8 +30° (¥)]C%x,v)=0,

&+ (2)]C¥(x, y) = -36%6%(x = y) .

The solution of the first of these equations may be
written as

with 1 .
O, )= = g [e(x™ = 370X, =70 (%, 9)
cXi.x:X,.y=_ch,y;X,».x ’
Cpridtr==Cot x> (2.18) +X(x, )], (2.22)
Cu)‘i'.x;¢§.y=—c¢§.y: ¢ where
& +30 " (x)2(x, ) =0,
With the matrix notations o2+ 20 (R »
Qx, x)=1, (2.23)
Cx,mix; 5= CE Yy s
I Q(x, 3)7=0(y, %)
cx¢,x;¢'},y=c'a(xy y)lj) (2.19)
c (5, 9) and
Lo W F X,
Hamssgr = TR [6 + 40" (1)]X(x,5) =0 , .20
and X(x, )7 ==X(y, %) .
8V fiy Vi) =0"(x),;, (2.20) The conditions (2.23) fix 2(x, y) completely:
J
x = - -~ x= -
Q(x,y)=9(x'-y')Texv<-’i fdz'v*(xﬂZ',xL)>+9(y'—x')Texx)<—% fdz"v’(x’,Z',xl)>
= v
x" - yo - \
=Texp<—%f dz"o*(x*,z',?cl)) Texp(%f dz=v*(x", 27, xl)> (2.25)

(7T and T being the chronological and antichronological product symbols with respect to the variable z-),
while the conditions (2.24) fix X(x, y) up to an arbitrary antisymmetric matrix  (x*;%,,y.),

x= - yT
X(x,y)=Texp<—%f dz'v‘(x*,z',il)>fr(x*;ii,i)Texp(%f dz™v*(x*, 27, :m) . (2.26)

On the other hand, due to causality'®
X(x*5%,¥,) =0, -F )R, X,),
with
RT=-R .

Analogously we may solve all the equations (2.21) up to some arbitrary functions of x*, X,

(2.27)

[due to the fact

that Dirac’s equations (1.4) for our system with continuous degrees of freedom become first-order differ-
ential equations]. We shall see that this arbitrariness may be eliminated, at least if we ignore our re-

mark in Ref, 10.

Up to this uniqueness problem, the new Poisson brackets of the fields V;, V¢ are thus determined. To
obtain the commutators containing also V; we would have to solve Eq. (2.15). Its solution is again deter-
mined up to an arbitrary function of x*,X,. However, on this function one has to impose some additional
requirements assuring the locality of V;(x), which may determine it completely. Fortunately we do not
need the commutators of V; since all the relevant information for deep-inelastic scattering may be ob-

tained from the commutators:

FHENHEIIRS

*_Zfi!k]héa(x y)"’_ aLoY C(x)y)‘jy

(2.28)
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) ) . m? im?*
(37 (), 359 )+ g+ =if1 5y G2 0%(x = 3) e 85 6%(x =)0, *og? 8L(C(x, ¥) V4 y) = 8C(x, y) = 3C*%(x, 9));, -

(2.29)
If we want to ensure the interpretation of the null-plane charges
Q;= fdil f dx7j;(x)
as generators of the SU, group, we have to impose the conditions
fdiL [axeci =0, fd;g fdx'B"_C"‘(x, 9)=0. (2.30)
The first of these determines our arbitrary matrix R as
R(x*,il)=1+Texp[_%f-: dz-0* (x*, 27, %,)] @.51)

1-7T exp[-%ﬁ:dz' UV (xt,27,%,)]
while the second gives C'%(x, y)=0.

III. DEEP-INELASTIC SCATTERING

In this section we shall proceed to analyze the singularities of (2.28)—-(2.29) from the point of view of
deep-inelastic scattering. We are interested in the connected part of

tii(x, p) = (] [3L(x), 5Ol p) , (3.1)

where p is the 4-momentum of the one-particle state |p) of mass M (averaging over spin is understood).
The decomposition of ¢}/ into invariant amplitudes is

t:‘{,(x,p)=(3ua,, 'gpuaxa)‘)fxu(xz,P * )

+ [pupvaxa)"' (2,8, +,9,)p X8*+g,,,,p A AHx% b e x) + €y Ao PPOFH (R P x) (3.2)
and correspondingly for its Fourier transform
. 1 .
e, )= [ dwentii(xp) (3.3)

we have

1@, 0)= (0,9, - guaFHW, ¢2) + [P D a2 = (D, +0 19,V + 8,V 1FH (v, ¢®) +i€, 1, Pq°FE (v, %), (3.4)
where

fr;"'(V,qz)“El;fd"e“'"‘fn“(xz,lﬂ-x) (3.5)

with v=p -q.
The general form of f/(x?,p * x) due to causality and spectral conditions is (N is finite)

N
FHx%p - x) =e(px) [9(x2)e:’(x2,p )+ 3 89(x%) e 9H(p -x)] (3.6)
$=0
(but £,/ contains also a noncausal term; see Ref. 12).
In the Bjorken limit (v—~, g%- -~ with w=-¢?/2v fixed) the behavior of the structure functions §' is

determined by the light-cone behavior'® of f}(x? p - x) (see also Ref. 14). The scaling behavior in the
Bjorken limit,?

lim ¢°§,(v, ¢*) = Fy(w) ,
B

lim v §,(v, ¢%) = Fp(w) , 8.7
B

li;nqziFs(V, q%) =Fy(w),
)
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corresponds to

P, p )= e(p - D)o(x®) € {x®, p - x) +8(x*) €' (p - 0],

Fx% b x)=€(p - x)6(x?) @ 3(x% p - x) + (noncausal term) , (3.8)

H(x2,p x)=e(p - 2)[6(x®) e (5% p - x)+6(x%) € {H(p - 1)] ,

with € £/(0, p - x) finite, and
Fiw)=i210 € (),

o de(w
F;’(w)=-z41rw——;w( ) y

Fi(w)=i2mwe (H(w) ,
where (0=p - x)
1

&) =3- [doeT e ), efw)=g- [doeei0,0).

Using (3.7) and the relations

€(x°)6(x?) €'(p * x)|,+ o= 3WE(x7)B(X,) € (Mx~/V2) ,

9, +++ 8, 8(e(x)0(x*) € (x%p s+ =0,

4y

(3.9)

(3.10)

(3.11)

8, 8,(€(x°)0(x?) € (x%, 0 1)) |,+-0 =8, (e(x™)x"86(X )7 € (0, Mx~/V2)

(for the singular functions their value at x* =0 was defined as the semisum of their limits for x* - +0) one

finds on the null plane (with p=0)

tH_(x, ) =0 *[e(x)o(X,) 27 € [H(Mx~/V )] +if 4 (157 (0)] £)5°(x)

(the last term is due to the noncausal contribution to f;/),

14 (x,p) =0, 0_[e(x7)8(xX, ) sme (¥ (Mx~/V2)] - 8, [e(x")x"5(X,) s M? € 140, Mx~/V2)]

+€4 8, [€(x)B(X, ) TM/2VE) @ JH(Mx~/V2)] .

Now we have all the necessary elements for the
identification of our structure functions.

Defining the matrix element of our bilocal opera-
tor

7 01805, 0 1) e, 0= (1)
(3.14)

and the form factors
(Plik©@Ip"y = (P +p"F (0 =p"))

[with the covariant normalization (p|p’) = (27)°2p°
x6(p - p’)] and taking into account that

(3.15)

(| Clx, 0y02(0)| p) =0

when p=0 and that (¢| X(x, 0)| ) must vanish
because otherwise it does not obey the spectral
condition [compare with (3.6)], we identify

(3.12)
(3.13)
-
i .
e {(0) =3=0(0),
€ 140, o) === L gii(0) (3.16)
2\ 210 do ’ :
e (0)=0
or

Fi(w)=-wl(w),

Fi(w) =270 (w)

[fz”(w)=21—"fdoe"‘”“ﬂ”(o)],

FH(w)=0 . (3.17)
Thus, the relation
Fi(w) = =2wF(w) (3.18)
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emerges. The same relation was obtained by Cal-
lan and Gross'® considering the infinite-momentum
frame (| p| -~=) matrix element of the equal-time
dotted current commutator of the field algebra
model.

Recalling that due to (2.23)

d _,,
— iJ
25 21(0)

==fiie s
0

5=
and (3.19)
Q4(0)=0,
we find immediately the Adler sum rule
! 1
f dw— Fy(w)=2if;, F,
-1 w
and (3.20)

! 1 s
j:: d"-’;,‘z'Fz (w)=0.

Here we assumed that Q'/(+=) is finite. Then it re-
sults also that
Fi¥(©) — 3= [21/=) - @1(==)],
w—0 27

which does not correspond to the Regge behavior.

To conclude, we have seen that the formal ma-
nipulation of the classical Poisson brackets en-
abled us to derive the Bjorken scaling behavior
given by the field-algebra Lagrangian. The re-
sults agree with those obtained by formal manip-
ulations of the equal-time commutators.

Note added. After the completion of this paper,
we learned about the work of Feinberg,'® where
the same results are obtained by using Schwinger’s
quantum action principle. We would like to thank
him for sending us his preprint and for interesting
comments,

*Work performed under the contract with the State
Committee for Nuclear Energy of Romania.
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Again on the Gauge Dependence of Renormalization Group Parameters (*).

L. BANYAI

Institute of Physics - Bucharest

8. MarcurEscU and T. VESCAN

Department of Physics, University of Bucharest - Bucharest

(ricevuto il 17 Luglio 1974)

Non-Abelian gauge theories have recently attracted attention as candidates for
a field theory of strong interactions (1), due to their unique asymptotically free be-
haviour (?). The infra-red divergences inherent to these theories raise serious problems
as well as certain hopes (2) regarding the nonobservability of massless vector bosons
and quarks. For the moment we can discuss only the theory of Green’s functions sub-
tracted at an arbitrary Euclidean point. Hence, observability cannot be used as an ar-
gument in discussing the dependence on the gauge parameter of the various quantities.
A peculiar importance has the understanding of the gauge dependence of renormali-
zation group parameters.

Recently (3) CaswreLL and WiLczEK derived certain relations for the gauge parameter
derivatives of the renormalization group parameters in a pure Yang-Mills theory, and
noticed that they lead to gauge independence in the ‘t Hooft () renormalization.
However, the nature of their consistency relations is not transparent, and their argu-
ment about the ‘t Hooft renormalization is neither clear, nor complete.

Due to the importance of the problem we present in the following a new discussion
using ‘t Hooft’s renormalization procedure in the very convenient version of CoLLINS
and MACFARLANE (°). We show that the consistency relations including massive fermions
are actually contained in the very definitions of the renormalization group parameters
and their gauge independence in 't Hooft’s renormalization is connected with the gauge
independence of certain renormalization constants.

(*) Work performed under contract with the State Committee for Nuclear Energy of Romania.

() D. Gross and F. WILCZEK: Phys. Rev. D, 8, 3633 (1973); S. WEINBERG: Phys. Rev. Lelt., 31,
494 (1973).

() D. GRoss and F. WILCZEK: Phys. Rev. Lett., 26, 1343 (1973); H. PoLITZER: Phys. Rev. Lett., 26,
1346 (1973); G.'T HOOFT: unpublished.

(*) W. E. CasweLL and F. WILCZEK: Phys. Lett., 49 B, 291 (1974).

(*) G. ‘T HooFr: Nucl. Phys., 61 B, 455 (1973).

(®) J. C. CoLLINS and A. J. MACFARLANE: University of Cambridge preprint (Nov. 1973).
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Let us consider a renormalized, proper Green function I'p obtained through multi-
plicative renormalization of the unrenormalized Green function I,

(1) Fk(pf m,Mm, g, “):Zl"ru(_pi My, !]0:%)-

Here m, ¢, o (respectively my,, gy, %) are the renormalized (respectively unrenormalized)
fermion mass, coupling constant and gauge parameter; p stands for the external mo-
menta and x is an independent mass parameter defining in some way the subtraction
point ('t Hooft’s unit of mass (*)). We shall assume all the unrenormalized quantities
regularized through the dimensional procedure of ‘r Hoorr and VELTMAN (%). Then from

aI’u O
ou Mg, dg.%ofixed ’
follows (5) the renormalization group equation
2 o + B ° e + 6 0 T, 0
—_ M —— — - —-0.

(2) " o % YmMoe —yr+ 0| Ig
Moreover, if I', is gauge invariant, 7.e.

or,

—%=0,

Qo
then also (1'?)
3 (9 n Gl d e o

— _— m — — =
) (80: gy Mgy, o) la=0,
where the various coefficients defined by
og dlnm olnZp Qo
4 = ’ 'm = H = ) 6= s > ) fixed s
“ P = T oma P o lnp (o %o o fixed)
dg [do dlnm [« dlnZp [oa

5 = /> = = = a0 ’ » ¢ fixed »
(5) 4 day/ 0oy Om B | g er 0wy | oo (90> Mg, p fixed)

as well as the renormalization constants are dimensionless and may be expressed as
functions of ¢, « and m/u.

Using the second equation one may eliminate the term from the renormalization
group equation. This gives rise to a redefinition of the coefficients

B =B—0d,
(6) V= ym_gméa
yr=yr—ord.

(*) G. 't HoorFT and M. VELTMAN: Nucl. Phys., 44 B, 189 (1972).
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Some of these definitions may be expressed directly in terms of derivatives with respect
to renormalized parameters (here Z,,= my/m)

7 _(1s 2mEn )71 20z
(a’) Qm* +6ln(m/lu) Soc—l_ Qag n m?
el 0 b5l

(7b) Qr:(g&JrQa——@mm)lnzr,

] eInz, \-[.d d
(8 ”"’(”aln(m/m) (’3 a_g_almm/m)lnz’”’
8b Py = BE 1+ 5 0 InZ
(85) Yr— ag‘( "‘Vm)‘ém I -

Let us now consider 't Hooft’s mass-independent renormalization procedure (*5),
where

(g) 5 = —&/2
g Zg - go:“ ’
(10) aZy = oy,

with ¢ = 4—mn, n being the space-time dimension.
All the renormalization group parameters f, y,,, ... are supposed to be analytical
functions of ¢. Then, by differentiating (9) with respect to lnu and o, we get

- of\! 7_-_a_f
(11) ﬁf(a—g) , 0= ﬂa“,
where
Ing 21
g, o, 8) = —— ngz—g-

Z, 2 1
(12) - HEE“*‘" %),
we obtain

. > (1/¢")a,
(13) Ble) = —59——2" .
14 > (1/¢")oga,/g
y=1

9 i (1/e")0a,/0a

(14) ole) = = fle) e

L+ > (1/e")a,

y=1
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From (13) it results that B(t) behaves like ¢ at e— oo, hence it is an entire function

(15) 5<s>:——§g+f§,
15’ B ,1 2%
(15) T2 ag.

For cosistency certain relations between the coefficients @, have to be satisfied (%).

By combining eqs. (14) and (15) we see that g(¢) vanishes at ¢—> oo, hence it is zero
everywhere. The consistency conditions here imply that da,/0x = 0, 4.e. ZI/Z§ is inde-
pendent of «. (This is readily seen in the one-loop calculation, see for example ref. (7).)
Similar arguments give

1 aam 1 aan
16 b = g S —— g —
(16) Vm Py ag yr 2 ag
(17) on=o0r=0.

The last relation implies that neither Z,, nor Zp depend on « (*).

Thus in this renormalization a gauge-independent unrenormalized Green function
produces an «-independent renormalized Green function if multiplicatively renormal-
izable. According to (6)

B=8B Pu=¥Ym» Pr=yr
and since

8a,/0a = 0a,,;/0a = dap /0= 0,

they are oa-independent.
In the Abelian case Z,/Z} is to be replaced by Z;! and thus Z, and Z,, are gauge
independent, a well-known result in the usual renormalization of the QED.
Changing the definition of the renormalized coupling constant, gauge parameter
and fermion mass, we can pass to an arbitrary renormalization procedure, which is
equivalent to a finite intermediate renormalization. Replacing ¢ by §(g, o, m/u), «

() P. S. CoLLECOTT: University of Cambridge preprint (Feb. 1974).
(*) The analiticity of the renormalization group parameters at ¢ =0 to every order in g is a direct
consequence of the corresponding analiticity of the renmormalized Green functions. The resulting
consistency relations between the coefficients a,, amv, ap” give rise to

g - g
Z dg’ 0" ¥, ’
— = e [*f p _ St ] Zur=exp |~ [ag =72l |
Zy J 9 B~ ey Y B — E/2)g’
Taking into account the known (?) lowest-order expressions for E(g), vm(g), we find
Z ~ ¢t 7.~ gOC(BIIICE)—AT(R)]
Z% >0 7 e 0 *
3
It is interesting to observe that only for asymptotically free theories (11Cy(G) — 4T(R) > 0) Zm =0,

thus the bare-fermion mass vanishes. Similar results in the Landau gauge (x = 0) can be derived for
the other renormalization constants. Such relations in a momentum cut-off version have been found
also in ref. (%),

(®)) Nea WiNg-CHIU and K. YOoUNG: Stony Brook preprint (Nov. 1873).
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by a(g, &, m/u) and m by my(g, @, m/u), we find

3¢ [oa
Q=£ 5;’
(18) og dx - - og da
’g:(a_g_@@)ﬁ ‘“+y’"’(@ln(m/ufgaln(m/u))’

where ¥, y& are the values of these parameters in the 't Hooft renormalization (g, «, m
here are also the renormalized parameters of the same procedure). Analogous relations
express the other coefficients through their values in the ‘t Hooft renormalization.
Taking into account that
"= om=or="0
and
% _ epm _ O7F

—_fm AL 0,

e a x

one then finds generally

o8 [, .., 0 o o\,
. L2 PLI 3 3 o\
(19) 87_ a_g_( +7’m)aln(m/M)J Qm_(@@_Qmaln(m/ﬂ) Ym s

o5 [, 0 ] o 2 ).

oy l:ﬁ@—g_(l + Vm) ol (m/u)| QI'—(QéE— Om Fn(m/m) vr-

(Here g, o, m are the renormalized parameters of the given renormalization procedure.)

These equations are the generalization of the consistency relations of CAsweLL
and WILCZEK in the presence of massive fermions, and may be obtained also though
their method, which consists in forbidding any more nontrivial equation to be satisfied
by the Green functions.

It appears that even with fermions, if ¢ = g,,= gr= 0, the normalization group
parameters f, 7,,, 7 remain gauge independent. This occurs in any renormalization
obtainable from the ‘t Hooft one through a transformation with § and ¢ inde-
pendent of a. '
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Properties of renormalization constants (gauge dependence and the e — 0 limit) are
shown in *t Hooft’s renormalization of Yang-Mills theories. The equivalence to a standard
subtraction procedure is discussed at the one-loop level.

1. Introduction

Recently there have been proposed [1, 2] new methods of renormalization in
quantum field theory which do not consist in subtractions of the divergent proper
irreducible vertices at a given momentum. The main advantage of these new ap-
proaches is that the renormalization constants (including the fermion mass renor-
malization constant Z,,) do not depend on the mass [3]. Consequently, the renor-
malization group equations may be solved exactly at arbitrary momenta and asymp-
totic freedom in non-Abelian gauge theories was shown rigorously. Moreover, some
of the renormalization constants and the related renormalization group coefficients
are shown to be gauge independent [4,5].

One purpose of this paper is to give a more detailed account of the remarkable
properties of the renormalization constants and the renormalization group param-
eters in 't Hooft’s scheme for a non-Abelian gauge theory. On the other hand we
discuss, at least at the one-loop level, the eventual equivalence of this renormaliza-
tion with a subtraction at an unconventional, mass and gauge dependent momentum.
Conclusions are given at the end of each section.

We shall consider a gauge field theory, whose Feynman rules are defined by the
Lagrangian.

L=-%F F¥ 43 iy, D* —mp) ¥ “‘2:11_0 0, AL DAL g VD,

(1.1)

* Work performed under contract with the State Committee for Nuclear Energy of Romania.
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where:

ol a _ a
BMA“ aVA# +gO

= b 4¢
w fabcApAV’

= i a a by _ . c
D“_a# ngt“A#, (15, %) =if, .t

ab —, _ c
Vu _5aba“ gofabcA” R

AZ’ and u, being the unrenormalized Yang-Mills, fermion and Faddeev-Popov ghost
fields respectively.

The theory is supposed to be gauge invariantly regularized through the dimen-
sional regularization of 't Hooft and Veltman [6]. The divergences of the theory,
when the dimension n of the space-time tends to 4, manifest themselves as poles at
the origin (at most » -uple at the v-loop level) in the variable € =4 — n.’t Hooft’s
procedure consists in just dropping these poles, i.e. a multiplicative renormalization
with dimensionsless renormalization constants of the form

Z=1+21 L a®, (12)
v=1 ¢
where a,(" ) gets contribution starting with the v-loop diagrams. The important feature
is that a?) does not depend on the renormalized mass [3]. The series in eq. (1.2) is
supposed to converge in a domain of the e-plane so as to define a unique Z{¢).
Otherwise it may be understood as an asymptotic series for € > o°.

The renormalized coupling constant g, mass m and gauge parameter a are related
to the unrenormalized ones through

_ 1
goH € = = & my=Z,m, ay =Zya. (1.3)

23

Z,is the three-vector vertex renormalization constant, Z5 is the vector field renor-
malization constant, while Z,,, is related to the conventional fermion wave function
and mass renormalization constants Z5 and 6m, through

Z =1+@m/m)Z,"

(’tHooft’s unit of mass u was introduced everywhere to get the correct dimensions

[1,3].
The renormalized group equation i la Weinberg [2] is
9 0 0 0 _
(umwég—vmm% —Ypt8 5&) I @g0mu)=0, (1.4)
where
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og _dlnm 0lnZ, 5 =02

dlnpu ’ 7m“aln,u > M= dlnpy ° dlnpu (13)

B

at fixed gg, o and my; obviously 6 = —a v3. These coefficients have to be finite at
€ =0 in every order in g. The same is true for the coefficients

p:ai ﬂ p Ealnm a_Ol P EaanF /ia_ (1 6)
aao aao m aao aao ’ r aao ooy ’
(at fixed gq, mq and u) of another equation [7]
] 0 ] -
(aa tp 5= ag pm mmﬁpF)FR(p’gr a,m, H)_O (17)

to be satisfied by the Green functions obtained through multiplicative renormaliza-
tion of gauge invariant unrenormalized Green functions. As we shall see later, the
finiteness of these coefficients has far reaching consequences.
The solution of eq. (1.4), having a canonical dimension D, behaves like
L Qp, g 0, m, u)

Inx

=?\DFR(p,g(t),m(t), i) exp [— f dr Tr (g(t) m(t )):| (1.8)

0
under the scaling of momenta. Here ¢ =1n X and

dg(t) 6(g(t) a(1), m(t )) , g0)=¢g,

el <5 (s000.22), 0=, (19)

dlr:iftn(l‘) _1 —’Ym(g(t)am([)) ’ m(0)=m .

In ’t Hooft’s renormalization these equations are decoupled since 8,8 and v, do not
depend on m/u and we shall see [4, 5] that § and v,, and v,,, are gauge independent.
In the one-loop approximation the values of the various coefficient are

Bg)=— 4 C2(G)—%T(R)] ,
T
@ g
==— 6C,(R), 1.10
Y ®) (477)2 L(R) (1.10)
7,08 a)—( 20 G,([R) ,

Ladislaus Banyai: Profile in Motion



358 L. Banyai, S. Marculescu | Gauge theories

2
748 0) = — £ [13;3"‘ CZ(G)—§T(R)],

2
~ g 3-a
73@1 a) - (47T)2 2 CZ(G) H

where the values of the Casimir operator are C,(G) and C,(R) for the adjoint repre-
sentation and the representation R of the gauge group G respectively, while

T(R) is defined by Tr ¢4 # =8 T(R). If the quantity b = 5 C(G) — 3 T(R) is po-
sitive, the origin is a ultraviolet attraction point for the first eq. (1.9) and one has
“asymptotic freedom” [7, 8]:

2
gi (0 ~ (;Zz . (1.11)

t— o0

For ¢t - o< it follows also

dlnm () ___ 1
ds P ’

and thus m(ec) = 0. From the third eq. (1.9) we have for > o

dﬁ‘ft) ~ é oD@ — a@)],

with@=2 -~ 3 T(R)/C)(G)and A > 0. Then 0 and & are the fixed points. Which
of them is ultravioleted stable depends on the sign of &@: a(e) =& 6 (@). However
there is a special case a(0) = 0, which implies a(#) = 0 for all ¢. From -3 <& < L
it follows that 0 < a () < $[9].

Therefore the Green function in the right-hand side of eq. (1.8) approaches
asymptotically its free value for massless fermions in the gauge a(°°).

As it has been shown by Weinberg [2] one can get in this way the first three
terms in the asymptotic expansion of Green functions at arbitrary large momenta.
Since different renormalization procedures are related by finite multiplicative re-
normalizations of the coupling constant, mass and gauge parameter, approaching
the identity for g = 0, the above results are valid in an arbitrary renormalization.

Unfortunately, the infrared (low momentum) limit of the Green functions can-
not be understood through a similar analysis.

2. Renormalization constants and renormalization group parameters

Let us consider the e-expansion of Z = Zl/Z3%:
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R
= Z:) ; 5 (2.1)
whose coefficients a, are functions of g and &. Then just from the definitions (1.5),
(1.7) and (1.3) one has [5].

1+El—a
v=1¢gd ¥

=1 9
‘?‘v‘a‘”)

Ble.ga)=—1eg , (22)

where f =8 — pb and

2z
B (e g o) ~_———— . 2.3)

m‘[.—-
S

=2
ple, g,0) p

:I*‘

Since the ratio (and the product) of two asymptotic series is again an asymptotic
series (or, the ratio of two Taylor series in 1/e is again a Taylor series in 1/€), we
have

~ 1
Ble g,a)-—zeg+zg2 Z:)—V

and

n(e g E L
v=1¢"

Now, the important point, is that in every finite order in g one can see that there
are a finite number of 5,’s and ¢,’s different from zero. Since 8, p and § have to

be finite at € = 0, in every order in g, the coefficients b, and ¢, have to vanish in

every order. The vanishing of all the ¢,,’s implies the vanishing of p itself. There-

fore § = and 9a,/da = 0, thus

Bleg)=—1g+B@), (2.4
with B(g) = 3g2 0a,/dg, being independent of a.
On the other hand, eq. (2.2) was nothing else than

. d -1
Bleg)=— ke [@ Ing Z(e g)} : 25)
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from where

Z(e,g)=exp[—fégg,—, Igf)(%’)l—qg—'] 2.6)
0 3

In the same way, one can easily show that p,, = pp = 0, thus neither Z,,, (and
Ym) nor Zp (and ) depend on . Moreover, for an arbitrary y; one has

aanl. aanl. aanl.

= +§ s
olnp g 0o mo s og du

7,8.0) =

thus

16 80, a()) = - In Z (eg(r), (1) .

Since g(#) is a monotonical function of ¢, we may define a function & (g) such that
a(g(D))=a(h). Then

~ A d ~
v(eg.a(z)) = B(eg) g nZega(),
from where (In fact v; cannot depend on € due to its finiteness at € = 0) *

&, a)
Z(cg0)= exp[fg %’ zﬁg_)oé—%} '
0

As one can see from egs. (2.6) and (2,7), the renormalization constants have a finite
cut in the e-plane.

Now we look for the behavior of the renormalization constants as € tends to
zero. The integrals in the exponent of eqgs. (2.6) and (2.7) diverge at the integration
end g = 0 as € > 0. This divergent part can be thus extracted knowing only the
lowest approximations for the renormalization group parameters. In this way we
obtain

(2.7)

CL&O)/2b
Z ~ € !

L
ZN 2 i
€ 1 e=0 ?

e—~0

(2.8)
with ¢; defined through

7,8 @) = &2 /(4m)?) Cle) + O (g*) .

Using their actual values from (1.10), we have (with @ (0) = a (=) in the case of
“asymptotic freedom’)

3C;R)B , 23 . e(h[f)(o{ )—11/2b) C2(G) ,

Z ~ € =0

m e—0

* There is a wrong sign for the integral at the exponent of Zy, as givenin ref. [5].
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z, o (0)-11/2b) - ’ 7 ~ @ 0@)-3)/4b)C(C) (2.9)
Thus Z; and Z,,, always tend to zero (and so do the ratios Z;/Z3 and Zl/Z%)
while Z, and Z tend to zero or to a constant, depending on the sign of @ . In either
case there is no gauge dependence of the ¢ - 0 limit, except the actual value of the
finite constants. Of course, as it was mentioned before, the transverse gauge is to be
treated separately since for it @ (0) = a(0) is always zero. Therefore, besides Z and
Z,, , which are gauge independent, we have in this gauge

22 5 const,

Z, ~— @G

e—~0

T — 3AD)CG)

e—~>0

so that Z /Z3 vanishes again.

Hence, this is an example of a quantum field theory where one can explicitely
prove the finiteness of some of the renormalization constants, although they diverge
in each finite order of perturbation theory. Strange enough in the same time, the
bare coupling constant gy and the bare fermion mass m are vanishing. This is valid
also in the Abelian case (QED). However in what concerns the gauge dependent
renormalization constants, “asymptotic freedom’” was a necessary ingredient for
obtaining the result.

Since due to infrared problems no on-shell S-matrix can be defined in either case,
the physical interpretation of the above result is lacking *.

All our discussion refers to ‘tHooft’s renormalization procedure. However, the
results on the e = 0 limit of the renormalization constants are generally valid since
a finite renormalization does not change anything.

Essentially, the content of this chapter is a more detailed account of results ob-
tained in a previous work [5]. Similar results were obtained also in [11] in the frame
of the Gell-Mann-Low renormalization scheme with ultraviolet cut-off. Whereas
the results are correct their derivation is not satisfactory since they had to assume,
as in the old renormalization group approach, that the m/u and « dependence of 8
can be ignored.

Another class of renormalizations that give rise to gauge independence (at least
for massless fermions) was proposed in [12]. There, the imposed normalization of
the vertex part is chosen « dependent so as to give a gauge independent .

* See however ref. [10].
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3. The equivalent subtraction point

In this section we put ourselves the question whether ‘tHooft’s renormalization
procedure (where the mass parameter y is just a unit of mass) is equivalent to a sub-
traction a la Gell-Mann-Low in a specially prescribed Euclidian point, i.e. dependent
on m/u, o and g.

Let us consider for example the renormalized meson self-energy part [I(p?/u?, a,
m/u, g). The problem is then to find order by order in g the position of the zeroes
for p2 < 0. With the perturbative expansion of I1.

2 2 2
H(E- aﬂg)=l](p_ aﬂ)g2+n(p_am)g4+
3 Wty 'y 1 ERed] 2 » Ky Ceey
#2 M “2 u ll2 u
and of its zero

2 .52 2 2 2 m -
A —7\(0)+>\(1)g + ..., H(-—)\ ,a,;,g)—o,

we have the following set of equations to determine successively the ?x(zv),’s:
2 m)=
= (,ﬂ OR ) 0.

2 m 2 2 m\ _
HZ («)\(O),a,ﬁ)+ )\(I)H:l ( ——)\(0),(1,"7) =0 ,

Of course, there would remain serious convergence problems of this procedure.

We have studied the first step of this programme for the selfenergies of the vector
meson, ghost and fermion fields. For that purpose we have computed in the one-
loop approximation the finite part of the self-energy (which are ignored in renor-
malization group problems).

The renormalized vector meson self-energy 11, defined through the total vector
meson propagator

1 p.g p,pP
D,w=- 2 (guv_ ”21))“" “4V ’
po[1-1@E)] p p
is given in the one-loop approximation by
o e3)
2
2 2
= £ {CZ(G)[3°‘6‘13 (ln(~ﬂp—)+’)’)+%+%(a+l)2j,
(4my? N
2 2
+4 T (R) [ln(n-mz—)+'y+6fd,§z(l—£)ln (1—”—2 5(1—5))]} (3.1
M ) m
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The renormalized ghost self-energy %,,, defined through the total ghost propagator

1
Ap) = ———
P [1+3,0%)]
is given in the one-loop approximation by

zu(z_z,a)=£3_2 C,(G) ["‘;3 ( ln(ﬁﬂZ—z)+7)+l} . (32)

The renormalized fermion self-energy X, defined through the total propagator of
the fermion field

1
S -
R T )
is given in the one-loop approximation by
2 2
Z(p)=v- pa(p—2 ,a,ﬂ)+mb(”—2 ,a,in—),
u » ur M
where

b(fz,a’%) (3.3)
:a!f? Cy(R) (@ +3) [In(w%;)” —%%‘2*) ¥ (l ‘;,m;)ln (l “5722)]'

(In the above equations  is Euler’s constant y = 0.5772...).

First, we consider the vanishing of the meson self-energy (3.1). For simplicity,
let us take at the beginning a theory without fermions. Here there is a simple solu-
tion

2 _1 B4+ 1)?
7‘(0)%""‘[ 13—3a "

excepting the gauge a = '3, where there is no solution.

In the presence of fermions (T'(R) # 0) no explicit solution can be found, but
an analysis of (3.1) shows that for « <@ and & > 5 the self-energy is a monotonical
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function of —p2/u2, diverging at the origin and the infinitey, while fora@ <o <%
it has an absolute minimum (whose value depends on the ratio m/u). Therefore,
in the gauges @ <@ and & > % one has always a unique solution, but in the gauges
& <a <2 one may have a solution only for a given value of the ratio m/u (above
that value there is no solution at all and below there are more solutions).

Thus, at least in a class of gauges, characterized by & <a < 13—3, ’t Hooft’s renor-
malization is not equivalent to a subtraction of the meson self-energy for an arbi-
trary value of the mass parameter u.

The ghost self-energy (3.2) has always a zero at (« # 3)

2 1 4
?\(O)—;exp(z'—_a ~7).

In what concerns the fermion self-energy (3.3), the invariant functions ¢ and b
do not vanish for any p? <m? if m/u is sufficiently big.

To conclude, our one-loop level analysis shows that 't Hooft’s renormalization
scheme is not equivalent, generally speaking, to a subtraction at a special point.
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Physics Institute of the RPR Academy, Bucharest

On the Kinetic Theory of Magneto-Optical Phenomena
by Green Function Method

By
G. CroBaxvu and L. BANvar

General formulae for the frequency-dependent transverse electrical conductivity in a d.c.
magnetic field are obtained, using the double-time temperature dependent Green’s function
method. The results obtained are applied to cyclotron resonance in high magnetic fields.

Es werden allgemeine Beziehungen fiir die frequenzabhingige transversale elektrische
Leitfahigkeit in magnetischen Gleichfeldern unter Verwendung der temperaturabhingigen
Greenschen- Funktion erhalten. Die Ergebnisse werden auf die Untersuchung der Zyklo-
tronenresonanz in hohen Magnetfeldern angewandt.

It is well known that the conductivity tensor may be related to the correlations
of the equilibrium currents [1]. On the other hand, the correlation functions may
be expressed in terms of the double-time temperature dependent Green functions,
defined as

Gt — 1) = (CA@); B))>r = — i 00 — ) {[4(), BH)]>, M

where A(¢) is an operator in the Heisenberg picture, 6(t) is the step function, and
averaging is performed over the grand canonical ensemble.
According to [2], the electrical conductivity tensor is given by

Ne? i

oi5(w) = 7;5” + ,le f dt b=t (Jy(t); Idd n—>+0 (4,5=1,2,3)

@)
where w is the pulsation frequency of the applied electric field and J; is the i-th

component of the current operator. If we denote by @;;(w) the Fourier transform
of the Green function, equation (2) becomes

Ne? s E A R
o) = = Lo+ 2T (o + i) 3)

m w ho

1. The Green Function

In the second quantization representation the currents are

Ji= 2 @)jiB) i ag, (4)

ap

(«ji|B) being the one-electron current matrix element. Therefore we are inte-
rested in the computation of the Green functions of the form

Gy (8 — 1) = (<ai(t) ap(t); a5 () aglt'))) - (5)
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This function obeys the equation

PB 202 — ¢) = 8t — ) b Cla ag, a5 as)> + <<[aI(l) ast), H]; a3 (t) ant))
(6)

where, for elastic interactions the Hamiltonian is
H=H,+V, Hy =} ¢,aa,, V=2 V,a.a,. (7)
u “wy
Performing the commutations, we have
- a 7 ’ + + ’
Ph=GLp (e — )= 8(t — ) h (3, <o ap) — B.5 <a3ap)) + (6 — €.) GLY(E — ¥) +
+2(V,,, GUlt — ) — V,, Guh(t — t)). (8)

Rearranging the terms we obtain for the Fourier transforms

(hw + e — &+ Via — Vgp) G1%(w) = (5py<aa as) — 5ua {aj, agy) +
2 Vg, G230) — X' V,. G(w). (9)
‘(#ﬁ) #a)

Similar equations can be written for the Green functions G%%(w), G% §(w). Sub-
stituting these latter functions in (9) and omitting all the terms containing Green
functions different from G%%(w) (which are multiplied by the second power of the
interaction) and neglecting also the correction to the inhomogenous term, we have

1
{“’“ —& =2, Vsl m*_e,‘,@ B iy O
A
= 5= 0ua0py{fs — I (10)

where &, = ¢, + V,,, fo = {@a @,). As it may be seen, our method for solving
(9) is an iteration method. We had stopped at the second step, which is sufficient
for our problem. Neglecting the energy corrections we have

A
2—7!611665;;'(’:1 - fﬂ)

pote,—eptin S {Va 0 (Aot e, —6)+ [Va,l20 (Ao + 6, —eg)}

(1)

Qup(w +i7) =

2. Transverse Components of o;;(w) in Magnetic Field

Let us apply a d.c. magnetic field in the direction of OZ axis. In the isotropic
effective mass approximation the electron state is described by a Landau wave
function, characterized by the quantum numbers & = (n, k,, k,), and the energy

zy y)s
22 k2
snk,—ﬁwo(n—}— )—i——i.

In this case

. (ko N
J1 = (2m0> y,:l’n + 1 (an+1 tOnk — Qu % an+1,k),
a,

(12)
B wy\1/2 _— .
=e<2m°) Zifn—i-l(a,,_,_l,,,an‘k+an’kan+l'k),
n .k
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As a consequence we obtain for the Fourier transforms of the Green functions G,
G, the following expressions:

h S

Gu(w) = wo ZI; 'Zk‘,l/ 1)(» 4+ 1) X
X {Ga TN () G;i,'k‘; Y (@) — G LA (@) — G e () 13)
h L —
Chafw) =ie* 52 3 2 (n + 1) (n" + 1) X

nk Wk

1,k 0,k ne ke 1,k LR A kw1l ke
X G I i (@) — G i () — G N () + G (o)
On the other hand, according to (11) we have
SN nkrin + 1k
Gz—i-l,k;n:'k (w) = Gn,k;nﬁ-l.k (w) =0 )

1
—Onn Ok k' (fn+1,k — [, 2)
2n

[

n' k';n'+1,
n+1,k;n, Y ( + “7) w + o, + ic;,lk("w) (14)

1
—Opn Ok (fr, b — fat1,8)
2n

‘+1L,E 0k .
G(:,k; itk (@4 1n) = P s s
w — wp 1 1 {x, k(w)

where
ot (1)) = Z:,— “):;:I {IVn,k;n’.k’lz 0 (ent1,k — &nrpr — H ) +
nl' 4
-+ }V (en,k — &n'p + R (1))} . (15)

Therefore,

Nei ;@
ou(0) == ot g o 2 0 1) e — fara,) X

w 2m

1 1
— 6
X {(o—wo-i—ii,',},(w) + w+m0+iC,—,",-,(—w)l’ (16)

w°Z(n+ ) (fa, 6 — fat1,8) X
x{ L L } (17)

0 —ay + ik w4+ eyt i —w)

O1o(®) =

In the case of interaction with acoustical phonons in the deformation potential
model, the Hamiltonian is

H=Hy+ U,
H, zzé“a;a,‘ +2w‘1b‘;bq’
] q
l,’ = Z (/III(SV"V) a; a’v > (18)
", v
, lql *
5V =g ¥ 11 pyciar_pge-ian),
T Yoa

where g is the electron-phonon coupling constant and w,is the energy of the phonon
with the momentum q.
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As it may be shown, in the elastic approach, the results are analogous to the
precedent case, but the computations becomes more complicated owing to the
apparition of the many-particle Green functions and to necessity of the cut-off
of the chain of equations by the customary contraction procedure [2].

So the formulae (16, 17) permits in principle the computation of the magneto-
optical effects for the typés of interactions mentioned.

3. Cyclotron Resonance

; N
Performing the calculations for the scattering on point defects (V(r) = D Vex
X 8(r — 1,)) and acoustical phonons in the elastic approach, we find n=1
2 7,2
Ol(n—n" 41 )hwo—hw—i—h ke
m
Cn k(w - wOKZ hzkz +
V(n —n' 4+ Drwy,— o ~|—
2m
bl
0(n~—n’)hw0+hw—|— z
+ o (19)
]/(n—n)hwo—i—hw—}—
2 m
where
7 212 3t N V2 .
T @mp for point defects,
K= i pon 7 (20)
TZZ 0 vzg for acoustical phonons.
, 2 ‘

(ko is the Boltzmann constant and v, the velocity of sound.)
In semiconductors f,,  is the canonical distribution function and

4 N e? g o ﬁhw
R = —Im 20 ghe 0 o—Bhw
e{0'11 w) + i op(w)} l - kVZmnw e
A
—# 2m

X X (n+1) e~nﬂﬁwn/dkz ¢

o — wy + 1 L1o)
(21)

For f i wy> 1, which is the ultra quantum limit in the case of semiconductors,
from (21) we should retain only the term with n» = 0

n° kg
e —8
N e? w, e 2m
Re {ou(w) + ion(o)} = =0T zinlmfdkzm‘;w'(%)

In the same approach

Corr(we) = woKJ + ;E (23)

e
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and therefore
ﬂ Lz

e, Pam  Ne /T 1
Re {on(wp) + @ o15(@p)} = 2“,, zcokwo)mﬁ 7Bk’ (24)

In terms of the zero magnetic field relaxation time, we have for the maximum of
the resonance curve
Net 1

m Bhog

Re {oy(wg) + ¢ 019(wy)} =~ (25)
To compute the half width of the resonance curve in circularly polarized light, we
should take {p'x(w) &~ {5 'k(wp). As a consequence, in the vicinity of the maximum,
we have

L L
.- N ¢ B w ¢ zm
P — v, ———— — =
Re {0y (@) + ¢ opp(@)} = - ~—k T o —Im fdkz o o iz e
28 hw \?
__ Nérg 2wl e(;l/urnjw) B. ( f}hwo )2
T Tm 1, 3nw A0t * [ 3Ym 1, Aw
(26)
(Ao = © — w,).
The half width is obtained from the equation
(i’i”_i)z
28w, \* \3Varde/ g _(¥23hwo A\ 5 on
(Www) ’ E[ i) | =2 ! *To,) &0

a4 . . . . .
For Fw <1 the numerical computation of this equation gives the following ex-
0

pression for Adw:

A k
® o o PR (28)
Wy To
or if we define, according to (25) v = L 7y, then
B hey
4 1
2 — (29)
w, Ty

In metals we take
0 for ¢ k> EF,
fen, &) "
1 for g, < eF,
therefore

2m[£r +%)hwo]

h!
Re {oy (@) + @ oy(@)} = — giw—"lmzv 7+ 1) dk,
Vo= (v 3)0 ]

In the limit of high magnetic fields (? howy <ep<< ; i wo) , which is the ultra quan-

1
0 — wy + 12k w)

(30)

tum Lmit in the case of metals, we find for the maximum and half width of reso-
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nance curve the following expressions:
iy 1
VEF<8F — — h wo)
N e? 2

Re {oy(wy) + 7 01a(wp)} = — Ty » (31)

7t (g

do * _ b (32)

, T toy
° VEF<8F —% hw0> T, ¢

where Erand 7,are the Fermi energy and the relaxation time in the absence of the
magnetic field.

As it was seen, we had obtained the formulae for the transverse components of
the frequency dependent conductivity tensor in a d. c. magnetic field using the
Green functions method, in all cases of elastic interactions. These formulae could
be a starting point for the computations of magneto-optical constants. Using
these results we had shown that in the ultra quantum limit the relative half width
of the cyclotron resonance curve in the case of interaction with acoustical phonons
and point defects becomes independent from applied magnetic field for semicon-
ductors, and has a poor field dependence for metals. (Partial results on this sub-
ject had also been reported in the works [3, 4].)
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T1-13 ON THE THEORY OF ELECTRIC CONDUCTION
IN AMORPHOUS SEMICONDUCTORS

L. BANYAI
Institute of Physics of the R. P. R. Academy, Bucharest

In disordered structures a so called « structural resistance » exists and is probably
predominant up to not too high temperatures. Thus the theoretical treatment of
conduction phenomena rely on finding the eigen-values and functions of the move-
ment of an electron in a non-periodic potential, dependent on a great number of
aleatory variables (the positions of the atoms). No satisfactory way of solving such
a problem in its general form is yet known. But recent studies ! give some qualita-
tive informations about the energy spectrum and the character of the one-electron
states in a disordered structure.

Essentially, when the short range order is maintained during the disordering, the)
changes consist in the narrowing of the energy gap by strongly perturbing the elec-
tronic states near the band edges, most of them becoming localized. The farther we
go inward the bands, the more non-localized the states become, their density appro-
aching the value it had in the crystal.

Unlike liquid metals , these changes play a very important role in amorphous
semiconductors. We shall describe them in a simplified energy scheme (Fig. 1)
introducing a parameter ¢ to define the energy limit of the non-localized states.

In this scheme there will be two types of electrons : localized and non-localized
ones. Assuming a priori that in transport phenomena the essential role is played by
the last ones we shall try to calculate the structural conductivity.

In a first approximation the non-localized electrons could be treated as free elec-
trons scattered by the disordered lattice, as it has been done in the case of liquid
metals 2. It seems quite natural that such an approach will not be sufficient. Thus we
shall develop another way of solving the problem by a more suitable tight binding
method. °

The quantum mechanical calculation of the conductivity * require the knowledge
of the wave functions of the non-localized electrons. We shall build these wave func-
tions as superpositions of atomic functions

lﬁb(r) = ch (D(Y - rn)

where r, indicates the positions of the atoms.

We shall assume that the probability for a non-localized electron to be found near
any of the atoms will be the same, thus | ¢, |* = 1/N, where N is the number of atoms.
When restoring the long range order, the phases must become k.r,.

Physique des semiconducteurs .27
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Therefore we shall take as an hypothesis that in amorphous elemental semicon-
ductors with short range order the non-localized states of the electrons may be
described by « quasi Bloch » wave functions

V() = jl_—v_ X el — 1) M

(For a chaotic distribution of the atoms this function has similar properties to those
of the function taken by Kasuya in this treatment of impurity conduction *.)

In the case of a disordered lattice such a function doesn’t satisfy the ordinary Bloch
condition and leads to a finite conductivity. Of course the k vector has no more the
meaning of a wave vector, but as the short range order is maintained (ahd its role is
predominant in the tight binding theory), the relation between the energyand the
quantum number k in the case of a disordered lattice will be almost the same as the
relation between the energy and the wave vector in the case of a perfectly ordered
lattice, if the anisotropy is slight, so that an isotropic effective mass can be used.

Thus in the effective mass approximation

#? 12
2m*

and therefore the same density of states as in the unperturbed band will result (the
energy origin is taken at the former band edge).

E, = (2)
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We shall now calculate the matrix element of the electric current between the non-
localized states. We obtain

(17 1K) = = o 3 w0 [ drg¥(e — 1) [0 = 7) = Ulr = r)] x0(r = 1)

where U(r) is the potential of the free atom. Or, introducing the local effective poten-
tial V{r)
j dre*(r — 1) [U(r — 1) — V()] x0(r — r,)) —

— J- dro*(r — r)[U(r — r,) — V()] x0(r — r,) =
xR X, j. dro*(r — r)[U(r — 1) — V] 0(r — 1,) —

— x| drgr = B[V = 1) = VO] 9 = 1) & (o — %) A 70 = 7, D

Thus
. ~n_ € i(k'_k)rm__a__[ — ik (Pn—tm) _ } v
(k1Jo 1K) = 5 D@ Pma-{ Se At =10 ]) |-
The expression between the brackets is the very energy in the tight binding theory
: #k?
_ —ikry, ~
Ey= Tt Q) m o
Therefore
efik, 1 fogeh
k 'x k: — X . el(k kK¥m (3
(ljlK) =2 0% )

Substituting (3) in the quantum mechanical formula of the electric conductivity 3

df(E R

o= —ah 3 Y k) k) 2 608 - ) @
kK’ k
and taking into account the energetic position of the non-localized levels, we obtain
2 73 r

e j dk ( i YE) p2 0 _ kyoE — B (5)

Q@ mn)° Nm** J >0 - dE,

where
1 ern |
a(k) = ﬁ ;elkrn

is the structure factor.
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In the amorphous structures @ = a(| k [) and the formula can be brought into the
form .

v 8m"E/h?

2e’m* j' dE df(E) J dx . xa(x) . (6

3(2 n) AN dE 0
If|¢ — Egp|, ¢ > kT, formula (6) can be approximately explicited and gives

=(em*s)2(a)exp (_]a—EF])

7
33N kT D

where { @ ) is a mean structure factor.

Now we shall compare our theory with the experimental results of Grigorovici et
al. *> on amorphous Ge. In this case the large value of the activation energy of the
electric conduction as well in the intrinsic as in the impurity range is easily explained
by assuming a conduction by non-localized carriers in the band scheme drawn in
Fig. 1. We shall put ¢ = ¢ =~ 0,2 eV. Thus the conduction energy gap 4 between
the limits of the non-localized states will be 4 = A" 1 ¢ + & ~ 1,1 €V, in
agreement with the measured activation energy in the intrinsic conductlon range
of 0,55 eV.

This choice of the value of & becomes even more plausible by evaluating the number
of localized levels shifted from the valence band. Putting this number equal to the
number of states between the valence band edge of the corresponding crystal and
the ¢ level

N, = j: dEn(E)

one finds for ¢ = 0,2 eV a density of localized states N°; ~ 10?° cm™3. This seems a
fair value, as it exceeds noticeably all the measured acceptor densities.

The theory will be checked on the o(T) curve of heat-treated amorphous Ge, as
in this case the curve is reversible and contains both 1ntr1n31c and impurity ranges,
At 250 °K the conduction is p-type and 0., = 4.107° Q71 !, Using the parame-
ters of the valence band in crystalline Ge, putting the dlﬂ'erencel ¢ — Eg | constant
and equal to the observed value of the actlvatlon energy of 0,18 eV, and ¢ = 0,2 eV,
formula (7) gives Gyeo, = 4.107% {a) Q71 . An estimation of {a) leads
to ~ 0,1 and therefore to a good agreement w1th o-e,t

In view of the identity of the density of states beyond E = g both in the crystalline
and amorphous substance, the density of the non-localized holes will be

b= dEn) f(B)

Therefore the mobility u, of the non-localized holes is glven by the conduct1v1ty Using
the same parameters as above, we find p, ~ 10'¢ cm™3 and p, ~ 1072 cm?/V sec.
This low mobility of the non-localized carriers also explains the inapplicability, at
least in the case of amorphous Ge, of the weak coupling method. Indeed a preli-
minary evaluation based on this method leads to a value of the conductivity exceeding
the experimental one by a factor of about 10°.
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A general quantum-mechanical formula for the low-field Hall effect is derived in the density matrix ap-
proach, thus making it possible to treat this effect in disordered systems. With some assumptions about the
one-electron matrix elements involved, the Hall and ordinary conductivities are correlated for the impurity-
band conduction in the “metallic range.” According to our results, the sign of the Hall effect depends on the

degree of filling of the impurity band.

1. INTRODUCTION

HE theory of the Hall effect is an unclarified
problem in disordered systems, such as impurity
bands and amorphous semiconductors. In these systems
the classical “scattering approach” to the transport
problem fails, because in any approximation the elec-
tronic states can not be regarded as quasifree; conse-
quently, such a basic concept as the effective mass can
not be defined. But it is not clear what other parameter
would then govern the sign of the Hall effect.

Some qualitative considerations, as yet unproved, can
be found in a paper by Mott and Twose.! A rigorous
basis for a future theoretical investigation of this prob-
lem is contained in R. Kubo’s work? concerning the
general theory of low-field Hall effect.

In this work, we derive the general formula for the
low-field Hall conductivity in a manner different from
that of Kubo, introducing adiabatically both the elec-
tric and magnetic fields (Sec. 2). Such an approach
seems to be simpler. For a system of dynamically non-
interacting electrons, using the second quantization
formalism, we express the transverse conductivity in
terms of products of certain one-electron matrix ele-
ments (involving momenta and the disordered poten-
tial), and Fermi distribution functions (Sec. 3).

The formula which has been obtained is applied to
the case of high-concentration impurity-band conduc-
tion, where some simple assumptions about the matrix
elements are possible (Sec. 4). According to our results,
the sign of the Hall effect depends on the filling of the
impurity band.

2. THE GENERAL FORMULA OF HALL
CONDUCTIVITY

Let us consider the density-matrix equation
ihdp/dt=[H+H'(1), o], )

where H is the Hamiltonian of a dissipative system
and H'(¢) is the adiabatically turned-on external-field
Hamiltonian (electric and magnetic).

For a calculation of low-field Hall conductivity it is
sufficient to consider the terms of the density matrix
which are bilinear in the external electric and magnetic
fields.

The second iterative solution of Eq. (1), with the
initial condition

P im—e=po(H)

[po(H)=grand canonical equilibrium density matrix] is

1 0 0
p(2)= _ﬁ dt/ dt/e.y(t+t’)eth/h[H”eth’lh[H',po:le—CHt’/h]e—thlh; (5‘—) +0)' (2)
—w Y —n

As we had mentioned before

H'=Hy+Hg, 3)

where, in the second quantization formalism,

e?
Hy= / dr W(r)(—i:}Cxﬁ”+-——Gczx2)xl/(r)
me 2mc?

(3a)

Hyz= /dr YH(r) (—e8y)y(r).

[We have chosen the dc magnetic and electric fields along Oz and Oy axes, respectively, with the potentials

o=— 8y and A= (0,5¢x,0).]

1N. F. Mott and W. D. Twose, Advan. Phys. 10, 107 (1961).
2R. Kubo, J. Phys. Soc. Japan 19, 2127 (1964).

143 652
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Thus the average current, in which we are interested is

€

3 0 0
85 / it / Qe O Tr( [V, LM (1),0001Po(— )+ M, LY (0) 0] 1P2(—0)) , @
Qhm?c o e

(jz)av= -

where
v= [t d= [arv@pio; Pem [y pato
and Q is the volume of the system considered.
A step-by-step resolution of the commutators, using the well-known identity

[FeH]=—eH / d\ M[F,H e M = —ihesH / d\ F(—ih\)=1h / A\ F(—il\)eH |
[ 0 0

gives for the transverse (Hall) conductivity

ea 0 0 B . X — (it [A4N) L.
Tn= e / dt / destHt) / d>\<{i[M,Y]+i[Y,M]+h / dn(M'Y (— i)+ Y M (—ihn))
mec — —c0 0

0

—(it’ [B+N—B) . 3 N
- / dn(M(—ihn)Y+Y(—ihn)M)]Pz(—t—-t’+ih)\)>, )

0
where the symbol (- - - )o means the average over the grand canonical distribution, and f=1/kT.
3. ONE-ELECTRON APPROACH

In what follows we shall make some suppositions which, of course, will restrict the generality of our results.
We shall consider that our system of electrons can be described by a Hamiltonian of following type:

h2
H= f dr¢*(r>(—5;vz+v<r>)¢(r>=§ et ©

(that is, the electrons are dynamically independent).
Then, it can be easily shown that

I:Y:M]= (h/m)Pz) [M;Y:l=03
Y=m—1Pv=m_l Zu.'(ﬁv)manmv; (7
M= Tur@wata,; k=m (ﬁzﬁu_‘xa V(1)/d,).

Putting (7) into Eq. (5) and solving integrals over 9, A, ¢, and ¢ we have

i 1 21— Bleu—er)
=——10C b 6”< ) B) it (B) prs(@ur 005t a,
OH ame “:;“Z;’:‘;J 210 vov) (—i/h)(e,.,—e,,)+s n—en \ﬁ it 1(? )pa *( ur OnQyus @ a>0
\ ((k)um (ﬁﬂ)nan‘l' ('Z)uzvz (ﬁu)nm) (ﬁﬂv)mval— 1 / 1 1—ePlumerrtan—ey
1 N
(—i/7) (eus— €s5)+s Leuz_ evz\(_i/h) (€ enten—en) TS €u— Enteu—esn
1 1 _e—ﬁ(e,.,—en)) 1 / eBleut—en) 1— e Bleur—enrteus—ery)
(—-'i/h)(ém—'én)'l's €ug™ €y eul""evx\ ("'i/h)(em_eu""em_en)"'s € Enteu—ey
1 1—eBleusery)

(Ci/M) (e ts  eu—en )Jontosontnsnton J ®

For the equilibrium average over the products of creation and annihilation operators we may use the formula
(@u, T+ @t @y)0=fle) - flev,) detl'sm'nl 3 (k=1 m), 9)

where f(e) is the Fermi distribution function.
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Taking into account that the equilibrium average of any of the involved one-electron operators $., $,, & vanishes,
we need retain in Eq. (8) only the terms in which all the matrix indices are coupled. After a somewhat cumbersome
regrouping of terms the calculation gives

eah? 1 2
=" 3 Opou|l — ) A "z s 2
" il ‘”"‘Zi"‘ l - (em"'éul'l"ihs) flal @ )“ . ‘
((K)”"“ Bu)uat () uiua (P ans) (i’z)uulr L/ Afw Afa )
€uy— € il I_e,n—e,n\e,‘.—e,,,+¢hs €ug— €utihs.
4 1 ( Afa Afy )j” .
€ug™ Em\euz"' ntihs  eu— € tins
where

Afi= [f(eﬂi)_f(eﬂj)]/[elh‘—eﬂj]'

We mention that the same result may be obtained without the use of the second quantization formalism, by
introducing into Eq. (4) a one-electron Hamiltonian and a Fermi-Dirac one-electron density matrix.

If we put into the Liouville equation (1) a term i%(o— po)/7, which represents an ideal relaxation law, we obtain
instead of Eq. (10) a similar expression, in which the adiabatic parameter s is changed to 7~ To verify our for-
mula, it is easy to calculate oy for such an ideally relaxing free-electron system. Such a calculation gives the
classical formula

ou=(Ne3/Qm?c)3Cr2. (11)
Returning to our Eq. (10) for infinitesimal e=7s, and using the identity
Lo Afw Afri ) AfatAfp—Afi
(e—ejtie) (ex—ectie)

&— e,«\ek— ej+ie  ex—eitie
we have

G , ){51 (B D s

Qmdc m.nz,ua<e,,,—e,.1+ze

og=-—

Af13+Af23_ Af12 Af13+Af12—Af23
. I o
€3 €pgtie €uy— €€

(By interchanging the indices 1 and 3, it may be seen that this expression is real.)
With the notations

n(en)n(e2) A (er,e2)= > l (ﬁ-")ﬂll‘?lzi (13)
(e =":,' ‘::z =e2)
n(e)n(e2)n(es) B(ey ez,€5) = = ((’e)uwz@ﬂ)mua‘l' (’z)uzm (ﬁll)lﬂlﬂ) (ﬁz)uaul )

(ep1 = €1, €z = €2, €u3 = €3)

+ ( (’e)lllln (ﬁu)mus"' ('E)I‘ZMI (ﬁﬂ)l‘llﬂ) (ﬁ’)l‘!ﬂl[

and #(e) for the density-of-states function, Eq. (12) reads

th
{/dﬂ/dég—( )n(el)n(eg)AfmA (e;,ex)
Qm C de1 €2 E1+1é

+ / der / deg / désﬁ(;%;;)”(él)"(éz)"(ésw (61,62:63)[Af“+Af%_,Afm Afls-l-Af”_,Afzs:” . (14)

€3— €2t1¢€ e2— €11

4. IMPURITY CONDUCTION

In disordered systems, of course, this expression must be averaged also over all the possible arrangements of the
atoms. In the following, we shall assume, as is usually done in such problems, that after averaging, in Eq. (14),
n(e), A (e1,€2), and B(ey, ez,€3) will appear with their mean values.

If the energy dependence of the averaged 4 and B is sufficiently smooth, they may be taken outside the inte-
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grals. Such a case probably occurs in impurity-band conduction, at least in the so-called “metallic range,” as is

shown in Kasuya’s approach.? Thus, in the case considered, using the well-known identity

(x+ie)'=Px1—ind(x), e— +0
we have S
og=—(¢12/Qm*c)3e[AI+B(Jo+J1)], (15)
where
d 1
I=/d€1/dez—(F )n(el)n(ez)Afm,
dq €2 €].
dn(e) df(e)
]a=27r2/de n?(€) / , (15a)
de de
d 1 1 1
Ji= /dq/dez—<l’ )n(él)n(Gg)Af12/désn(Ea)<P +P: ).
del\ ea— €y €1—€ €€
Let us consider a density of states in the impurity band, of the type
n(e)=(N/rd)[1+(/2)*T7, (16)

where N is the total number of impurity states. With such a resonance-type function, the integrals (15) can be
easily solved in the complex plane. For the integrals involving the symbol d (Px!)/dx we used the artifice

ds 1 d 1
Jassr{r)-img fes v
N24A = 22(3—4)  df(@) 2(1—4?)
A dx[f O (1—|—x2)4:|

The result is
en?

o=

(17
Qmic wA3J_o

with .
y=BN/AA (dimensionless coefficient)

and « being the energy in units of A.
If 2T<<A, then f(x) may be approximated by §(a—x) where g=u/A (u=chemical potential). Then, in the “me-
tallic range,” for low temperatures, the Hall conductivity reads explicitly

e N2AP 5—-3  a(1—p@d)
Qméc E[6<1+n2)3 : '(1+n2>‘]'
On the other hand, concerning v, we can observe that
(8) w1 (B s B s =1 (BB usss B wass B wssr = @IV /99 s (B s B
=17 | (Bousus | *| Bu)usus | * 07! V;Z;w B v Bo) s B wsss B ussn
=17 (0 V/9) uips Bu)ans Badsns -

(18)

OH=

The first term of this expression is essentially real and
positive, but the others have no definite sign. We may
expect that their average value over a chaotic distribu-
tion of atoms will vanish. If this is correct, then

B=24%/m.

Thus

y~24AN/mA. (18a)

But we may easily show that the ordinary con-
ductivity, with the same assumption about the aver-

3 T. Kasuya, J. Phys. Soc. Japan 13, 1096 (1958).

ages, may be expressed also in terms of A. Thus,
according to the well-known quantum theory of elec-
tric conductivity,*

weth df(ew),
o=——3 '_—! (Pz)muzlza(em_euz)- 19)
Qm? wiwe dey,
After averaging over the impurities, we obtain
we*h daf(e)
o=——A [ de n?(e) / . (20)
Qm? de

4R. Kubo, J. Phys. Soc. Japan 12, 570 (1957).
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Introducing into Eq. (20) our density of states (16),
we get the following formula which is valid in the
“metallic range” for low temperatures:

o= (e2h/Qm?) (N2A /=A%) (1+g2)~2.

We may observe that the Hall and ordinary con-
ductivity are correlated in a simple manner, through
the phenomenological parameter A :

(20a)

hoo~ 5—=3@  a(1—@?) le|3c
= ———Fy——— [Xo; wo= , (21
A[6<1+rﬁ) 7(1+rﬁ)2] e @Y

v=Q2mm/eh)A(1+a2)?*/ (N /Q) Xo. (21a)

By inspection of Eq. (21) and by comparison of its
sign with that of the classical formula (11), we can
conclude that the first term in (21) always gives a
positive-charge contribution to the Hall effect, while
the second gives a negative one for <0 and a positive
one for @>0. Therefore, for i>0, that is for hole con-
duction in the impurity band—at least in the “metallic
range”’—we must have a positive-charge Hall effect.
For low electron concentration our formula shows that
a negative-charge Hall effect is very plausible; this
seems, indeed, to be true because an estimate of y
[through Eq. (21a), using the data of the experiments
of Fritzsche and Cuevas®] gives ¥>>1. It is interesting
that even so, there is a slight asymmetry in favor of
the holes.

5. CONCLUSIONS

We have derived the general quantum-mechanical
formula for low-field Hall conductivity. This is neces-
sary for the discussion of the Hall effect in disordered
systems, where such concepts as “‘effective mass” and
“quasifree” approach are of doubtful value. Our for-
mula was put in its one-electron form for a system of

5 H. Fritzsche and M. Cuevas, Phys. Rev. 119, 1238 (1960).
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dynamically independent electrons. We think that such
a formulation is possible for the majority of transport
problems, particularly for disordered systems.

Assuming the constancy of certain matrix elements
(averaged over all the possible arrangements of the
atoms), we have correlated the Hall conductivity for
an impurity band with its ordinary conductivity [Egs.
(17), (20)]. (Here we neglected the possible overlap of
the impurity band with the nearest band of the host
crystal, which occurs at too high impurity concentra-
tion.) Our assumption seems to be justified for the non-
localized states, which are characteristic for the “me-
tallic range”” of impurity-band conduction. In this case,
for low temperatures (k7<<A), according to our formula
(18), both negative and positive Hall effects are possible
(depending on the position of the Fermi level), in con-
tradiction with Mott’s arguments.! Nevertheless, the
change of sign occurs when a symmetrical impurity
band is less than half filled.

It seems that in the impurity-band case, as in the
Bloch-band case, the sign of the Hall effect is governed
by the sign of the first derivative of the density of
states in the conduction region.

A thorough comparison of our results with the ex-
periments could not be performed because only in-
complete and uncertain experimental data are presently
available.

We intend to apply our general formulas (5) or (14)
to other interesting cases, such as the problem of the
Hall conductivity of the amorphous semiconductors
within the model used by one of the authors.®
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Quantum theory of transport coefficients!

L. Banyai

1 Derivation of the electric conductivity for-
mula (Kubo’s formula)

The state of a quantum mechanical system (mixed ensemble) is defined by
the statistical matrix (”density matrix”) p. The average (A) of a dynamic
observable is given by

(A) =Tr(pA) (1)

The operator p in the Schrodinger picture is time-dependent and obeys
the equation of motion (quantum mechanical Liouville equation)

h% (1, 2
with H being the Hamiltonian of the system.
The operator
po = exp (= (H-uN — €)) (3)
with )
exp (—A) = Trexp B (H-pN),  f=

describes the thermodynamic equilibrium of a system in contact with a ther-
mostat, having energy and particle exchange with. It is the analogue of the
classical macro-canonical distribution.

Our task is to compute the average value of the electric current for the
case of its deviation from equilibrium due to an applied external electric field.

We shall admit that at ¢ = —oo the electric field was vanishing and the
state of the system was described by the macro-canonical statistical matrix
p(H) . Thereafter the external field is applied and the measurements are

!See also a modern discussion of the same topic in recent books of the author. [18],[19].

1
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made at some finite time ¢. (In this way one eliminates the transitory pro-
cesses.) Other ways stated, we have to solve the equation

m‘;’; —[H+Hg(1).0] . ()

where Hpy is the interaction Hamiltonian with the external electrical field,
while the initial conditions are

H(-00) =0,  p(—00)=p, (5)

In what concerns the time dependence of Hy (¢) we take

Hpg (t) = Hge™'e™; (s —07) . (6)
Here s is the so called adiabatic parameter, that ensures the vanishing of the
field at ¢ = —oo.( However, in the final stage we have to take the s — 40
limit.)

Another way to formulate the problem would be to introduce the field
suddenly at ¢ = 0 and perform the measurement at ¢ = oo (see Sec. 6 ).
To give a proper mathematical formulation of the ¢ — oo limit, one has
to introduce explicitly an interaction with the surrounding by a 1A%
(T — 00) term in the Liouville equation.

These two formulations of the problem lead to identical results, since the
role of the infinitesimal parameters s, % was just to eliminate the oscillating
solution due to a sudden coupling of the external field.

The linear differential equation equation Eq.5 is equivalent to the in-
homogeneous integral equation

p(t)=po+ = / dt' e B0 [Hg ('), p (t')] e~ #HE D (7)

This integral equation may be solved in an iterative manner. Since we
are interested only in the effects proportional (linear) in the external field,
we may retain only the first term in this iteration

1 t 2 / ’ _ ! _
pr(t) = m/ dt' et 0 [Hp (1), po (t')] e 30 (8)

Using Eq. 6 we get
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1 0 i -
pr() = e / dt'et™ [Hp, po) e+ (9)

and therefore the average value of the electric current is

<ju (t)> =Tr {IOOju} +Tr {pl (t) Ju}
. 1 0 . . ’ 2 ! == 2 U
ezwt lim / dtlez(w—zs)t Tr {eﬁHt [HE7pO] e—ﬁHt ju}

s—+0 1h

On the other hand, using the operator identity

B
[A e 1] = eﬂH/ dAeM [H, Al e H (10)
0
that my be easily checked by taking the matrix elements between the eigen-
states of the Hamiltonian H, we have

_ LA
Hg, po| = —zhpo/ dAHg(—1h)\) |
0

therefore

o0 . N B -
e, (1)) = — lim / di'e— o / INELp(—ihN)j ()0 |
0

s—+0 0

where (...)o denotes averaging over the equilibrium state i.e. Tr{po{...}} .
Thus ,
(ju (t)> = VUquuewt ) (11)

where

B 1 > 1 —i(w—is)t’ ’ : ; 3
o (W) = % 31—15—10 ; dt’e ; dA (ju (—=ihA) j, (ﬂ)o (12)

is the electric conductivity tensor (V' being the normalization volume).
Eq.12 is the so called Kubo formula for the electric conductivity, defining
this kinetic coefficient by the equilibrium characteristics of the system. It is
exact in the whole domain of validity of Ohm’s law. As we have seen, in its
derivation no assumptions about the nature of the system played any role,
but just about the external field. In the more general case of a time- and
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space- dependent field one may show a more general relation (for the average
current density [1]

(u (r,1)) :/ dt’/dr’LW (r,x’st —t")E, (v',t) (13)

with 5
Ly (.7, 1) = / dA Gy (1,0, (st + iBA)), - (14)
0

The connection between Eqgs.12 and 13 is obvious.

Of course, these formulas need an explicit evaluation in each peculiar
case, that as we shall see, is not at all trivial. However, from now on any
computation of the conductivity relies only on the equilibrium properties of
the considered system.

In the following we deal only with the case of homogeneous electric fields
described by Eq. 12.

2 Symmetry relations and sum rules
The vanishing limit of the adiabatic parameter may be taken only after per-
forming the time integral, since this defines the meaning of the improper

integral. One may see this explicitly by expressing the average by insertion
of the eigenfunctions of the operator H

1 0o ) ) B
_ L —i(w—is)t —B(Em—pNm—Q)
O (W) v 31320/0 dte /0 dA\ E e

. . ; ,
X (m il n) (nljul m) exp (h (B — F.) (1 + m))
_ 1 Zefﬁ(EmfuNm,Q)e_ﬁ(En—Em) — 1 (mljy|n) (nlj,|m)
V s—+0 — E, —LE, Z(% _ S)

Now using the relation

1 1
dm oz - Py M@

we get
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o) = =5 2 PR B o i) (1)

1
o(E, —E,—hw) —iP———— 16
< | )P (16)

In this matrix form one may easily see the relations
R0y () = R (—0) s S0 () = S0, (~w0) (17)

If one takes into account that
(Imjuln) = (nliuln)* = —(nlj lm) ,

where the state |n) belongs to the same energy E,, and the operator j,, belongs

to the problem with reversed magnetic field H — —H, then we get the
relationship

ow (W H) =0y, (w;—H) . (18)

On the ground of the above general Eq. 16 one may derive an interesting

sum-rule for the diagonal elements of the conductivity tensor

Opp (w) = Sl_iglo ; dteii(wiis)t‘:puu (1),

where

m,n

is a real even function of time.
Thus

/ dwRo,,(w) = /0 dtgow(t)-%/ e twmst

= or [ it (05() =270, 0).

5
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On the other hand

B
Pup 0) = /0 dA <Ju (_ih)‘)ju (t)>0

1
o7
ih r{

Then, using Eq. 17 we have also the relationship

[e%e] 62
= - 1
/O Ry, () 7{; = (19)

The cyclic permutation of the operators under the trace is not obviously
an allowed manipulation in the case of unbounded operators. Therefore, this
last relationship must be looked up with some caution.

3 The link to the Green function

We want to show now another useful form of the electric conductivity formula,
that relates it to the statistical Green functions of the currents, respectively
to the correlation functions of the currents [3]. We start from the equation

1 [ o B .
o (W) = —= dte=wrs)t Tr/ eiX,,, Po
=, >

proven in Sec. 1 (here we took the volume V' = 1). Using the cyclic permu-
tation of the operators under the trace (see also the remark at the end of the
preceding Section) and introducing the step function

1 t>0
e(t):{o t<0

Ju (t)} (s = +0)

we get as it follows
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o (W) = % dte=wts)t < [ Ze X ] >
= / dte=“Ho)tg (¢ < [ Z eiX ] >
- 2 / At () 0 1) < lju ®.y eile >

After a partial integration we have

o (W) = —%ef(i““)fﬂ (t) < [Ju (t) 72 ez‘Xiu] >

%

o < [ju ), Zeixz] >

7

B % /Z dt€7(2w+8)t9(t) < [jt‘]“ (t), Z €iXi] >O .

(3

o

—0Q0

The first term vanishes , the second gives rise to

{0 Te]) - e ([Fx]), - L2 o

. . . . 2
and if we have a single sort of carrier, it is Nn‘; iéu .

Using the Heisenberg equation of motion
L 0ju (t)
h H
o

and the cyclic permutability under the trace one may overpass the time
derivative with opposite sign on the coordinates. Thus we get

= ju (t), H]

o) = S L [T e 0 ) (G0 3y (20)

m 1w

or
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_N621

2 ~
G (W) = Sy + —— G (w + is) (21)

ihw
where éﬁ” (t) is the Fourier transform of the retarded statistical Green func-
tion of the currents

m iw

G (1) = —if (1) ([, () ,du (O]} - (22)

Farther, using the well-known dispersion relations of the Green functions
, we may express thew real part of the electric conductivity tensor by the
correlation function of the currents

o Bhw 1 00

Ro,, (W) = %%é,ﬁ“’ (t) =

e

i | MG i ) e (23)

The link to the statistical Green functions is of utmost importance, since
this offers a way for the calculation of the conductivity (mostly in many
body problems). Thus we get two important tools to compute the Green
functions. The first one consist in ”cutting” the chain of the equations for
the Green functions and solving the finite system of remaining equations.
The other one is based on the Feynman diagram technique developed for the
causal Matsubara Green functions (with imaginary time) and the analytic
continuation of their Fourier coefficients in the whole upper complex plane
until the real axis.

4 The one-electron version of the Kubo for-
mula

When the system of carriers (electrons) may be described by an one electron
Hamiltonian i.e. we have to do with dynamically independent particles being

in an external potential, the conductivity formula, taking still into account
the exclusion principle, takes a peculiar ”one-electron” form.

H = Z hkk/azak/, (24)
kK

where a; and ay, are the creation and annihilation operators in an arbitrary
basis denoted by the quantum numbers &, and hg are the matrix elements

8
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of the one-electron in this basis. The average value of the electric current is
then

Gu () =Tr{p (03} =D () Tr{p () afan} (25)
kk!
where i is the one-electron current.
Let us define an one-electron operator f (”one-electron density matrix” )
by
fkk" = <a;:ak/> . (26)
Then
(3 (8)) = trE (1) i, (27)

and as it is easily seen, the equation of motion of this operator is

of
th— = [h,f 28
=1 (28)
(Had we also not only one-electron terms in H, then we could have obtain
at-most a chain of coupled equations for a series of operators like f.)
On the other hand, in the eigenstates of the energy (for a system having
particle exchange with the thermostat)

thus in equilibrium the operator f looks as

1

fO - eﬂ(hfu) ’

(29)

We may formulate now the electric conductivity problem directly in terms
of the one-electron density matrix f. A similar reasoning to that described
in Section 1 leads to the equation

e

— / dte” e {[x,,, fo] i} (30)
ih J,

o (W) =

For the next step one has to use the peculiar form of the identity Eq. 10,
namely
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1 1 7 Ah —Ah 1
{a’ eﬁ<h—u)] = oBlhw) /O die™ [h,afe 1= Zaw ) - (31)

Using this relation we get finally

O (W) = /0 " et / TN (i (—i0) (1— )i () (32)

0

= /0 dte= (W)t /0 dA (i, (—ihX) (1 — ) i, (1)), (33)

5 Explicit application of the one-electron for-
mula to elastic scattering

The one-electron formula we derived in the preceding Section is especially
useful to compare the quantum mechanical theory with the semi-classical
Boltzmann one 2. Let us consider a system of free electrons scattered on
some static scatterer, described by the one-electron

h2
h:—%V2+V(r):ho+V (34)

If we make the approximation

in Eq. 30, then instead of the Eq. 33 we get

Oor (@) = B / " dtetr {f (ho) o (1— £ (o)) o () (36)

_ 5 /0 N dte‘“tr{afgs:o)fo (Bo) <t>} (37)

or, in the plane wave basis (after normalization in a box),

2Here as in he following the author meant the rate equation with inclusion of the Pauli
principle. It was a frequent misuse of terminology in the early times.

10
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Oaa =~ m2 Z af k) k. Kxx (s) (s — +40) (38)

K (s) = /0 dte="k, (1) (39)

We shall compute the diagonal matrix element of K(s) using the equation
of motion of k,(f). One may see, that

K (s) = —% /OOO dt%( TNk, (t) = —é {—km - /OOO dte*“%kz (t)} ,

giving rise to
1
sK(s) =k, +2h K (s),h] (40)

or, as matrix elements
. 1
(S + zwk/k) Ick,k’ (S) = kwék’k + E Z (K:kq (S) Vq,k’ — Vk7qqu,k/ (S)) (41)
q

with
€ — Ek

" .
Let us admit, that the perturbation V is so weak, that the diagonal ma-
trix elements of K(s) are mach bigger than the non-diagonal ones. Such a
singular approximation becomes plausible if we observe, that the potential
itself hat such singular character, at least after an averaging over the random
distribution of the scattering centers. Indeed , if V(r) = ), v(r — r;), then
Vi = e Z &K and due to the random oscillation of the phases the
non-diagonal elements are proportional to v/N, while the diagonal ones are
proportional to A" (the number of scatterers). Under this seemingly self-
consistent assumption, we get in a first approximation for the non-diagonal
matrix elements

Koy (s) =~

Wr'k =

Vk,k’ (S)
hwk/k + ihs
Inserting this expression in the equation for the diagonal matrix elements
leads to

(Kix (8) = Ky (s)) (42)

1 of 1 1
SICk’k (S)_kx+zhzq:‘vkaq| <h&)qk+ih5 hﬁqu+ih5>(lckk (S) ]qu (S))

(43)

11
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After performing the s — 40 limit, we get the equation

ko = Wiae (Kiek (5) = Kioge () (44)
k/
where 5
T
Wkk’ = ? ’Vk,k/‘Q (5 (Ek/ — Ek) (45)

is the k — K’ transition rate. If this rate depends only on the energies of the
initial and final states, we may look for the solution as

’Ck,k = kxT (€k) (46)
and get finally

k., — k!
“(en) = Wi — = Wiae (1 —cos@) . 47
T (k) zk; Kk ks %: kk( ) ( )

Therefore, under the above approximations, after passing from sums to inte-
grals, we get for the conductivity

62ﬁ2 1 dfo (5k) 2
= — dk k 4
T ey J g e )

This expression coincides with the one given by the linearized Boltzmann
equation and the evaluation of the transition rates through the quantum
mechanical perturbation theory. As one may see from the proof given in
the Appendix, the coincidence of the results is obvious, since under simi-
lar approximations The linearized Boltzmann equation may be derived from
quantum statistics [5], [7].

These conclusions are general and obvious, although we got it for a par-
ticular case. Always, when a semi-classical Boltzmann equation is valid, the
Kubo formula would lead to the same result. The exact formulas for the
conductivity however offer the possibility to deal also with cases outside the
availability of a Boltzmann formulation of the transport problem.

It is true however, that convenient methods of approximations in the
Kubo formula are not available for all cases and the existent ones imply
solving integral equations that are not simpler as the Boltzmann equation
itself. Nevertheless, their validity extends that of the Boltzmann equation.
For example, in the above example we could have continued the iteration

12
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with respect to the scattering potential (as formerly mentioned)and therefor
obtain results valid also for higher concentration of the scattering centers.

Some of the cases, where the Boltzmann treatment fails due to strong
quantum mechanical effects are : strong magnetic fields, high frequencies,
strong couplings (very low mobilities).

For a general , more convenient discussion of these cases we shall derive
in the next Section the general expression of the conductivity tensor for an
ideal relaxation.

6 Ideal relaxation
Let us introduce an additional relaxation term
mug
T

in the right -hand side of the Eq. 2 of the statistical matrix, with a constant
relaxation time 7. Such a term might replace in an oversimplified version
the effects of a supplementary dissipative interaction. The solution of such
an equation (in the linear approximation with respect to the external field )
with the initial condition

p(0) = po
and sudden introduction of the filed at t = 0 is

t o /
p= p0—|—,ie_£ / dt'e’/™ exp (zH(tt)> Hz ('), po] exp <—th ) (49)
in¢ ", h h

or, after a sufficiently long time (¢ — oo) after the introduction of the field
one has

1o [° — Ht'\ Ht/
p=po+ me’“’t/ di' (it )exp (z’ - ) [Hg ('), po] exp (z A )

- (50)

and this leads to the formula

O (W) = /_ " el /0 ﬁd)\ Gudp (E+10A)), (51)

oo

One may see, that for 7 — oo Eq. 12 obtained by the adiabatic intro-
duction of the electric field results.

13
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If one may simulate the effect of dissipation alone by such a relaxation
term, ensuring the finiteness of o, ("ideal relaxation”), then the time de-
pendence of the currents is determined only by the Hamiltonian Hy of the
dynamically independent electrons without dissipation. The eigenfunctions
of this Hamiltonian are mostly known and therefore Eq. 51 may be calcu-
lated explicitly. For electrons in the presence of a magnetic field,taking the
one-electron version of Eq. 51 (see Eq. 33)using the well-known Landau
functions and taking into account that

dt  m c

after relatively simple calculation we get
Ne? 1

0. (W) = —

m w7t

Oy (W) = =0y (W) = Ne? ( 1 B 1 >

m \i(w—wy)+71 i(wHwy) +7!

This result coincides with the classical one.

Since in the absence of a dissipation (7 — 00) one must conclude , that an
expansion in powers of the coupling to the dissipative interaction is forbidden
(see for example Eq. 47 ). To conclude, we may say, that generally speaking
the conductivity cannot be calculated by a simple expansion in the powers
of the coupling constant to the dissipation, not even in the case of a very
weak coupling. Nevertheless there are some cases when such an expansion
may work. As it may be seen, this happens for wr > 1 for the longitudinal
conductivity and |w + wp| for the transverse ones. Also precisely in the
cases of strong magnetic fields and high frequencies where the boltzmannian
approach fails (except the case of the cyclotron resonance). In the next
Section we shall give an example of such a perturbational calculus for the
static magneto-resistance.

As a final remark: although the ”ideal relaxation” is just a mathematical,
non realistic model, the conclusions we derived from are valid for realistic
systems, as it may be shown by direct application of perturbation theory.

14
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7 The transverse magneto-resistance

Let us consider a system of electrons in a homogeneous magnetic field H
oriented along the z axis, interacting with phonons. The Hamiltonian of the
whole system is

H=H.+H,,+H._, , (53)
where the Hamiltonian of the independent electrons is
H, - L / drv (r) (—inV + @) () (54)
2m c

with .
A(r) = (0,Hz,0) .

Here we denoted by H,;, the Hamiltonian of the free phonons, while H._,,
term represents the interaction between the electrons and phonons.
The Kubo formula for the static transverse conductivity is then

00 B
Goe = 2 / dte / dX (k (—ihA) % (1)), (55)
0 0
where we inserted
jo=e [ drt (0 () = ek

On the other hand, we may separate the electron motion on the plane
transverse to the magnetic field into the cyclotron center motion and the
relative one

x=X+¢ (56)

where h1o  h H
L s (57)

mwo i 0y  Mmwy mc

is the operator of the cyclotron motion along the = axis.
We recall here, that the eigenfunctions of the electron motion in a homo-
geneous magnetic field are the so called Landau functions

e = Onl = X)X
with the eigenenergies
1, Rk

Enxp. = hwo(n + =
Xk o(n + 2) + o

15
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and the functions ¢, (x) being the eigenfunctions of the one-dimensional os-
cillator. The meaning of the operator X follows immediately.

We have
00 B
Ope = 62/ dte_St/ d\
0 0

oo B
+ €2 / dte™*! / d\
0 0
) B
+ e / dte™*! / d\
0 0
I ﬁdA<' —ihA) € 1
e e §(—ihAN)E(t)) . (61)
0 0 0

If we admit, that contrary to X, the {operator is bounded, then it is
meaningful to perform the time integration of £&. For example, the second
term in Eq.58 thereafter looks as

X (—ih)\) X (t)>0 (58)

X (=ihNE (1)), (59)

P e e

E(=ihN X (1)), (60)

/ﬂ d\ <X (—ihA\) € (00) — X (—ih)) € (o)>

0 0

and taking into account that correlations over infinite time have to vanish,
we get further

2

/0 " (X (=ihN€(00)) = =T {[poX] ¢}

62

2 B(X)o(E(00))o — {6 X])o =0

since (X)g = 0; [, X] = 0.
In the same way one may show that all the terms in Eq. 58 containing &
vanish, if this is bounded. Thus, under this plausible assumption

Opy = € /Ooo dte= /OB A <X (—ih\) X (t)>0

emerges. Or in a more convenient form for applications (see Eq. 23)
1, [® ) .
0o = 5% [ dt <X (O)X(t)> .
oo 0
1

6
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On the other hand, since X commutes with H.and H,,, X is of first order
in the electron-phonon interaction potential. It follows, that an expansion in
powers of this interaction starts directly with a second order term. If we are
content with this first non-vanishing approximation, we have

Ogz = ;eQﬁ/ dtTr {Xe%(H”th)tXe*%(H”H”h)t} . (62)

Using the occupation number representation of the Landau states (de-
noting the three quantum numbers n, k,, X by v) we have

X = g Xata,, H,_,= E U,ata,
v v,V

where U,/ is an operator in the space of phonon states. Thus

. 1 1
X = % [Ha X] = zﬁ ephv Z U,,/ u”X /al/” a a’/] (63)
— Z UV/’V//X (&J,U”aj/av — 5V/7,,a,fal,u) = Z UD/V(X — X/)aj/au .

After introducing it in Eq.62 end performing the trace in
the space of the phonon states, characterized by the quantum
number s and performing the time-integral we find

ST S S e b (X1 - Xa) (X, - X))

v1,v2,v3,v4 s’

XUl/l,s;Vg,s’ V3,s’;u4,56 (EV4 + €s — Eug - 55’) .
However,
(aanafa, ) = Tr {e/ZFmsin gt a, ata, | (64)
= 5V3V25V1,V4f0<EV1) (1 - fO(EVQ)) +5V1V26V31,V4f0(E1/1)fO(EV?,)v
with fo(F) being the Fermi function. Therefore

2
ree = TEEST ) (1 fol0) (X - XY (65)
X Y e U6 (By + €5 — By —£4) (66)
17
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or
v = €8 fo(B) (1= fo(B)) (X = X)* Wy
v,V
with W,.,/being the average transition rate for the electron from state v to
state v’due to the interaction with the phonons. If we neglect the phonon
energies, or if we had instead of the phonons static defects, we had obtained

_ Z 8fo X — X W

These results [8]-[10] coincide also with those obtained by Titeica [11] in
1935 by a kinetic approach interpreting the transverse conductivity as the
migration of the center of cyclotron motion.An english version of this paper
may be found in ”Serban Titeica, Modificarea rezistentei electrice a metalelor
in camp magnetic”. p. 49, Ed. Horia Hulubei (2018)

We have seen, that in the exact formulation of the theory, this assumption
could be formulated as the boundedness of the relative coordinate. A check
of the above hypothesis has been verified on various definite cases by taking
into account also the terms we neglected.

8 Strong coupling problems and strong elec-
tric fields

In the preceding Section we have dealt with a relatively simple example of
calculating the electric conductivity by perturbation theory with regard to
the dissipative potential. An important class of conductivity problems in
(crystalline )solids allow such an approach , at least by an improved version
of perturbation theory, even in cases where an expansion of the conductivity
in powers of the dissipating potential is not allowed (like the one treated in
Section 5 ). The application of such a method actually depends on the pos-
sibility to separate a part of the system Hamiltonian whose eigenstates and
eigenvalues are known, but leading alone to a diverging static conductivity
and a weak ”dissipative” one, ensuring the existence of the stationary flow.
The stronger the dissipation is, farther we have to go with improving the per-
turbation method. Obviously, there is a certain strength of this interaction,
where such method does not work any more. This happens by amorphous
substances, by impurity band conduction and always by very low mobilities.

18
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Even in these cases the exact formula of the conductivity may be useful.
The method of its evaluation consist in simple, plausible assumptions about
the nature of the energy spectrum and the energy dependence of the matrix
elements of the currents (see for example [12], [13]).

The elaboration of the conductivity theory has clarified the foundation
and limits of the old kinetic theory, allowed the refinement of the old results
and allowed as well completely news results. On the other hand, it has
simplified and somewhat unified the approach to transport problems.

A next extension of the conductivity theory is the evaluation of higher
order kinetic coefficients, namely of the higher order terms in the expression
of the average current. For this sake we have just to consider the next
iterative terms of the integral equation Eq. 7. As it is easy to see, we get

p(t) =po+ D™ pn
n=1

where 0
ﬁn _ i dtemw%»s)te% [I:IE’ ﬁnfl]eiﬂf—ilrt
h J_o
With the help of this expression for the statistical matrix,one may com-
pute the so called higher harmonics, i.e. those terms in the expression of the
average current,that oscillate with multiples of the applied field frequency.
Taking into account the availability of high intensity monochromatic sources
(lasers), such computations got peculiar interest.
In the static case, the exact solution with coupling of the field at t = 0
(introducing a relaxation term as in Section 6) may be put in the form

1(H+Hp)t «H+Hp)t

1 0
p=pt / dte™ e H, pole”
? —0oQ

This equation however, needs to be brought in a usable form by an expansion
in powers of the electric field.

A very special case is the one, where the intensity of the field is so strong,
that no expansion in powers of the field is allowed. We have in mind the case
of so called "hot electrons” for which j ~ v/E. This problem got until now
no adequate quantum mechanical treatment (although a formal procedure to
improve the perturbation method with respect to the electric field [17].

19

m Ladislaus Banyai: Profile in Motion



9 Derivation of the ”"non-mechanical” trans-
port coeflicients

We have reviewed in the preceding Sections the proper formulation of the
electric conduction problem. Kubo’s exact formula relates the conductivity
tensor to the correlation function of the currents in the equilibrium state. It
is only to expect a generalization of this theory to other kinetic coefficients,
characteristic for the linear response of a system to gradients of concentra-
tion and temperature. Based on the quasi-classical results, we may expect
that these coefficients might be expressed by equilibrium correlations of the
corresponding currents. The proof of such a statement, however is not at
all simple, since in the case of these purely macroscopic ”forces” a mechan-
ical formulation of the problem is not possible. In other words, gradients
of temperature or concentration cannot be introduced in a microscopical
Hamiltonian. Therefore, the derivation of such formulas (although followed
immediately after that of the electric conductivity) needed a lot of assump-
tions, which were actually equivalent the postulating the relationships. This
situation throw a shadow of doubt to the very existence of a generalization of
Kubo’s theory. Only recently offered Luttinger [16] a simple, but convincing
proof that confirms their validity. In what follows, we describe shortly his
argumentation.

The diffusion coefficient usually may be computed using Einstein’s rela-
tion relating it to the electric conductivity. On the other hand, it may be
shown an analogous relation between the thermal conductivity and the re-
sponse coefficient to a fictive gravitation field coupled to the energy density.
This "mechanic” response however one may be calculated. In this way one
may avoid the problems.

We define the coefficients LEZB, EEZ,Z, (1 =1,...4) by the phenomenolog-
ical relationships for the average electric and energy currents:

) NN
() = Lgﬂay¢—ngga (T) LOTO, (= )+L2]0 (67)

T
Gr)y = Lio,o — L)~ ”(T> LT, ( ) + L, (68)
where ¢ and  are the electric and the gravitational potentials. We have
chosen as independent macroscopic variables the inverse temperature % and

the ratio £ of the chemical potential to the temperature.
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The coefficients L,(f,),, (1 =1,...4) may be calculated by Kubo’s method,
considering the interaction with the applied external fields (within the second
quantization description) as

F— / d7 {n(2)(7) + h(D)(D)} |

where the first term represents the electrostatic energy, with n(7’) being the
particle density operator, while the second one is the gravitational energy,
with h(7) being the energy density. The similar computation by the method
of statistical matrix of Section 1, gives rise to

o) B

Ly = / dte" / ANG ( — 1hA)j(0))o (69)
00 B

LY = /O dte™* /O ANGE(t —1hN)jL(0))o
S B

L = /0 dte " /O dX(ju (t — 1hA)jl (0))o .

S B
4 —8 Ly <K
LY = /0 dte t/o (i (t — 2hN)j5(0))o -

where j¥ is the operator of the energy current (satisfying the continuity
equation h(7) + VjZ(7) = 0).

We shall show, that for all ¢ = 1,...4 we get ESZ = L;(fz To this end
we consider the system in equilibrium ((j,) = (j//) = 0) in the presence of
an electric , respectively gravitational field and we calculate the gradients
Ou( &, 8#(%) produced in order to compensate the gradients of the poten-
tials. Therefore we require equilibrium in the presence of the fields. For
the quantum statistical computation we express first these gradients by the
gradients of the particle and energy densities:

By O(f) 2 (%)

0 () = Gy O+ G ouh) (70)
T € PR A C)

" (T) = o M gy

Let us consider first equilibrium in the presence of just an electric field
P [ 7 {n(@o(@)
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with the equilibrium particle density
(n()) = Tr{e "THEN" (7))}

Using the expansion
B
e PHEFF—uN) _ o —B(H-uN) {1 - / dNF(—1h\) + } ,
0

we get

(n(™) = (@)
B8
- / 0\ / 47 (a7, B\ — (7, —hA)o(n()o) S(7).

Tr{e BH-uN) 1
Tr{efﬁ(HfuN)} :
Taking into account the macroscopic homogeneity in the absence of the

field, by a partial integration we get

Where the symbol (...) means

0, {n(7) = (71)
B
e / dx /m (0 (7~ B\ — (0 (7~ yo(n(7))o) (F) (72)

B
— / 0\ /dmn(f,—zm)n(f»o—<n<o,—zm>>o<n<o>>o>eaycb(f').(?z)

(Here by neglecting the surfaced integration terms the vanishing of long range
correlations was admitted.) If the field does not vary too rapidly with the
coordinate, taking into account that the operator of the total particle number
commutes with the Hamiltonian, we have further

e

0,0(7) = 1 (N = (N3) 2,67 (74

In the same way one may get also

0,(B(7) =~ (HN)o — (H)o(N)o) 9,6(7) (75)

However, as it may be seen easily
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O(N)y _,0n()s

((N*)o — (N)5) = o = " oBn (76)
and
((NHD, - (N)o(£t)o) = )0 — v O )
Therefore, from Eq. 70 and Eqs. 74 - 77 it follows
p 0(%) om) (%) @) | e
*(F) - - [6‘<n> o) “om o) T ™
o d(B)e, e
IO E
and as it is to be expected
1N _ |9(x) otn) | 9(x) Olh) |
o <T> a [8 n) 0 (%) + ahy o (%) T3u¢ (79)
= d(gg F0,6=0

From the conditions (j,
immediately

= (j7) = 0, together with Eqs.78, 79 we get
LG =L, L® =L (80)
In the same manner one finds

150 a(})-—tae.

and therefore also

L =12 LG =L (81)

The proof is over and we got finally the whole table of transport coefficients.
One might also check Onsager’s reciprocity relations.

The calculus of the coefficients LEZ,Z, (i = 1,...4) may be performed

according to the same recipes as that of the electric conductivity Lftly) The

only complication is that the expression of the energy current operator in the

case of interacting particles is not that simple as that of the particle current.
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10 Appendix. Derwation of the Boltzmann equa-
tion for elastic scattering.

Let us consider an dynamically independent electron system scattered on s
static potential V(7). After the application of a homogeneous electric field,
according to Sec. 4, the equation of motion of the one-electron density matrix
is
of n_, st
ha = [—V + V(r) + exEye ,f] (82)

or in matrix elements of the free electron states

O frrr 0
Wh f;’;’“ = (ew — en)fow — 1eEpe ( pTT ) Fio (83)
+ Z [ququ’ - fkqvqk’) (84)
q
We consider, that the system at t = —oco was in equilibrium:

f=f (0) +f 1) st
with
1
eBl= QmV'“rV N=m) 4 1

£O) —

and f) being of first order in the applied field. If in Eq. 83 we retain only
terms linear in E,, then

zhsfé,lj = (ep — &) far —1eEe™ < 0 0 > ,522 (85)

ok, | Ok
T Z [qu Tl = £y qu')

On the other hand, fkk, obeys the equation

or?)

o Y
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or

(ew —ex) 1522 + Z Vigfaw — frgVarr) =

Inserting into Eq. 85 we get

0 9]
(ths + ex —ew)f)) = —ieE, (akz +8k’> oo (85)

Y [Vt )

q

Approximating
Fan & folew)onk’

we get further

(zhs + &k — Ek/) k(:,lc? = — (5 r =+ Z [ ;111) DV )

We shall look for a solution of Eq. 10 under the assumption f,ikl) > f,g,? for
k # k. Then we get as a first approximation for the non-diagonal matrix

elements v
1 _ kk’ < n (1)> 3
N kk (83)

and after inserting this into the equation for k = &’ we have finally

.20 Sy (8 - ) (53)

k.

where

2T
Wi = E |ka/|2 5(€k - €k/) (83)

Equation 83. is nothing else as the linearized Boltzmann equation. Its solu-
tion one looks for in the form

9 foler)
W= eEfﬂglika(ek) (83)
and finds
7(er) ™ =) Wi (1 — cosb) (83)
k/
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Thereafter it follows for the conductivity
6277,2 1 —'dfo(Sk
o = — dk k2 . 83
7 m? (2m)3 / dey, o(Er) (83)

This is identical to Eq. 48. The derivation of the Boltzmann equation for
the more general case of inelastic collisions one finds for example in [17].
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IMPORTANCE OF COULOMB EFFECTS IN TRANSPORT PHENOMENA ON
LOCALIZED STATES

Although the importance of the Coulomb repulsion between charge
carriers on localized states is generally accepted, as, for instance,in
the case of statistical distribution of electrons and holes on impurity
states in semiconductors, no attention was paid till now to the influ-
ence of this effect on the transport properties on localized states. We
have in mind especially the very interesting case of hopping conduction
in amorphous semiconductors.

Let us consider the following Hamiltonian

1) H =%EEJ?) s + %— Uj njsnj-o’]’
J

ny, being the operator of the number of particles in the state |j67,
where § stands for spin. The second term represents the Coulomb repul-
sion between two electrons of opposite spins in the same state

IYj(r)IZ IYJ-(I")l2
ir - o )

(2) Uj = ezjd3r a3p!

In principle, in the interaction term, the dielectric properties of the
medium should be also taken into consideration. Generally speaking, it
is expected that U; will decrease with delocalization, vanishing for
the nonlocalized states.

With the Hamiltonian (1), instead of the usual Fermi distribution
function fo, one obtalns_ for the average number of particles

exp(-B¢;) + exp(-Ble; + 'Ej))

(3) f(tj) =<nj‘) (nj_€> = .

1 + 2 exp(-8¢;) + exp(-8(¢; + E5))
é.j:Ej—P’ %=EJ+UJ-P-
At T = OK, the distribution f is a two-step function, vanishing at en-

ergies higher than the electron chemical potential 2o being 1/2 down
to the hole chemicsl potential B defined by

) B o= p-U@

and being 1 umder n. For energy levels which are in the vicinity of
or it , so that lel«U or [¢+ U] €U , respectively, eq. (3) is well
approximated by the well known functions

1
(5) far =2 =% £ (g-XT 1n2)
e "2 exp[B(e-kT 1n2)]+1 2 ° ’
1 1 1
1-f ¢ =3 — =5 £, (~€~ KT 1n2)
h "2 oxp[B(--kT 1n2)]+1 2 ©
Czech.J.Phys,B26(1976) 717
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which exclude the possibility of double occupancy, the first one for
electrons and the second one for holes.

It is worthwhile to mention the importance of this effect for ESR.
In such experiments, the response is proportional to the total number
of "free" spins, i.e. to the quantity

‘.1
(6) [dE g (E) {(ny - n¢)2)=J dE ¢ (E)
B

where p(E) is the density of one-electron states and zero temperature
is considered. Eq.(6) indicates that the effect depends on the density
of states between the two chemical potentials. Also we can see that a
small effect can be due not only to a low density of states but also
to a small t.;-ix'.

In what follows we shall discuss the influence of the Coulomb re-
pulsion on the transport properties and namely, on the conductivity
and thermoelectric power. Both these effects are proportional to the
transition rate from an initial to a final state. This depends on the
transition probability P and on the occupation of these states, i.e.
it can be written as

(7) R=(Polni @ -ah+n} a-aDHD.

If the transport mechanism is the phonon-assisted hopping, then
fﬁf contains, among other things, the Bose distribution function of
phonons /1/. In the case of Seebeck effect, the expression (7) must be
multiplied also by the mean energy (with respect to the chemical po-
tential) of the states between which the absorption or emission of the
phonon takes place.

In disordered systems, the configurational average must also be
performed using the proper distribution of the coordinates and ener-
gies. In the present paper, we shall show that (excepting the case
Uj = 0) there is always a low temperature domain in which the Seebeck
coefficient is constant. )

Depending on the occupancy of the initial and final states, four
transitions are-allowed which are outlined in Fig.l. For instance, in
the case d), the initial and final state before the transition are
doubly and singly occupied, respectively.

b~ 1 l 1

o o g™ o o " o

l l 1 1 Fig.la),b),c),d)

If p - A»kT, the transition rates, depending on the respective en-
ergies and distancies of the four processes are

(8) R, = Pieg ke, i) £, (g5 - KT 1n2) £ (=€, + KT 1n2),

Ry = PUE;, €py vyp) £,(E + KT 1n2) £ ( ~£p + kT 1n2),

718 Czech,J ,Phys .B26(1976)
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R, =P,

i1 Egs Typ) £o(€5 = KT 1n2) £ (~fp - kT 1n2),
Ry = P&, Epy ryp) £,(E; + KT 1n2) £,(=E - kT 1n2)

the corresponding energy factors for the Seebeck coeffjicient being

(€5 +6f§ f- + &f), 4_—(6 i'f) and -‘-(e + f:f) respectively
/2/. In these expressmns, the occupatxon factors (the product of the
two Fermi fungtions) are strongly peaked around small values of & and
respectively € . The shift of the energy arguments by 2 XT 1n2 as com-
pared with the case U =0 is a very important effect, as we shall
see immediately. Indeed, in the absence of the Coulomb repulsion, all
four processes are identical and the thermoelectric power o is /3/

e 1 r4
(9) &L= Wjdei dee Y (g5 + 6f):p(£i,£f) fo(ai)f (-Ef)

while the conductivity is /1/

(10)

; e P ey, £0) £,(65) £ (=Ep).

The function gs was defined as

1n) Pe, eh =fd’r?(e,e’, r) X (¢, €, r) r?
where the function X %frforms the configurational average. Consider-
ing that the function (¢, E is independent of the argument
1 + Ef within a range of a few kT, i.e. practically
= ?

(12) kr& P '5'(—1———)—

£E. + £

i £ -

Ei +E,=0

then the integrand in eq. (9) is an odd function of this variable and,
consequently, the thermoelectric power vanishes. If the right hand
side of (12) is different from zero, we arrive at a contradiction with
most experimental results on e.g. amorphous Ge or amorphous Si that
seem to indicate a constant value of « at low temperatures.

Comlng back to the case , under the same assumption that
?(E,E) depends only on ¢ -¢’ o%er a range of a few kT, one may see
after a proper change of variables of the type g =& t kT 1n2,

€=%% ¥T 1n2 that the processes b) and c) do not contribute to the
thermoelectric power at low temperatures, while the contribution of
the processes a) and d) is

~

-~ _lel 1n2 '
(13) dg,a = F 2 | ac e P4 - £,(6) £,(-e0.

Therefore, we may write for the Seebeck coefficient at low temperatures

Czech,J ., Phys . ,B26(1976) 719
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olel 55(T) - 6’a(T)
(14) S(T) = ———— = 1n2
k 6,(T) + GL(T) + 6 (T) +64(T)

[}

The partial conductivities 6y, 63, 6, and 63 have a similer tempera-
ture dependence (for example, Mo¥t’s famous T “”% law) but with dif-
ferent pargmeters, depending on the density of states and localization
at and g . Therefore, at sufficiently low temperatures, either one

of 65 or &y grevails (6p,c as describing transitions from p to A1 can
never prevail) and then S=* 1n2, or their ratios sre constant and

(15) s=l;1n2,—1<l;’<1.

The arguments presented here are valid not only for hopping mech-
anism but also for tunnelling, mechanism that prevails at extremely low
temperatures. This mesns that if both mechanisms are included in 6 and
S, quite general asymptotic lews may be written as

(15) lim 6(T) 3

o
T -0
lim  S(T) =§1n2
T->0
i.e. in usual units
(16) lim o(.(’l‘)z';x 0.06 mV grad-l.

T -0

It is interesting to observe that all low temperature plateaus in
the hopping region of S in elemental covalent amorphous semiconductors
lgy in the range (-0.8, 0.25) / 4-9/, in a remarkable agreement with
the prediction . of ocur theory (ln 22~0.693).

The authors would like to thank M.Bundaru for many enlightening
discussions at the early stage of this work and Dr.N.Croitoru and Dr.L.
Vescan for informations on the experimental results.
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We consider a classical charged gas (with self-consistent Coulomb interaction) described by a
solvable linearized Boltzmann equation with thermalization on uniformly distributed scatterers. It
is shown that if one scales the time t, the reciprocal space coordinate k and the Debye length | as
A’t, (1/A)k, A, respectively, in the A — = limit the charge density is equal to the solution of the
corresponding diffusion-conduction (macroscopic) equation.

1. Introduction

The connection between the kinetic and the hydrodynamic description was
illuminatingly discussed for the exactly soluble model of the Lorentz neutral
gas'™), for which the L,-norm of the difference between the two solutions was
shown to vanish with t — . On the other hand, a similar problem was tackled
in a hopping model both for neutral®) and for charged particles with self-
consistent interaction’). The technique used here was a scaling procedure
suggested by the scale invariance of the macroscopic solutions.

This paper is an attempt to apply the latter approach for a charged
Boltzmann gas. It seems rather obvious that the Lorentz model, lacking
energy dissipation, cannot give rise to the desired macroscopical properties.
This was recently discussed in ref.?). That is why we consider in this paper a
Boltzmann model with thermalization.

The microscopical model is described in section 2 where also the macros-
copical equations are shortly discussed. The main results concerning their
relationship is stated as well. Some general properties of the model are
discussed in detail in section 3. They are used in the proof of the limit
theorems given in section 4.

0378-4371/81/0000-0000/$2.50 © North-Holland Publishing Company
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MACROSCOPIC BEHAVIOUR OF CHARGED BOLTZMANN GAS 167
2. Statement of the problem and the results

2.1. The macroscopic equations

We consider an infinite, isotropic and homogeneous medium, characterized
by the phenomenological constants o (electric conductivity), D (diffusion
constant) and e (electric permitivity). The evolution of the total (free and
polarization) internal charge density pi.(k, t) in the presence of an external,
static charge density p.(r), if one neglects the magnetic field, is given®) (in
Fourier transform) by

Pinilk, 1) = e PEHIN 5 (K, 0) = Biac(k, ©)] + pin(k, ), (1)
where the t — limit of pi,(k, t) is

1+ PkY e —e)le .

pint(k9 °°) = 1+ l2k2E/€0 pext(k)- 2
The characteristic length
(i)
= (55 ®

appears in the Einstein relation

o= -159 D @)

and is defined only in terms of equilibrium quantities (n,-the equilibrium
carrier density; u - the chemical potential).

This phenomenological description is suitable for a semi-conductor, not for
a metal, where | is of microscopic size and the diffusion is completely
negligible as compared with the conduction. For metals it would be important
to consider a medium with boundary, with the external charges placed outside
the medium.

If one considers the fundamental solution, defined by point-like initial and
external conditions

ﬁim(k’ 0) =e,
Pex(k) = ge™*n, )

then we have the following scale invariance property of the solution:
Pi(kIA, At, AL5 Aro) = pindk, t, 1; 1), (6)

which suggests to extract the macroscopic behaviour of the microscopic
model through a scaling procedure.
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2.2. The microscopic model

We consider a system of classical, charged particles in an infinite medium
and treat their interaction in a self-consistent way. Their evolution in the
presence of a static external charge pex(r) is described by the following pair
of equations for the distribution function ¢(r,v,t) and the self-consistent
electric field E(r, t):

(2407, +£ B 0, Jo(r, 0. = (Bo)r. v.1),

eV.E(r,t) = eng Idmp(r, 0, 1)+ pext(r) + Prg. N
The uniform compensating background charge is, of course,

Pog = — €Ny. 8)

The collision operator B describes a system of uniformly distributed
scatterers at thermal equilibrium at temperature T.

(Be)(r, v) = j o [Weo(r, v) — Waog(r, 0], ©)

with the transition rates obeying the detailed balance
Wv‘vve-mr?/ZkBT — Wv/ve—mvzl?.kBT. (10)

Our model is defined by the choice of the instantly thermalizing scattering
cross-section:

Wew =+ M(0), (n

where M (v) is the normalized Maxwell distribution

M(v) = ( T )m e el (12)
27ks T ’

and T is a constant having dimensions of time.

In the homogeneous case (f and E™ independent of r, implying E = E®)
due to the normalization condition [fdv =1, the collision term (9)-(11)
reduces to the well known ideal relaxation form (M — f)/7 yielding

n062

2
eny f doof(v, t) = Eﬁ 7E + e’”’[enof doof(v, 0) + e E(t - 'r)].

This is an exact linear response for the average velocity, giving the
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conductivity
2
o =& no'r (D =—kBT 1').
m m

It is clear that our system of equations is nonlinear, due to the self-
consistent field term in the Boltzmann equation. Therefore, we shall consider
only small deviations from the equilibrium solution in the absence of the
external charge

(P()(r, v) = M(U),
Eo(r)=0. (13)

We emphasize that we cannot prove the uniqueness of the equilibrium
solution, even in the absence of the external charge. Moreover, we perform a
“double™ linearization, with respect to the deviation from the actual equili-
brium solution and with respect to the field as well (low field approximation).
We denote

f(r,0)=¢(r,v) — M(v).

Taking the Fourier transform with respect to r, we are left with

(%Hk,,)f(k, 00 -pop o= vE(k, HM(v) = Bf (k, v, 1),

Bk, 1) = —ﬂ‘,@Ud of (k, v, t)+”“‘(")] (15)
Now we eliminate E and notice that, according to eq. (3)

1 _ eng

I?” kpTey (16)

From now on, we use 7 =1 and m/2ksT = 1 units. Our equation reads

%f(k,v, t)=(—ikv—1)f(k,v,t)+<1 "“’)M(v)fdu "fk, v', 1)

ikv Pext(k)
— 10 M(v) B a7)

We consider eq. (17) as an evolution problem in L(R% for fixed k. The
initial and external conditions are chosen to match the macroscopic ones, egs.

&)

f(r,0,0)= nio 8(r)fuv); folo)E L.,
Peulr) = aB(r — ro), (18)
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or, equivalently,
1 A ikr
f(k’ v, O)Zn—of()(v), Pext(k)z qe"o' (]9)

The case of neutral particles may be obtained from eq. (17) by taking | -,
the corresponding macroscopic evolution being given by the well-known
diffusion equation. Nevertheless, we shall treat it separately, since stronger
results can be obtained there.

2.3. The results

Our main scaling result concerns the Fourier transform of the micro-
scopical (actual) charge density

pae(r, 1) = eno [ dof(r, v, 1), 20)
and reads

lim ,a,,,ic,o(f, At AL Aro) = pimlks £5 L, 7o), (21a)

A

or equivalently

i i £, 4785 Al Aro) = (5 A%85 AL Aro) | = 0 (1b)

A

for any fo(v) € L,. Here the macroscopical charge density pin is given by eq.
(1) with

D =%(=%7 =%J’de(v)v2~r)
€ = €. (22)

In the neutral case it is convenient to consider the function

N
f VM (23)

obeying the equation
%f’(r, v,t)=(—oV,— 1)f'(r,0,t) + VM(v) f do'VM(@)f'(r,v', t)
=(T + )f' = Af. (24)

Considering this problem in L(R>xR%** with initial condition fo(r,v)€E

* Considering the problem (24) in L(R'x R’) is equivalent to consider the unsymmetrized
evolution equation in the weighted Hilbert space LR’ X R*; M(v) ™).
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LAR*xR* N Li(R?x R?, we obtain the following result

"nmicro —n IS Cf t—l/2’ (25)
lIn] °

where norms are taken in Lx(R?), the microscopical particle density is
o7, 1) = o [ dof (s, 0,1, (26)

while n(r, t) is the solution of the diffusion equation with D given again by eq.
(22) with the initial condition

n(r,0)=n, f dofo(r, v), 2"

Cs, is a constant depending on the initial condition.
We must point out that from the physical point of view it would be
desirable to have the scaling property in the coordinate space too and for the
neutral case to prove a relation similar to (25) in the Banach space L,(R*x R%).

3. Spectral properties

Let us denote the operators of eq. (17) as follows:

T(k)=—1ikvo—1,
Tk, 1) = (1 —%)M(D)Idv' = ok, I v)jdv’, 28)

Ak, I)=T(k)+ J(k,1).

For simplicity we shall occasionally omit the arguments k and [
The free evolution operator T(k) has only continuous spectrum on
{z|Re z = — 1} and generates the non-unitary group

U(t) = e+, 29

The perturbation J(k, ) is a one-dimensional bounded projector on L, and
therefore’) A(k, !) is the generator of a strongly continuous semigroup.
The resolvent of A is easily seen to be

1

R(z)=(z—A)"'=Ruo(2) + @) Ry(z)JR(z), (30)
where
R(2)=(z—-T)" (31
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and

1

z+1+iko’ (32)

F(k,1;2)=1 —Idvd/(k,l;v)
R(z) is bounded in C, except the axis Re z = — 1 and the zeroes of F(z).
In what follows a detailed discussion of the function F(z) is given. This
function can be written as

1 ( _ez +i(1+ 1Kk PYkx
F(z =—_J’dxe * , 33
@) Var z+1+ikx (33)

and is seen to be the weighted mean of the circle which is the image of the
real axis through the fractional linear mapping

_ 2 +i(1 + /K )kx
z+1+1kx

h(x) (34)

Thus the value of F(z) lies inside this circle. If the origin is outside, or on
the circumference of the circle we have clearly F(z) # 0. The position of this
circle with respect to the origin results from the positions of

z+1
k

h () = —i
and
Sy z
h O =~ Ig e
with respect to the real axis. It is now obvious that for z outside the strip
{z| - 1 =Re z <0}, F(z) cannot vanish.

In order to analyse the occurrence and properties of the zeroes in the strip
it is useful to cast F(z) in the form

0
where
E=z+1
and
_2 e
pR)==e . (36)
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Now F(z) =0 is equivalent to
f(l +(1/k*P)E) _ ™ T
KA+ U Ud 2/k’+x2] : (37)

Noticing that the r.h.s. of eq. (37) is a Herglotz function with respect to
£*/k® we use the well-known representation®) of such functions, as well as the
rapid decrease of p(x) and its first moments to get

de p(x) ] S ofgf}—‘,j}—’ (38)

+x +u

where o(u) is a non decreasing function.
Therefore we are left with the equations

s@=¢¢-+(1+7)(3 kZ—k‘fg?i(—ﬂz] -0. (39)
0

Now we are in the position to prove the following statements concerning
the zeroes of F(z) in the right half (—j < Re z <0) of the allowed strip:

(i) for Re z > —1 there is at most one solution of eq. (39) which is real;

(ii) there exist ko, ly so that for k <ky and | > [, the solution (denoted by
z(k, 1)) exists;

(iii) for k -0 and | — « (with kl = const) this solution approaches the origin.
More precisely

lim x*z (lk M) =—1k2(1+—;—z). (40)
A0 A 2 k“l

A direct inspection shows that Im g(£) = 0 for Im £+ 0 if Re z > —} which
rules out the existence of complex solutions. For ¢ real and greater than 3,
g(&) is strictly increasing, so (i) is proven. If g(}) <0 the existence of the
solution is obvious because g(¢) eventually becomes positive. But g(3) can be
made arbitrarily close to —4 for small k and large . The scaling result (40)
follows immediately from eq. (39).

We remark, though it is not essential, that for the neutral case (I = ) these
results can be extended in the whole strip with ko = V7. For finite I, on the
contrary, we can have two solutions and even non-real solutions in the strip
for suitable values of the parameters k, [.
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4. The scaling limit

4.1. The charged gas

We begin by proving the inverse Laplace transform representation for the
evolution operator
y+i8

eAkDf = %ﬂ lim J’ e”R(z)f dz
84‘{

y-id
yHix

:e,m)“# f el'-ﬁ%Ro(z)J(k,l)Ro(Z)f dz, (41)

y i
for every f € L\(R%), y > —1 and greater than the pole of the resolvent. The
existence of the integral in (41) is ensured by the Fubini theorem, alongside
with

fdv f d22|e”ROJR0f|5e”jdv fdv'fdlz ok, L 0) | [f()]

|z +1+iko| |z+1+ike|

T
v+1

=g

gk, DI} - (If- (42)

where z =z, +iz, and the last step is the Schwarz inequality for the in-
tegration over z;. Use was made of the boundedness of F'(z) on the
integration path. The result follows now from the analicity of the integrand
together with

tim | Ro(2)JRu(2)f} = 0, (43)

which is straightforward.
Taking y <0 we can easily see that

lim [|le"**"f[| = 0. (44)

In the presence of the zero z(k,l) of F(z) in the strip —1<Rez<0itis
useful to move the integration contour to the left until —3 <y < z(k, I).
We have then

y+ix

f e”"RoJRof dz
y—ix

+e"*Cy, Ro(z(k, D) (k, DRo(z(k, 1))f, @

|

1Ak ¢ _ L tT(k)
= + —
€ f=e7f 2mi
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where

- Yk, 1) -
Cur = ([ do =k, l)+1+ikv)2) ’ (46)

is the residue of F'(2) in z(k, I).
In the scaling limit k - (1/A)k; | - Al; A > «, the first two terms of eq. (45)
vanish exponentially. For the last one we have

alm Ck/)\,)‘[ =1. (47)
. k

s — lim R0<z (—, )\l)) =1, (48)
A—00 A

s ~lim J( /\l) M(u)jdu (49)

and therefore

§ — lim eAztA(k//\. Ay e—l/2k2t(l+l/k212)P. (50)
Ao®
This concludes the proof of our statement (21) for the particular case
Pext = 0.
In the presence of an external charge, the solution of eq. (17) is (with the
notation justified by eq. (44))

fk, v, 1) = e“P[f(k, v,0)~ f(k, 0,%)] + f(k, v, ), (51)
where f(k, v, ) is the time independent solution of the same equation:

f(k, v, )= — R(())‘_",‘.’2 M (o) ent 70

— - [Ro©)+ (g5 RoOIRoO) | 1572 M (o) Lt (52)
F(0) no
We remark that

lim eng f dof(k, v, ©) = — pex(0),

k=0
i.e. the external charge gathers an induced total charge compensating it
exactly. The non-conservation of the charge occurs at the expense of the
charges and currents at the infinity, just like in the macroscopical description

given by eq. (2). For a finite medium, conservation of charge would occur by
properly taking into account the boundary conditions.
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For proving the scaling it is sufficient to show that in L(R*) we have

pex!(k; rO)
1}3)‘( 0,00 Al )\ro) M(v)l+klz (nr, (53)

Indeed, our choice of pex, €q. (19), gives

. [k A
Ben (30> Aro) = Bk, o), (54)

and we have also

. 2 M(D) 1kv 12

lim A Jdo ooy 2k (33)
- if(l + 1K )x |

li /\2F< AlO)—l Al f A Ty =%k2<1+ )

)\lirml :E: \/'n ¢ 1+ l(k/)\ )X X W

—

(56)

Then, taking the scaling limit in eq. (52), the first term vanishes and the

second gives the desired result. This proves the scaling result in the general
case.

3.2. The neutral gas

It is easy to verify that the spectrum of the transport operator appearing in

eq. (24) in only continuous and located on {z | Rez=-1JU{z | -1<z=0}
The spectrum of each Fourier component of thii transport operator, T;, contains
the continuum {z | Re z = — 1} and, for |k| < V7, a real eigenvalue z, which for
small k can be written as
k* k!
Zk ‘? 2 (57)

The corresponding eigenvector is

cVM(v) K
Ttk GTlFTE (58)

P(v) = 4

As Ly(R*; M '(v)) is contained in L,(R’) estimations similar to (42, 43) are
valid in this case too and we assert that there exists € >0, —1 < 8 < 0 such that
for |k|= €

B+iy
e"f = lim i]_ f e (z — o) 'f dz = e'Tvf + P Z(B, t)f, (59)
e
B-ivy

where ||Z|| < C (independent of t).
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For |k| <e, there exists B', — 1< B’ <0, such that
B'+iy
e =limze [ ez dh)'f dz + e ik (60)
yoo &TT1
Bty
If we estimate now the norm of the semigroup (t) generated by «, we
obtain

uwfP = [l filfandk = [ e fulfdk + [ e ol dk

k<e k>
< Cl%¥ + C'e?! I IfelP dk + ||I dk e, vl (61)
0
Then,
lwu)f — f dk e (¢, f)vn |} < exponentially bounded terms. 62)
0

The integral in eq. (62) can be written %Y (t)Q.f, where U (t) is the “full
hydrodynamic” semigroup giving the solution of the ‘‘full hydrodynamic”
equation

ontl

at =%V2n"—%V“n”... (63)

and Q. is the hydrodynamic projector

Q.= f (G Yo dk. (64)
0

From eq. (65) it results that

|PU(t)fo— PUM () Qefoll = |PU(t)fo - UH()PQdS
is exponentially bounded in time (here ? =fVM(v)dv and Pf=n is the
local density).
Therefore, denoting by AP (t) the semigroup generated by 74 we have
12U )fo — UPW)PFIF < |PUMfo— U™ ()PQ:fol
+|UH O)PQfo— U™ (OPSol + | U™ ()Pfo— UP()PSf
< exponentially bounded terms + Cit 2 + Cpt 77, (65)

Collecting the results and taking into account that [|U°(t)Pfo =t we
obtain the result (25).
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The scaling procedure we proposed in previous papers to obtain the macroscopic behaviour
from the microscopic (kinetic) description is applied here to a soluble hopping model, on a
periodic lattice, which exhibits both conductive and dielectric properties. The Kubo and the
Clausius—Mossotti approaches are discussed in the light of our exact results.

1. Introduction

In refs. 1 and 2, hereafter referred to as I and II respectively, we have
proposed a scaling procedure to obtain the macroscopic electrodynamic
behaviour from the microscopic (kinetic) description. The approach was
suggested by the scale invariance of the macroscopical equations.

This method was successfully applied to a soluble hopping model of
charged particles, on an arbitrary periodical lattice (II), and to a charged
Boltzmann gas®) (both in the self-consistent potential approximation). In both
cases the macroscopic behaviour was recovered, describing a medium
characterized by a diffusion constant D and a conductivity o related by the
Einstein relation

o'=%’D, (1.1)

where the length

I= (ES%:TO) o 1.2)

(no being the equilibrium carrier concentration, p the chemical potential, e the
electron charge and ¢, the permitivity of the vacuum), played an important
role in the scaling procedure.

However, neither of these models exhibited dielectric properties, i.e. they
had € = ¢;,. This is not so surprising since in both cases all the particles were
allowed to reach any point of the system. According to Lorentz’s original

0378-4371/82/0000-0000/$02.75 © 1982 North-Holland
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ideas®) they should be considered as free or conduction “electrons”, whereas
dielectric properties arise from the polarisation or bound “‘electrons”.

In this paper we modify the hopping model to provide for bound “elec-
trons” too. Applying again the scaling procedure we confirm Lorentz’s ideas
in the sense that ¢ and D are determined by the free ‘“‘electrons” only while
€ — €y >0 by the bound “electrons”.

We show also, that our dielectric constant satisfies, in the appropriate limit,
the classical Clausius~Mossotti relation.

The outline of the paper is the following: in section 2 we summarize the
macroscopic solution and its scale properties. In section 3 we give a brief
description of the model. Section 4 is devoted to the study of the solution. Its
scaling limit, which is the main result of the paper, is the object of section 5.
The final section is left for the discussion of the results. It contains also a
detailed comparison, on this example, with the standard dielectric response
function theory and with the Clausius—Mossotti relation.

2. The macroscopic description

The macroscopic situation we aim at is that of an infinite homogeneous
medium, characterized by the phenomenological tensors o, D and ¢, in which
we consider at t = 0 a certain free charge distribution. We look at its evolution
in the field of a static external charge p.. (neglecting the internal magnetic
field). The corresponding equations are given in II. Their solution is (in
Fourier transform and using eq. (1.1))

Pk, t) = e PRI RON 5 (K, 0) — pin(k, 0] + Pinelk, @), 2.1
where

R 1+ k(e — e)klep)
Pim(k, OO) == 1+ lz(kEhoEo) 2 Pexl(k) (22)

for the internal charge density and

Vik, 1) = —sprok, 1) = —alPinlhs 1) + Pexi(i)] @.3)
E()k Eok

for the potential (p,,; being the total charge density).
We remind that in a semiconductor, the density p of free charges is defined
as

plk, 1) = pilk, t) + k(e — e)kV (K, t). (2.4)

In what follows it will be convenient to consider the evolution of the total
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density in terms of the initial value of the free charge density

P _ E_ok_z{ —kDk(l+€ /lzksk)t[a 1 P ]}
ptol(k’ t) - kék € o p(ka 0) + 1 + l (kek/eo)pext(k)

1°k? .
+ mmpm(k)- 2.5

Let us consider the fundamental solution, defined by an external point-like
charge in x, and a point-like initial free charge at the origin

Pext(k) = @™ ™0, p(k,0)=e. (2.6)
It can be seen that

B A5 ML, Ao = k£ 1, x0), @7
or, in the coordinate space

A potlAx, A2t AL Axo) = pot(x, t5 1, x0). (2.8)

This scale invariance suggested the application of a “‘scale projection” on
the microscopical charge density

lim p{"(;“— A2t: AL )\x(,) 2.9)
A—»oc

to obtain the macroscopical result.

3. The hopping model

Let us consider an array of sites i, characterized by the coordinates x; and
the energies €, which can be occupied by a system of charged fermions, and
let

W, = W P9 3.1

be the (equilibrium) transition rates between the sites i and j. Then, the
linearized hopping rate equations for the deviation n; of the average occupa-
tion number from its equilibrium value is (I, IT)

GEm® = = STiln(t) + eBfi(1- V(o) (3.22)
___e_ ﬂ(t) ext
VO = g S e TV (3.2b)
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where ¥;(t) is the self-consistent potential, ¥{* is the static external potential
fi is the Fermi function of ¢, and

Fij = Mij[fi(l "fj)]ﬂ; Mij = 5ijZ°W'u - wija Wij = f.‘(l —fj)wij = Wji-
3.3

We shall consider this hopping problem on a periodic lattice of sites with
arbitrary symmetry and arbitrary elementary cell. The position of the site is
given by

x(r)=r+§,

where r is a vector of the Bravais lattice and &, specifies the position inside
the elementary cell. Choosing

&(r)=¢
and
Wss’(r, r’) = Wss’(r - r,)

the problem has the translational invariance of the Bravais lattice. It is then
natural to consider the whole problem in discrete Fourier transform defined as

f) =S e fy; 1= [ dre i, (3.4)
BZ

where v is the volume of the elementary cell and the integration is performed
over the Briliouin zone (BZ).

Combining the eqgs. (3.2) we have, with matrix notation with respect to the
cell indices s and in Fourier transform

€gV

Lk, 0 = - AWK D) - LW T, G5
where
_eB. _
Vs = GQU fs(l fs)sss' - Vssss',
Ak)=TFK)X(k), X (k)=8 + v,Cslk). (3.6,

The matrix C,.(k) is the Fourier transform of the Coulomb matrix

U(l - Sss’sr.o)

s 3.7,
dm|r + & — & G7

Css’(r) =

given explicitly in II. It is important here to recall only that C(k) can be split
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into a singular term and a well-behaved one,
éss’(k) = 7}2 e—ik(g,—g,r) + Rss'(k) (38)

(R(k) is indefinitely differentiable and R(ek) is analytic in € around € = 0 for
any k € BZ (see ID)).

Among the properties of the model, an important part is played by the
connectivity structure. Here lies the difference between the previous model
(1,1I) and the present one, as well as the explanation of their different
macroscopic behaviour. A connected component of the system is defined as a
maximal set of sites with the property that any pair of its points can be
connected by a sequence of allowed (i.e. non zero transition rate) steps. In
our previous papers the system consisted of only one connected component,
the electrons being allowed to reach any point starting from any point. Now,
besides such free electrons which move on an infinite “continent” we con-
sider also bound particles, confined to ‘“islands”. Each cell contains one
“island” and all “‘islands” are identical except for a lattice translation. No hop
is allowed between different “islands” or between “islands” and the ‘‘con-
tinent”. This way the sites are split into two types: The positions which
belong to the free particles are denoted by x,(r), s=1,2,...,S and those
corresponding to the bound particles x,(r), s=S+1, S+2,...,S+3.

In virtue of our classification of the sites it is natural to consider the
S + X-dimensional space in which the evolution (3.5) takes place as a (direct)
sum of two sub-spaces ¥; (corresponding to the first S values of the index s)
and &, (corresponding to the remaining 3 values). Therefore we shall use
block forms for the matrices whenever appropriate.

In what follows, it is useful to introduce the notations

S
P=3v; L7= ¥ w; A7=174L7, 3.9
s=1

which explicitates eq. (1.2) for the free, bound and respectively total electron
density. In the macroscopic picture only | appears.
We define also

» ={lzvs, for s <8, 0, fors<S§,

0, fors>S, and g, = {szs, for s > S, (.10

which are the components of the vectors denoted by |p) and |q) respectively,
as well as the diagonal elements of the diagonal matrices denoted by p and q.
We have

1 1 ? 0
vepprpa=(y ) G0
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where we identified the operator p (resp. g, with its restriction to %; (resp.
%.)). Such identifications will be currently used throughout the paper in order
to avoid complicated notations.

It is easily seen that the solution of eq. (3.5) is

ik, ) = &4 |7k, 0+ 22X T 0y | - S0X TR, (.12)

where the existence of X', which will be discussed in the next section, was
admitted.
We choose again a point-like external charge q°* located at
xo=ry+ &

not belonging to our lattice (& # & for every s) in order to avoid singularities.
In Fourier transform this gives

aext _ qext ikrg| A
7)) = eI COk), (3.13)
where
0 _ v
Ci(nr) -4—————w‘r+gs & (3.14)

4. The spectral properties of the evolution operator

As seen from eqgs. (3.6) the matrix A, which governs the evolution, contains
a hopping part " and a coulombian interaction part X.

Because of the connectivity structure of our model, I" has the block
diagonal form

- Iy o

I'= (0 ﬁ,)’ @1
I'; being the matrix I of ref. I, where its properties are discussed at length, we
give here only a brief sketch.

It is both reasonable and sufficient for our purpose to assume that W (r)
decays at least exponentially with |r| at infinity. This ensures the indefinite
differentiability of I'(k) as well as the analyticity of I{(ek) in € around € = 0.
The fact that I';p is a hermitian matrix (see egs. (3.3)) shows that Iy is
diagonalizable with real eigenvalues vy,(k), a =1,2,...,S its eigenvectors
lue(k)) @ =1,2,...,S being mutually orthogonal and normalized in the scalar
product defined by p~' in ¥:. In other words the adjoint eigenvalue problem
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has the same eigenvalues and the eigenvectors are
o (k)) = p~|ua (k). (4.2)

The eigenvalues and eigenvectors have the differentiability and analyticity
properties of (k). )

The positivity of I'(k) is proved using its quadratic form in the scalar
product defined by p~'. Indeed, for any non-zero |x) € &; with |y) = p '|x) one
has, using eqs. (3.3),

S
(P TIOx) = (3, Fl)py) = —————3 S Woul)ly, = vy ™ >0,
2Zf(-f) 7

4.3)

We have equality in (4.3) for k=0 and y, =y, for any s,s'<S and
connectivity arguments show that this is the only case. Thus the only
vanishing eigenvalue of [(k) (labeled by a =1) occurs at k=0, is non
degenerate and its eigenvector is

@) =IpY a0 =p~'Ip) =11 (4.4)
Moreover, by the reality of I'(r), y,(k) has a quadratic behaviour around k =0
Y1(k) ko0 ~ kDk 4.5)

and & can be shown to be a strictly positive definite tensor (I).
On the other hand, since

I'yr)= Fb5r,o (4.6a)
one gets
Ik)=T, (4.6b)

and therefore v, and |u,) are independent of k fora =S+1,S+2,...,S+3.
All the eigenvalues are strictly positive except

Y1 =0; |used=1q); |dse)=q '|q) =1v)- 4.7

It is clear that the spectrum of I'(k) is a superposition of the “bands” of
Fi(k) and those, perfectly flat, of I, = I',. All the branches are strictly positive
except one which is identically zero and another which touches the origin at
k =0 only.

We turn now to the interaction matrix X. Up to a similarity transformation,
defined by »'?, it is hermitian

V—l/2x"(k)y1/2 =1+ V”zé(k)V”z, (4.8)

Ladislaus Banyai: Profile in Motion



176 L. BANYAI AND P. GARTNER

so that its spectrum is real. Let us see under what conditions it is positive.
The Coulomb matrix is not positive definite, but is bounded from below. A
lower bound is given by a well known result due to Onsager’)

v

C= md’ 4.9)

where d is the smallest distance in the lattice.

If L and | exceed a certain critical value [;> 0 the matrix v becomes
sufficiently small and the positivity of the unit operator in eq. (4.8) prevails.
Using the bound (4.9) and p, g <1 we get

v
lo< \/m. (4.10)

In its turn, the positivity of X (k) ensures the positivity of the spectrum for
the evolution operator A(k), as will be shown below. This is essential for the
convergence to equilibrium to take place for any solution eq. (3.12). Since the
stability of the equilibrium is a characteristic feature of the master equation,
which is the starting point®) in deriving the hopping rate equations (3.2), it is
clear that, in the range of the parameters where negative eigenvalues occur,
the instability is an artifact of the approximations used during the derivation.
An example given in Il shows the selfconsistent approximation to be respon-
sible for the departure from the equilibrium in systems with too small
distances between the sites. Therefore only the cases when L,[>1, and
consequently

v 2X(k)v'?*>0, for any k €BZ “.10

will be dealt with.

We are now in the position to discuss the properties of the operator A. We
begin by proving the following statement: A(k) is diagonalizable, with real,
positive eigenvalues, bounded as functions of k throughout the BZ. To this
end let us consider the matrix

Ak) = v "I k)X (k) (k)" o'
— [V~1/Zfﬂ/2yl/2][y—ll2x~y1/2][V—l/ZfVl/ZVl/Z]' (4' 12)

Because ['(k)v is hermitian, so is » "2I'v"?, which makes the hermiticity and
positivity of s(k) obvious. Zero belongs to the spectrum, and is non-
degenerate for k# (0 with the eigenvector v_”2|q). Moreover, since

FiZv'd (k) = AR (k)"*p'? 4.13)
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the following connection between the eigenvalue problem for &/ and A holds:
if

A (K)|Xo) = Au|xa)
and

F k)" x,) = va) # 0 (4.14)
then

A(R)[ve) = aglva)-

On the other hand, I'(k)"*»*?|x,) =0 is equivalent to a, =0. This way we
proved that &{(k) and A(k) share all the non-vanishing eigenvalues, with the
eigenvectors related by eq. (4.14). But zero belongs to the spectrum of A(k)
too, with the eigenvector

[vs1(k))y = X (k)| us1), 4.15)

so that &f(k) and A(k) have the same spectrum.
Even though A(k) is singular in k = 0, it is easy to check that (k) is not,
wherefrom the boundedness of the spectrum follows.

5. The scaling limit

This section is devoted to the scaling properties of A(k) and of the solution
|7k, £)). A(k) depends on the scaling parameter A through k and I, and the
solution through k, I, t and x,. We shall use sometimes the subscript A to
indicate the scaling of these arguments.

The behaviour of the spectrum and eigenprojectors of Ak, D) = Ak, AD
for A - is an analytic perturbation problem’) in 1/A as expansion parameter.
The results we are going to prove are summarized below.

Using the notations

R T U
X(X,M) —Y(x,Al)-Y0+AY,+PY2+---, G.1)

1) =1 +|1p), (5.2)

and |f(£)) being the vector with components f(£,), s =1,2,...,S+ 3 for any
function f, we have

(i) lim,_.a,(k/A, Al) exists and is strictly positive for all a except two

asﬂ(f, M) =0, (5.3)
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a0 0+ )
fim A al()\,)\l Kk ( 1+ ), (.4)
where the tensor € is defined by

k(e — ek

€9

- E‘;(kg, Yoqkt) =0 (5.5)

and will be later identified as the dielectric tensor (hence the notation)
(ii) the eigenprojectors P,, Ps., corresponding to the vanishing eigenvalues
have poles in 1/A =0, but

. k k1
iCkg/n) k
tim(e Py (1. M) = g ob (5.6)
- k’e
i(kg/r) K€
lim(e |P,( )= [<1f| LT (kekleo)<1b|] G.7)
(iii) defining the microscopical internal charge by
S+2
ph(x, )= e, Z ns(r, D8(x —r — &), (5.8a)
i.e.
Pk, 1) = ede ™, f(k, 1)), (5.8b)
and the total microscopical charge
proc(k, 1) = pinc(k, t) + @™ e™=, 5.9

the following scaling limit holds:
timp2(X, 125 M, Axo) = s, of eq. 2.9), (5.10)
A

in which the dielectric constant tensor is given by eq. (5.5), and

D=9,

S
pk, 0) = e(1;, 7(0, 00y = 3, 2 n,(r, 0),
) (5.11)

) $+3
Pext(k) = e{1y, 7(0,0)) + g™ ™o =, _23) n,(r, 0) + g™ &™*.
The last relation shows that if the “islands” are not electrically neutral their
total charge eventually plays the role of an external fixed charge, located at
the origin.
The proof makes use again of the fact that A, (k, 1) is related by eqs. (4.13)
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and (4.14) to the selfadjoint operator &, (k, I} which is analytic around 1/A =0.
This is easily seen, using the fact that I'(k/A)'? is analytic (see II). This
already proves’) that the eigenvalues are analytic too. The relationship be-
tween the eigenprojectors of sf, which are analytic and those of A, is more
complicated, and the analyticity is in general lost. The eigenprojectors of A,
may have poles in 1/A =0, but it is important that 1/A =0 is not a branching
point for them because it is not for the eigenvalues’).

The existence and the positivity of the limit for the eigenvalues is now
obvious, but we are interested in the detailed behaviour of the eigenvalues
which vanish in the scaling limit and of their eigenprojectors. To this end we
found convenient to transform the eigenvalue problem

AA'UA)= a,|vr) (5.12)
into the eigenvalue problem in the generalized form’)
fA|XA>= aYi|x); o) = Yix). (5.13)

They are equivalent, but the latter has the advantage that in perturbing the
vanishing eigenvalue, the unperturbed problem contains only I"(0).
Since

=y, Y =v'Yy, (5.14)

the solution of eq. (5.13) answers the adjoint eigenvalue problem too and
gives

150 = vi ' 1x), (5.15)
so that the eigenprojector of A, is

_ Y xXx, V;l

b= (X, vi Y,x,)

(5.16)

The order by order analysis of eq. (5.13) is a straightforward matter and we
shall skip the details. We merely point out the important ingredients. Perhaps
the most important is the fact that the singular part of the Coulomb matrix is
of one-dimensional range

X)) =1+ Plx,Q(k, 1)+ vR(k), (5.17a)
Qk, 1) = A’v|e ™) e ™| = Q(k, ) (5.17b)

and for k =0, Q projects on the hull subspace of I'. It is useful to write
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Y (k, 1) in the form
vi=[i+ (1= rtepo)e] (1= o)
= B“(l—mo) (5.18)

on which it is easy to check that

<1f|Yo = <1f|§ <1b|Y0= ‘(1f|', YOIQ) =0

(s, Yig)=(1, Yiq) =0, (5.19)
Lz
{1, Yoq) = A

(1, Yaq) = k*L* + (k&, Yoqké) = k*L2.

The last inequality stems from the positivity of Y» whose zeroth order in
1/A is L72Y,q. It is also important to observe that in &, only the zeroth order
of I', appears.

The perturbation of the doubly degenerate eigenvalue v,(0) = ys.(0) = 0 of
o) gives rise to

1,, Y
asn=0; [xs)=la) and a( n1)= _2k@k<—(ﬁi;q)2+”" (5.20)

(5 0) ) = 1>+ 5o X1, Yo,

wherefrom (i) and (ii) follow. In order to derive (iii) we use the spectral
decomposition

e A 2 g oA D ( M) 5.2

It is obvious that the terms corresponding to the nonvanishing eigenvalues
(a#, 1, S+ 1) decay exponentially when A -, The terms we are left with
were described in (i) and (ii). We use also

1C00) = le ™ Hye™o+ [R(h), 5.2
which is the analogue of eq. (3.8) and

lim Y4 C°()ye o = [Bg‘|q> 4 Y0q|R°(0)>] e, (5.23)
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6. Discussion of the results

The problem of the macroscopic behavior of our system is answered by
eqs. (5.10) and (5.11) which form the central result of the paper. The
asymptotic domain in which the microscopic evolution approaches the
macroscopic fundamental solution is suggested by the scale invariance of the
latter.

A slight generalization of the procedure should be used in order to produce
non-fundamental solutions. Since the scale invariance eq. (2.8) does not hold
in this form for the general solution, one recovers it only by scaling all the
relevant geometric parameters of the initial and external charge densities.
This prevents them from shrinking to point-like distributions in the scaling
limit, ¢xactly as we had to scale x, in order to keep the initial and external
conditions macroscopically far apart. The phenomenon is illustrated by the
fact that no matter what (summable) initial conditions we considered, it got
delta-form (k-independent Fourier. components) in the end, as seen in eqs.
(5.11).

It is interesting to point out that the scaling procedure we employed is
entirely equivalent to keeping x, t, I, x, fixed and scaling instead the lattice
constant as 1/A, the transition rates as A’ and the charge of the bound
electrons as A, while keeping the average density of particles constant. (The
scaling of the bound charge alongside with the diminishing of the space
between the sites is the natural way to produce a distribution of point
dipoles.) In more physical terms this means that the macroscopical behavior is
observed for distances which are much larger than the lattice constant and
times much larger than the inverse of some typical value of the transition
rates.

The model is reasonable only for | and L greater than a critical value I,.
Otherwise the equilibrium solution becomes unstable, which is both un-
physical and in contradiction with the starting point of the model—the master
equation. As far as | is concerned this is not so restrictive since the
macroscopical behaviour we have in mind is typical for semiconductors,
where | has macroscopic values.

Another feature of the model is the fact that the scaling limit and the t >0
limit do not commute

limlim P = (1, 70, 0)) + @™ €™ = p(k, 0) + pexi(k), (6.1)
limlim g = ﬁ’[ﬁ(k 0) + Pexe(k)] 6.2)
120 Ao tot kEk ¢] ext ’ .

the difference being exactly the polarization charge. At a microscopic time
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scale the polarization sets in with a certain delay, but the characteristic time is
too short to be observed macroscopically. Eq. (6.2) shows that indeed, the
macroscopic polarization charge follows instantaneously the free and external
charge.

Even though the free and bound electrons move in a strongly inter-
dependent way, the phenomenological constants governing the macroscopic
evolution are the same as for uncoupled systems. Indeed, the diffusion
constant (and hence the conductivity) is expressed in terms of the free
electrons parameters only, as seen from egs. (4.5) and (5.11). In its turn, the
expression (5.5) of the dielectric tensor is dependent only on quantities
pertaining to the bound electrons, because

Yoa =g ; o ) ©3)
0 [1+ /L1 —|gX1DaRen(®]'(1 ~ |gX1Dq /)’

where R, is the diagonal block of R corresponding to %,, and the inverse in
eq. (6.3) is taken in %,.

This is why, in the subsequent discussion of the dielectric constant formula,
we shall omit the free electron system altogether, without loss of generality.

On the one hand, we are interested in the relationship with the well-known
Clausius-Mossotti formula

6—?5" = Ij"g: (6.4)

which links the dielectric constant to the polarizability e,k for a system of
point dipoles, in a lattice with cubic symmetry. The point dipoles may be
obtained in our model by taking the limit & — 0 and at the same time
increasing the elementary charge (e — « or, equivalently, L. - 0) in the same
proportion, in order to prevent a vanishing results. More precisely, we have to
perform the limit & —0; L—>0; &/L = const. in eq. (5.5). The delicate point
here is the fact that for small £&’s the Coulomb matrix is singular. For cubic
lattices we have (using the explicit expression of R(k) given in II)

__U__ 1- 853’
4m|& — &

It is clear that a more reasonable treatment of the Coulomb interaction
between the sites of a given cell is necessary if the sites come too close to one
another. Nevertheless it can be proved that no matter what *softened”
interaction replaces the singular term in (6.5), the dipolar limit of e satisfies
eq. (6.4) with k given by the polarizability of the isolated unit cell

R, (0) = +Cpt (&~ E) (6.5)

p =13 e, = k™. (6.6)
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Of course, the dipolar response to the external field is computed using the
same intracellular interaction.

On the other hand, it is instructive to discuss Kubo's linear response theory
on this model, where an exact solution is available. The linear response of the
charge with respect to the field, regardless of the source of the latter, is given
by eq. (3.2a). In the spirit of the standard dielectric response theory one
expects to find here all the relevant information.

Let us consider the equilibrium value of the charge density in the presence
of the field:

BRTk) = (e ™, ik, ) = — (e ™, (1= [aX1Dq T (k, =)

= (x(k), V(k, =)). 6.7)

The notation emphasizes the fact that the equilibrium values correspond to
taking t - o in the solutions |7(k, t)), |V (k, t)).

The usual approach is to obtain the permitivity by comparing eq. (6.7) with
the macroscopical relation

Pin(k) = —k(e — ek V(k), (6.8)

using only the information contained in ¥,(k). The procedure involves some
space averaging on x,(r) (see for instance II). However, it is obvious that the
Coulomb interaction which appears in the expression of the dielectric con-
stant egs. (5.5) and (6.3) is absent in x;(k) (and therefore one may recover at
most the polarizability of the isolated cell without Coulomb interactions).

Our result may be recovered from eq. (6.7) by taking its scaling limit, which
implies the knowledge of the actual dependence of |7) and |¥’) on the scaling
parameter.

This information is given only by the complete solution of eqs. (3.2a) and
(3.2b). The convergence of the left-hand side of eq. (6.7) to the macroscopical
charge density being already established, we concentrate upon the potential.
Combining the eqs. (3.2b), (3.8), (3.13) and (5.22) one finds the following
scaling behaviour:

o7k, ) = NIV, 1)+ A [ |- OV 1)+ EROI 0 D)1+ —pall)
0 €9
X (e, 7y, D |+ - (69)

Here V(k, t) is the macroscopic potential eq. (2.3) and the subindices of the
A-dependent quantities show the order of the 1/A expansion. For instance

[k, D)1 =~ ik e V k. ) (6.10)
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is the singular part of |9,(k, t). Introducing eq. (6.9) in (6.7) one observes the
rather surprising fact that the dominant term, which is used in the
identification of the macroscopic potential (see also II)

limxlzvl"f&(k, ) =DV, t) 6.11)

is cancelled out by the operator (1 —|g)Xq|)q, because it is proportional to the
vector |1). Fortunately the next term also contains V(k, t) alongside with R(0)
and £ dependent quantities and leads to the desired result.

The whole discussion remains unchanged if we start from the dynamical
response function and take the zero frequency limit in order to obtain the
static dielectric constant.
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It is shown that an unambiguous discussion of the limit of independent atoms in the theory of the
dielectric constant has to be formulated in terms of asymptotic series in the ratio of the Bohr radius
to the lattice spacing. In this sense, a derivation of the classical Clausius-Mosotti (or Lorentz-
Lorenz) formula is given, starting from the quantum-mechanical theory including ‘“local-field”
corrections, at the self-consistent Hartree-Fock level. Our approach clarifies the origin of the many
diverging results on the subject and eliminates most of the unnecessary approximations and/or as-

sumptions.

I. INTRODUCTION

The classical Clausius-Mosotti (or Lorentz-Lorenz, for
nonzero frequency) relation for cubic crystals (and gases)

(L.1)

between the dielectric constant € and the atomic polariza-
bility k™ (€, is the permittivity of the vacuum) was de-
rived before the advent of quantum mechanics, from the
model of independent neutral atoms assimilated to point
dipoles whose magnitude is proportional to the local elec-
tric field. This field is given by the sum of the external
field and the field of all the other atomic dipoles. In the
textbook derivations the latter is evaluated in a hybrid
manner, i.e., it is done microscopically within a finite
sphere while the rest of the system is treated as a continu-
um. More recent treatments"? perform the discrete sum-
mation over the whole lattice of atoms and compute the
macroscopic field by taking the long-wavelength limit.
These derivations contain again the essential ingredient of
uncorrelated atoms, i.e., there is no overlap between the
wave functions of electrons on different atoms.

On intuitive grounds one expects that as the ratio ry/a
of Bohr radius to the lattice spacing tends to zero, one
should approach the limit of uncorrelated atoms. On the
other hand, it was known for a long time that the well-
known quantum-mechanical linear-response Kubo formu-
la, which for crystals in the one-electron frame is
equivalent to that derived in Refs. 3 and 4, leaves no
hopes of recovering (1.1) for very large lattice spacing.
Only after the refining of the quantum theory of the
dielectric constant of crystals, due to Adler’ and Wiser®
the possibility of a deeper understanding of this problem
evolved. They remarked that since the translational in-
variance is only discrete (and this is precisely the way the
atomic structure enter the theory), specific “local-field”
corrections appear.

Nevertheless, until now there has been a wide contro-
versy in the literature with arguments both for and against
the Clausius-Mosotti (Lorentz-Lorenz) limit. Some of
these papers® use unnecessarily restrictive assumptions

29

and approximations, being at the same time mathemati-
cally nonconvincing. Other works,’~!2 under similar con-
ditions obtain alternative results disagreeing with (1.1). A
typical source of misunderstanding was the ambiguous
definition of the atomic polarizability, as it was pointed
out recently in Ref. 13. Generally speaking, most of the
discussion was within the frame of self-consistent theories
with respect to Coulomb interactions, however, it was felt
that self-interaction is dangerous and therefore exchange
and perhaps correlation effects should be essential.
Another ingredient which is often used to simplify the
calculations is some variant of a factorization assumption.
Whereas there is a general agreement as to the necessity of
taking the atoms sufficiently far apart, this idea is imple-
mented in a mathematically imprecise manner, differing
from author to author.

In this paper we will show that the Clausius-Mosotti
problem must be formulated as an asymptotic series prob-
lem in the parameter ry/a. This is the only mathemati-
cally reasonable formulation. It means that one should
neglect only terms that vanish faster than any power. We
restrict the discussion to the self-consistent potential or
Hartree-Fock approximations and will prove that, in the
above-mentioned sense, the Clausius-Mosotti formula is
recovered in both cases. The only ingredients are the in-
clusion of local-field effects in the manner of Adler-
Wiser”® and certain assumptions about the asymptotic
behavior (in ry/a) of the wave functions and spectrum.
These plausible assumptions coincide with the commonly
used ones.

In Sec. II the quantum theory of the macroscopic
dielectric constant is described together with the basic ap-
proximation schemes. The quantum theory of the atomic
polarizability is outlined in Sec. III in a way that facili-
tates our purposes. Our basic statement and its proof on
the asymptotic validity of the Clausius-Mosotti relation,
are contained in Sec. IV. The last section is devoted to the
discussion of the results.

II. QUANTUM THEORY OF THE MACROSCOPIC
DIELECTRIC CONSTANT

With the use of linear-response theory with respect to
an external potential V' of frequency w, in the

728 ©1984 The American Physical Society
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quantum-mechanical problem of the motion of electrons
in a periodic potential at T=0 K one may define the

dielectric matrix [?(f,w)]k- % [1? belongs to the first

Brillouin zone (BZ), while K and K’ run through the re-
ciprocal lattice] as relating the Fourier transforms of the
total potential (created by the external and internal none-
quilibrium charges) to the external one

S [K,0)]g g VUK+K 0)=eV ™ (K+K,0) .
f(’ .
2.1
In terms of the perturbation theory diagrams (see, for ex-
ample, Ref. 14) with respect to the electron-electron
Coulomb interaction it can be shown that [€(k,w)] 2R is
related to the so-called polarization part II:

[’E\(lv(.yw)]i- B

e?

=€dg g~ = =5
v|k+K|?

K,K"’
x 3 (K| up()) o, K up ()| K'Y,
r,r

2.2)

where
(R up(K) = fvdie““f""ch;ﬁi)%?m(i)
2.3)

with <pnF(7(') being the Bloch functions [of band index n
and quasimomentum P € BZ (Brillouin zone)] of the self-
consistent Hartree-Fock (HF) problem in the absence of
the external potential. (The self-consistency being
achieved for the ground-state.) Here I" denotes the ensem-
ble of indexes (n,m,P) and v is the volume of the elemen-
tary cell.

According to Alder® and Wiser® the macroscopic dielec-
tric constant &( E,w) is defined as

729
eKw)=— L (2.4)
[?Hl(k,(u)][x)
Use of Eq. (2.2) here gives
e(k,0) e? - 1
£50) == (0]up(k)) |71
€ eovkzr,zl“’ e 1-11g
X (up(k)]0), 2.5)

where a matrix notation is used with respect to the indexes
I, I’ with

(up(X) | KK |up(K))
(k+K)?

(2.6)

brr=1

K (#0)
We are interested in the K— 0 limit of Eq. (2.5).

The existence of this limit is assured due to t}}e fact that
the polarization part has no singularity at k=0 and obeys
the identities
S [M@,00],,,% wmes - > [H(w,O)]an,",n,F;O s

n’7 n,p’

(2.72)
2 I,k
2 5 @) s | =0, 2.70)
np, 4 k=0
n',p’

which are a consequence of the charge conservation. Us-
ing these identities, the expansion in powers of k

(0, K)=11"0) + k*I1 (o)
+kM T (0) 4 -+,
O] u(®))=v(K)=vO+kro 4 -+,
{E)=g04 -
and also that

(0)

Unm‘p' :8mm 5

one can derive

€(0,w) e? —(1) 1 * 1 = *
L) __ VY | —— )| evWriev) i w)e ()
P ew 2 ST T IO(0)® T EVE T g go T@rE ] vr
© | F{ (1, .z 1 o (¥
+or | I (@) € €V
r 1— M%) | r
O 2. ()21 D (0) 1 <. (0)*
+or [€ ' @) €+ T Nw0)f) ——r—0=2 1 V) | vP |, 2.
r S T g — @8
T
where polarization part IT; nevertheless some comments will be
. X made also with regard to these general formulas.
€= IEI . The time-dependent, self-consistent Hartree-Fock ap-

In the following sections we will restrain the generality
of the discussion by resorting to approximations for the

proximation in the presence of the external potential is
equivalent to the summation of all ladder diagrams for IT
giving
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- N o Ou—E _)—O(u—E _ -)
(MK, 0)]pr=—2 | —— 7 (K,0) [ (K,0) = —Brr "7 mF-E
1-XF(k,0)€(k) rr Eni’_Em,iur"'ﬁ“""o
(2.9) (2.10)
where E"F is the band-energy, u is the chemical potential
with and
1
Fae 82 - - = * = 1 * 2> 2
(€ ®lrr=7— [dx [dx'e, () o (X9 =T G X, o (X @1p
is a type of exchange Coulomb matrix. [The factor of 2 in Eq. (2.9) comes from the spin.]
Introducing Eq. (2.9) in Eq. (2.5), one finds
HF 1 2 N _ -
ko) | _ 2 = (0] ur(®)) _ 1 _ — ¥ (K0 | (up(K)]0) . (2.12)
€ €vk® LT 147 (k,0)[26(k)— € (k)] rr

The time-dependent self-consistent potential approximation is equivalent to omitting all the exchange effects, i.e., ig-
noring ¢* in Eq. (2.9) and considering the Bloch functions @,  as solutions of the unperturbed self-consistent potential
problem. This is nothing but the random-phase approximation (RPA) for the polarization diagram, not to be confused
with the RPA approximation for the dielectric constant itself, which implies ignoring also {. The appearance of &, due
to the inversion procedure (2.4), is often referred to as the “local-field” correction.

Within the HF approximation we are interested again in the k— O limit. It can be shown that Eq. (2.8) becomes

HF, 2
€ (0,w) 2e oo 1 () Soo()*
— 1= €V H o) €V
€ vEy g l r 14+ 7 )20 -2 ) oy r
== 1 P (D(g)e (o*
v X N w)€| vp
T T w260 — 6 0) e
o | M 5= 1 So(D*
| S an2g g0 |
O | 2.8 () 228 5 D(g)EO 1 2R W) *
+or |€X w)€-28 K w) €K"(w) v
r 5 1+jr(o)(w)(2§(o>_<ge(o)) - r
(2.13)
I
where Eq. (2.13) survives; the others appear only in the case of
) oo metals, carrying a typical 1/w? singularity at @ =0.
€= k)| =7’ Although we are interested mostly in the insulator

X, 'V, a'2) are the corresponding terms from the k
expansion of % (w, k), or explicitly

[# %) I =8rr [ ¥ (@)]r ,
G(M—Eni.)—e(u—Emi.)

[FNw)] = - s
nm p En_p.—EmT).+ﬁw—tO
_ . 2.14
23'[.7’/"’(w)]rpv‘,9"= S o€ [ F Vo)prr @.14)
< =
=€ P w—E ),
. 2
012 & (2) = (0)* < nP
vr eX rrevr =-— € S(u—E )
nr (#iw)? [
(2.14)

In the case of the insulators, where the chemical poten-
tial p is situated in an energy gap, only the first term of

problem, where a static dielectric constant also exists, we
cannot a priori ignore these spurious terms. Indeed, the
gap of most real dielectrics is a so-called Bloch gap, i.e., it
is not related to the atomic gap. When the lattice constant
is increased, the gap disappears, reappearing later as an
atomic gap. Correspondingly, the system may undergo
several metal-insulator transitions (the chemical potential
being in the band or the gap). Since we are interested in
the study of the limit a— o, we must keep all the terms
and consider w+#0. Nevertheless, as we shall see later,
other arguments help to eliminate these complications.

In the following sections we shall base our discussion on
Eq. (2.13). On the other hand, since as we shall see, no
specific role is played by the exchange terms, all the re-
sults hold also in the simple self-consistent potential ap-
proximation.

III. QUANTUM THEORY OF THE ATOMIC
POLARIZABILITY
If one considers the linear response of the system of in-
teracting electrons belonging to a given atom with respect

m Ladislaus Banyai: Profile in Motion
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to a homogeneous monochromatic external field & el at

T =0 K, one may compute the induced dipole moment
pu=e [ dZZ,(n(X,0) .

One defines then the atomic polarizability k*' through the
coefficient of proportionality between the density of in-
duced dipole moments P= P /v, where v is the volume at-
tributed to one atom (in the crystalline arrangement of the
atoms in a Bravais lattice it would correspond to the
volume of the cell), and the external field

P(t)=exlw) B e . 3.1)
The resulting formula is
2
do)=—2 [ [axiexEs
x f” dt eit@+ion
0
XA[n(X,0),n(X )]0,
(3.2)

where € is an arbitrary unit vector (€ 2=1). The retarded
Green function in Eq. (3.2) of course can be related to the
Coulomb operator and the polarization diagram, giving
rise to

_ (D 1

@)= — vy | — ()
k(@ . 2 Vy 1— ()& ™9 o
X(@Ev, ", (3.3)
where
v, =i [ d% gl(R)%g;(%) (3.4)
J
e? 1
KalHF(w)_ 2 ;/1)

€V yy

A comparison of the formulas of this section with those
of the preceding one shows much similitude underlined by
our choice of the notations. We were careful of course to
introduce similar entities with similar (HF) approxima-
tions. This is a very important point to be emphasized.

In our opinion, in comparing crystalline entities with
atomic ones, one must stick to the same approximation.
A striking example is given by the case of the monoelect-
ronic atom. In this case we know exactly the atomic po-
larizability as given by the dipole formula

——Z‘e"’“’[.z"‘(w)] 7,—~ )

134
(where, however, the true one-electronic wave functions
and energies appear). The time-dependent HF approxima-
tion Eq. (3.9) for this problem as can be shown, would
give the same result for spinless electrons (in spite of the

I )| gl
14+ 7)) 26— ™) ¢

with @;(X) being the atomic wave functions of the self-
consistent Hartree-Fock problem in the absence of the
external potential (the self-consistency being achieved for
the ground state). Here y denotes the ensemble of atomic
indexes (i,j), and

gad e
Ui 47ey

e [ a5 (k)]
[ az [ax <p,‘(x)<p;(x)Tij—

X'

X @i(X ey (X") (3.5)
is the direct Coulomb matrix. (Actually the Feynman
graph technique applies only for the non-degenerate
ground state—in the atomic case it means full shell occu-
pation.)

The time-dependent, self-consistent Hartree-Fock ap-
proximation in the presence of the external potential is
given, similarly to the crystalline case, by

1

at HF, _
(e (w)]."r—-2 l—ﬂf‘“((o)(é‘“t.ﬁrm(w) 1% 4
(3.6)
with
’ O(n—e;)—OB(n—e;)
x =—3,, 4 3.7
(A @)y ™ g —€+Hiw—i0 @7
where ¢; is the atomic energy and
ale fdx i(% 4’/“‘ ) —
[X—X"]
X @} (X)pj(x") (3.8)
is the Coulomb exchange matrix.
Introducing Eq. (3.6) into Eq. (3.3) gives
(3.9)

144

[

formal differences), but it introduces a spurious Coulomb
interaction for spinning electrons. The same approxima-
tion may become quantitatively a good one in the crystal
(where no exact solution is available), but from our point
of view these qualities are irrelevant for our discussion. It
would be meaningful, of course, to compare the exact re-
sults, but it is meaningless to compare entities from dif-
ferent approximation schemes and levels.

An important feature of the atomic polarizability is
that its dependence on the average distance between the
atoms is only through the factor 1/» in front of Egs. (3.3)
or (3.9). It can be shown through a dimensional analysis
that

7o
a

_ fo
e%/dreyry

where K *(x) is a universal function (not depending on any

—at

K w)= (3.10)
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physical constant except Z—the number of electrons per
atom).

Here the case of a simple cubic arrangement of atoms
was considered where v=a> and r, denotes the Bohr ra-
dius. Equation (3.10) shows that increasing a or decreas-
ing ry are equivalent only for the zero-frequency case. In
what follows, we shall vary the parameter ry/a only
through the increase of the lattice constant a.

IV. CLAUSIUS-MOSOTTI LIMIT

With the use of Eq. (3.10), the Clausius-Mosotti formu-
1a for crystals of cubic symmetry can be written as
™ (ro/a)’®™
. @.1)
€ 1—5(rg/a)c™
Then one is confronted with the dilemma of how to
reconcile the idea that this nonlinear relation supposedly
holds for ry/a— 0, with the obvious relation
3
M

-1 — | =K

€ ro

lim K

ro/a—0

that forbids the discernibility of the nonlinearity in the
same limit.

The only conceivable conjecture is that the quantum-
mechanical expression of the dielectric constant of a sim-
ple cubic crystal has the same asymptotic series in the pa-
rameter r/a as that given by Eq. (4.1). Otherwise stated

€E~E N

where ~ stands for equality up to terms that decrease fas-
ter than any power of ro/a. This is a meaningful
mathematical statement that we shall try to prove in the
frame of the approximations described in the previous sec-

tions.
Unfortunately, the straightforward proof must be sup—

plemented with some assumptions about the properties of
the unperturbed (equilibrium) Hartree-Fock solution,
which is not explicitly known. These assumptions (gen-
erally accepted in the literature) are the following:

(a) The bands tend to the atomic levels faster than a
power law.

(b) The restrictions of the Bloch functions on the cell
tend to the atomic functions faster than a power law.
Under this form they are acceptable for those bands that
correspond to the negative part of the atomic spectrum
(bound states). The analysis of simple Kronig-Penney
models shows that they hold for the negative spectrum,
while for the positive part of the atomic spectrum these
statements are meaningless. For these states a much more
sophisticated mathematical property should hold, which
we are unable to formulate. We are compelled therefore
to ignore that part of the spectrum. In this respect, how-
ever, our state of the art is identical with that of all the
other approaches, where these assumptions are brought in
under the form of the tight-binding scheme.

Under the assumptions (a) and (b), for our asymptotic
purpose we may consider Bq)n3/65 and aEﬁ/ Op as van-
ishing. As a consequence Eq. (2.13) reduces to the first
term. Therefore, irrespective of the position of the Fermi
level, for nonvanishing frequencies, we remain only with
the expression that is typical for insulators.

We may also replace the crystal energies E, ¥ and wave
functions <pn_.(x) by the corresponding atomlc energies
and wave functlons €, and @, (X). (It is understood that
the lattice constant is already so big that we encounter no
more band crossings.) In applying this procedure we must
be careful, however, to put the expression under a form in
which only restrictions of the wave functions on the ele-
mentary cell appear. Therefore we must rewrite the defi-
nition of €*” [see Eq. (2.11)] in the form

2 (P-7)T
e(0) e > = 2% Q) e * -
érr= 4re, fvdx a5 (X =% +7| P D5 X ) “2
Then
2 (F-7"
74U e 3 [ a3 "o (X)) (R’ e atn at .
T~ e J ax e Rignt(x") IX—i'+rf (Xgm (X @.3)
and also
;9;,~67v 3 & [axe R T Rgt(®) [dx e KT pHE e =¢ 5, 4.4)
R0 K2
at* —-’ at (1)
~i [ dX g DR (X)=7, @.5)
I
Here after the introduction of the atomic wave func- v 5 f dp=1,
tions the integration over the cell has been extended to the (2m)* <BZ @

whole space. Such an extension is allowed due to the
faster-than-power-law decay of the atomic wave functions.
Now we see that the dependence on the quasimomenta
survives only in Z°© according to Eq. (4.3). On the oth-
er hand, since the summation symbol is
U
R L ds
? ,,2,,, n) faz P
while

(4.6)

v
(2m)

we may replace the summation symbol (in all the matrix
manipulations) with

EE

n,m
simultaneously with the replacement of €4 with

= iFT_
Bzdpe _a?ﬁ’
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=t [ ax [ax @iRen & ’)ﬁwﬁ‘r'(iwi‘}(i”). “.8)
X—X
Therefore we arrive at the formula
TF(0,0) (1) 1 (1
—_— 1~ €V H o) | €V, , 4.9)
€ vey ,2, et —e oo

which resembles Eq. (3.9) for the atomic polarizability.
The only difference is the appearance of {* instead of the
direct Coulomb matrix €. On the other hand, it is ob-
vious from the inspection of its definition Eq. (4.4) that

lim £=¢9. (4.10)

a— o
A hasty superficial conclusion would be then, that actu-
ally we obtained a linear relationship between the dielec-
tric constant and the atomic polarizability. However, this
is not so. Equation (4.10) says nothing about how fast is
the limit achieved and this is crucial for the discussion of
the Clausius-Mosotti limit. Actually we shall prove the
following lemma,
2
t td e (1)% )
5;‘/”‘%:'7 3vey

4.11)

which says that ¢* tends toward €*¢ faster than any
power of ro/a only after the subtraction of a term that
falls as (ro/a)>.

From the Poisson formula

1a a
S 3eK)= (2;)3 Sem “.12)
K T
(where

g®)= [dke T T(K)

and the limits on the summation signs mean that the sum-
mations are performed over the lattice of constant @ and
the reciprocal lattice of constant 1/a) we may conclude
that

ll/a - 1 -
?ggxw(ms [ kg @.13)

if g(X) decreases faster than any power law, or equivalent-
J

T

ly if é‘(E) is continuous, indefinitely differentiable, de-
creasing together with its derivatives faster than any
power. On the other hand, we have for §‘.‘,’y an expression
of the form

1 /a | _, 1
K(=0) K

where F(K) is continuous, indefinitely differentiable in E,
decreasing together with its derivatives faster than any
power and vanishing quadratically at the origin. Owing
to the singularity of the summand in the origin, we cannot
apply directly Eq. (4.13). Let us subtract the behavior
kAK of F(K) around the origin in the following way:

F(K) _ i~/?-1?e_akz+ [F)—K-4-Kle—oF’
EZ l‘(‘z ‘EZ
+ ) _p—ak?)
K

where a is an arbitrary positive number. Only the first
term does not satisfy the required conditions. However,
due to the cubic symmetry,

31 trA)ze_‘ZKZ

1
— ?’?trA
where the function under the sum again satisfies all the
conditions.
Therefore

1 & FK) FR)—K-AK _,z2, FK) 2 Tl 1A
- —~ Jdk = e—ak y (1—e=F Y4 Leede oK |- Ltef
@ gl K? ‘2”)3 K K a’
T
But due to the spherical symmetry of integration 1 % K f -F(k) I I
KAK v @ xiew K2 (277)3 300
dk e—ak?_li 2 P, —ak?
I = Lited) [ dKe—o¥?, 18

we may regroup the terms and we have finally

which gives immediately Eq. (4.11).
Now let us use Eq. (4.11) in Eq. (4.9). To this end it is
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important to observe that the asymptotic difference be-
tween £ and €™ is a factorized matrix, therefore the
formula expanded in formal powers of this matrix gives
rise to products of the 3 X3 matrix

1

KatHF_E e
e T 1+ w)2E M -6

Vé€y "y

(Dxy
Uy

X ‘Z/a‘(w)]
vy

(u,v=1,2,3).
But, owing to the spherical symmetry of the atom

atHF __ atHF
Kpy =08y k™,

and therefore we have after resummation
P HF

0w
€ l_%Ka(HF ’

(4.15)

which is exactly the proof of our conjecture.

V. DISCUSSION

We have seen how the formulation of the problem in
terms of asymptotic series in ro/a leads in a natural way
to the Clausius-Mosotti formula. While the plausible as-
sumptions about the asymptotic behavior of the Bloch
functions and band widths are the same as generally ac-
cepted in the literature, a crucial point of our proof is the
lemma [contained in Eq. (4.11)] about the asymptotic
behavior of a certain lattice sum. In the absence of the
guiding criterion of asymptotic equivalence, one could
derive the most contradictory results, since ignoring terms
that vanish only as a power law would modify completely
the results. Therefore, those papers that accidentally ig-
nored only terms that according to our lemma decrease
faster than a power law have obtained the Clausius-
Mosotti relation, while the others have not. Of course, in
the identification of the Clausius-Mosotti relation it was
important also to use the appropriate definition of the
atomic polarizability. As we have shown, one must com-
pare similar approximations for the crystal dielectric con-
stant and atomic polarizability.

Our discussion was limited to the self-consistent, time-
dependent Hartree-Fock and the simple self-consistent po-

tential approximations. All the results hold in both ap-
proximations, irrespective to the presence or absence (in
the spinless HF scheme) of a spurious self-interaction. We
think that this is natural since only for pointlike charge
distributions is self-interaction dangerous.

We expect that the Clausius-Mosotti relation in the
above described asymptotic sense holds also between the
exact crystal dielectric constant and the exact atomic po-
larizability, however no proof of such a general statement
seems available. Moreover, an order by order perturbative
argument for the irreducible polarization diagram IT leads
to immediate difficulties. Indeed, a succesion of second-
order photon self-energy diagrams (electron loop with two
external potential lines) within will give rise to crystal
convolutions of the exchange Coulomb terms and not
products of atomic exchange Coulomb terms.

A weak point of our discussion is that it ignores the
part of the spectrum that tends toward the positive atomic
spectrum (not bound states). This is a serious shortcom-
ing, but again it is common for all approaches in the
literature. The inclusion of this part of the spectrum
would require an adequate formulation of the asymptotic
properties, which obviously will be less intuitive and even
harder to prove.

We would like to mention here also our results on the
analysis of the Clausius-Mosotti problem within an exact-
ly solvable hopping model with self-consistent potential.'®
In that lattice problem the role of the atoms was played by
the elementary cell to which were confined the “bound
electrons.” The Clausius-Mosotti relation (for zero fre-
quency) was obtained in the limit, when the dimension of
the cell goes to zero, while the total electronic charge on
the cell increases, in such a way that their product is con-
stant. (The existence of this limit unfortunately implied a
regularization of the Coulomb interaction at the origin.)

It can be shown however, that the result of the present
paper about the asymptotic validity of the Clausius-
Mosotti relation holds exactly also within the above-
mentioned model, eliminating the need of any artificial
regularization procedure.
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Within the frame of a self-consistent pairing theory, with potential interelectron interaction, a
gauge-invariant discussion of the Meissner effect is given. It is shown that the terms that are usual-
ly ignored, proportional to the variation of the order parameter due to the magnetic field, are indeed
vanishing in the Coulomb gauge, provided that the pairing phase is locally stable. An instructive
example is given, where due to the degeneracy of the phase, although a pairing gap exists, there is

no Meissner effect at all.

I. INTRODUCTION

In the discussion of the Meissner effect within pairing
theories, the usual choice of the gauge for the vector po-
tential is the transverse (Coulomb) gauge. It is supposed
that in this gauge (for vanishing wave vector) one may ig-
nore the terms coming from the vector-potential depen-
dence of the order parameter, while, otherwise, the contri-
bution of these terms is admittedly essential for the gauge
invariance of the result. This neglect is due to technical
difficulties, rather than a clear physical or mathematical
motivation. Within the frame of the self-consistent (SC)
pairing theory, Rickayzen' tried to estimate the neglected
terms. He concluded that for certain “potentials” the er-
ror is small. However, his analysis actually does not in-
clude at all true potentials that only depend on the dis-
tance between the electrons; therefore, the coordinate-
space description is inapplicable.

Owing to the principal importance of the problem, we
undertook an investigation within the frame of a SC
gauge-invariant pairing theory with arbitrary trans-
lational-invariant potential. Our conclusion is that the ig-
nored terms are rigorously vanishing, provided the pairing
phase satisfies a certain local stability condition. On the
contrary, if this is not satisfied, these terms may acquire
importance and even totally compensate the Meissner ef;

2
1 T 3o
Y- —zﬁV—cA(x) —u

w#=3 [z}

fect of the naive theory. This is illustrated on an exactly
solvable model that exhibits a pairing gap, but has no
Meissner effect.

II. DESCRIPTION OF THE SC PAIRING
MODEL

We consider an interelectron potential interaction (in
the second-quantization formalism)
Jdz [axv(|2—3' | Wi ERWEWE) @1
as a prototype model for superconductivity. Although
perhaps too crude, it is the simplest model that might
show superconductive properties. To the study of the
equilibrium properties of such a pure electron-electron in-
teraction, one may apply the Hartree-Fock-Bogoliubov
(HFB) approximation scheme, which is the best one-
electron approximation for the grand-canonical potential.
As is well known, the HFB solution corresponds to taking
all the simple contractions (including the anomalous ones)
in Eq. (2.1) and subtracting a constant term obtained by
taking all the double contractions.

For the sake of simplicity, as it is customary, we shall
ignore all the normal contractions. Then our SC Hamil-
tonian in the presence of a magnetic field is

Po(X)

+ [ax [axv(| 2= DIGIEPIEDPE )+ (BN EPIE)

—(IEEN (P W, T,

where the SC nature of % is determined by the presence
of the Gibbs average

()=Trle=P¥ -+ )/Tre=F¥ 2.3)
Actually, the magnetic field must be interpreted here as
the total SC field (the sum of the external and internal

29

(2.2)

lones). It is considered, as usual, that the omission of the
coupling of the magnetic field to the spin is not very im-
portant in the discussion of the Meissner effect.

Owing to the existence of the anomalous contractions,
this Hamiltonian does not commute with the charge
operator, and consequently, the current density,

4992 ©1984 The American Physical Society
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AGd) ¥(x)+H.c.

’

Ta®== —i#V —2A®)
2m c
2.4)

is not conserved. Nevertheless, it can be shown that the
average current density is conserved,

T(T4(%)=0. (2.5)

This model is also gauge invariant (see Rickayzen?) in
the sense that if

(WD),

is the anomalous contraction for the vector potential Ay,
then

o e X
(BUEWE)) 4, g me! /AXTHXF]

X (1/1‘(7(")1/1'(7&')),4” . (2.6)
This relation, in conjunction with
Hoa v e’ N OYR) =, [WR)] 2.7

gives rise to the gauge independence of the observables.

Since the effect of the magnetic field will be studied
only within first-order perturbation theory, we outline,
here, the main features of the model in the absence of the
magnetic field. Here one usually looks for solutions that
are invariant under space translations, rotations, and spin
rotations. Then (using the Bogoliubov transformation),
one may diagonalize the Hamiltonian

_ + +
#o=3 |Ex(Ch Cp +CL Co)
k

4993

where
#K?

€=
k 2m

-,

N
E ,
PP

_ 2 2172 -
Ep=+(+ |8 |V fEL)= "

and the order parameter (or gap parameter) Ai’ is the
solution of the self-consistency equation

A,
2E,

[1-2f(E¢)],

(2.9)
with
(@)= [dze T TVE).
The chemical potential has to be determined from the

equation

L fak 1—;—7‘;[1—2f(Er)] v
k

7 3 (2.10)

which fixes the average number of electrons in the volume
Q.

These results may actually be obtained as the solution
of the variational problem

87‘*/&\?:0 (2.11)

for the grand-canonical potential

W Fh= —EIB—InTre At 2.12)
+ep—Ep+ 2E [1-2f(E)]|, (@28
k | with
_ t t x bt
Ho=Zleglagag, +alpa ¢ )+0pa_pag +A%apal o]
K
1 Pk —kat. at * (ql gt
+ Q _.Zﬁ [V(k—k )(a?wa—i"t )o(a_T(.‘aT(.')O—AT(.,(a_T(.‘a?T >°_Ai"<ai’ra—i'1 Yol - (2.13)
KX
. . . f
This variational problem replaces the full HFB varia- ?———l—ln Tre—B%
tional problem when normal propagators are ignored in Y] €
the scheme.
Actually, one looks for a minimu.m of: F4, while Eq. 1 5 fdf 6?—EY+~2—1n[l~f(E‘.)]
(2.11) [or Eq. (2.9)] assures only stationarity, but we shall (2m) B k
return later to this important aspect. A
‘ For A, satl'sfymg Eq. (2.9), the grand-canonical poten- S Y E . @4
tial takes the simple form 2E k
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[It is supposed that the potential P(X) vanishes sufficient-
ly fast for |k | — oo, and therefore A also vanishes to
assure the convergence of the integral.]

No exact solutions are known for the integral equation
(2.9) (except a case that will be analyzed in Sec. V). How-
ever, for separable kernels, where mstead of P(K—K') (de-
pending on the single variable |K—K’|) we have had
U(K)U(K"), the equation is eas:ly solvable. Such factoriz-
able potentials are largely used in the literature, being a
useful ingredient in most phenomenological applications
by pointing out the essential features (even quantitative),
that for the most part, depend only on the existence of a
pairing gap around the Fermi level. On the other hand,
through such an “approximation” the link with the initial
problem in coordinate space is lost.

For a rigorous discussion of coordinate-space behavior,
only true translation-invariant potentials should be con-
sidered. In what follows we will consider only such poten-
tials, without sticking to any given candidate (with the ex-
ception of Sec. V), but only assuming that Eq. (2.9) has
anomalous solutions (with AY not vanishing everywhere).
Moreover, we shall assume that the minimum of the
grand-canonical potential is attained with a AL which can
be chosen to be real. (Otherwise there would actually be
two equivalent minima.)

)
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III. EQUILIBRIUM LINEAR RESPONSE
TO THE MAGNETIC FIELD

We shall consider a small vector potential A(X) which
is sufficiently well localized in space (it falls off sufficient-
ly fast). Then, we may use the equilibrium linear-response
formula

(O =0+ [ [0 — ()] X — (X))o

(3.1

for the equilibrium average of an operator X, where #” is
the small perturbation of the Hamiltonian. Keeping only
terms linear in A, we have, from (2.2),

1 - e
—_ L ez T3 A
x . f X j(X)A(X)
+ [ d% [dVE—Z)[9(EXW(X)
X (X)+H.c.],
where 7 is the variation of the anomalous propagator
(%% = (PIEIE)) — (PIEPIED) (3.3)
(actually, here also we keep only terms of first order in A).
Also taking into account that the current-density opera-

tor of Eq. (2.4) has a term linear in A, one finds for the
Fourier transform of the average current density,

(3.2)

2 2
Sy 2l | | _ANY 27 1 K
(GH(k)) o H Q et G [ dBpp.SK,B) |4,
2
_ L [ aGP@) [ dBpua K EWEF+D |, 3.4
m (2 )
where
~ || 1=fEL—FES) evertArAy, | fIEL)—f(E) evertALAL,
S(k,p)=- - - ,
2 E-+E_, EE, E;—E, ELE-,
(3.5)
- exAy—ephs, [ 1—FEL)—f(E3)  fE4)—f(Es)
a(k,p)=
2ELE E +E, E;—E,
(with T=P+Kk/2, T'=—P+k/2), and
e (o | K 5K Sl | K o K o
v(k,p)—zﬁc Ui 2+p,2 P|—% 2 tPh—75 P (3.6)

We now also have to write the linear-response formula for v( E,f)’), which is a self-consistency equation, to have an ex-
plicit relation between the average current density and the vector potential. This SC equation for v appears as

WK, B)=PAK)a(k,p)

J v M ]34 71K, : 3.7
where
[M ()], =d (K, P)8(F— ")+ (2‘ )Jd(i,ﬁ)ﬁ(b’—b")d(k,ﬁ’) (3.8)
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1—f(E.|»)—f(E—l»,) e-l.e—l-,+A_l.A

)= L
d(K,p)=7 E.vEn

(with T=P+K/2, T'=—P+K/2).

1— (3.9)

If the matrix M (k) has no vanishing eigenvalues for the K’s of interest, one may determine (formally) v( E,ﬁ) and in-
troduce its expression [containing the inverse of the matrix M (k)] in Eq. (3.4). One then finds

(GBI =K, (K0A,(K)
with

(N) 2%
8+m(2)3{fdpp“pv

aQ

K=<

+ [dB [ dppua(K,BIM~1(K);a(K,5p,

Sk, P)—

(3.10)

a(k,p?
(k B)

| . (3.11)

From the conservation of the average current, gauge invariance, and invariance with respect to rotations, it follows

that K, ( K) has the structure

K (K)=(8,,— kK, /K DK(K?) . (3.12)
This can be shown explicitly by straightforward, but lengthy algebra, that makes use of the useful identity
2 5 Ka(E,p)= [ B IM )], d =K, ML[f(E ]+iL[f(E -31 (3.13)
m? PI= P EEN P Y/2+"' B X2 2 :

k/2+p

k/2

For the normal phase (A=0) it can be seen that (0)=0. The existence of a Meissner effect is assimilated with a

nonvanishing «(0), actually

k(0)=—c/A?,

(3.14)

where c is the velocity of light and A is the so-called London length. Taking the proper zero wave-vector limit in Eq.

(3.11), we immediately have
2°% 1

me  (27)} e=0

" - [4
EI_I’I})K”V(EI( )=— Fsm,-‘}-

where

A_2—-e—2 (N) +4 af(E_.
T me | Q 3 (2 )

f p(e_.+;4)

(3.16)

The difficulty lies in the calculation of the second term
in Eq. (3.15) (coming from % due to the field-induced vari-
ation of the order parameter). It is generally admitted
without proof that its contribution is purely longitudinal;
therefore, Eq. (3.14) results with A given by Eq. (3.16).
Our aim is to analyze exactly under which conditions this
is indeed true.

IV. STABILITY AND THE MEISSNER EFFECT

Let us now examine the properties of the matrix M (K),
which is the central piece of our problem. From its defi-
nition, Eq. (3.8), it is obvious that it is Hermitian, real,
and an even function of k,

lim [ dp fdpp,,a(eE,p’)M—‘(eE)W,a(eE,ﬁ’)p;,

(3.15)

MI(K)=M(K)=M(—K). @.1)

If the potential P(K)isa rapidly decreasing continuous
function with |K|—>ow, it can be shown that
TrM (K)? < oo [ie, M (K) is a Hilbert-Schmidt operator].
Such an operator has only a discrete spectrum.’

It can also be seen immediately that M (K) has a zero
eigenvalue for K:O,

J dp'[M(0)]55.45=0, 4.2)

as a consequence of Eq. (2.9). Since A is an eigenfunc-
tion, it is square integrable, and this assures the conver-
gence of the grand-canonical potential, Eq. (2.14).

If we examine the local stability of the grand-canonical
potential, Eq. (2.12), around the assumed solution of the
self-consistency equation (which assures only its stationar-
ity), we are lead to consider its second derivatives with
respect to A;» and A‘i.. For our purposes it is sufficient to

look at variations with respect to the phase @p of Ap
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(Ap=1A] e %, A simple calculation shows that

[ a5 [ aws s

59559, Sp8p-,

stat pt
=@n) [dB [ dB' (8L [M(0)] (8¢ A
@3

(where stat pt denotes stationary point). Local stability
(local minimum) requires non-negativity of this entity;
therefore,

M(0)>0. (4.4)

One cannot avoid the vanishing eigenvalue correspond-
ing to variations with a constant phase [giving rise to Eq.
(4.2)], since the wave functions are determined only up to
a constant phase.

In principle the zero eigenvalue may be degenerate.
Then, the minimum condition should be checked on
higher variations along the directions given by the corre-
sponding eigenfunctions. In this section we shall admit
that there is no such degeneracy.

Had we studied variations that are not translational in-
variant we would have obtained a similar condition for ar-
bitrary K. This thermodynamical stability corresponds
also to the stability of ( E,Ei) (which is proportional to
the field-induced phase of the order parameter) with
respect to small magnetic fields. Indeed, Eq. (3.7) shows
that a small vector potential induces a small v (through
linear-response theory) only if M(K) has no vanishing
eigenvalues (except the one that induces an arbitrary con-
stant phase).

For the forthcoming discussion of the Meissner effect
we shall assume that such a strict local stability holds, i.e.,

M(K)>0, 4.5)

for Q#O, and there is only one nondegenerate, isolated
zero eigenvalue for K=0 corresponding to Eq. (4.2).

Now we may return to performing the e—0 limit in
Eq. (3.15). From the definitions, Egs. (3.5), (3.8), and
(3.9), it follows that a (ek,P) and M (k) can be developed
in a power series in €, containing only odd and even
powers, respectively, as follows:

a(ef,§)=€am(f,f5)+ e, (4.6)
M(eK)=M(0)+EMP(K)+ -+ . @
Therefore, the finite contribution of
Ly=lim [ d5 [ d5p,
xa(sﬁ,ﬁ)[M-l(el?)]Wa (eK,B")p.,
(4.8)

to Eq. (3.15) results only because of the vanishing eigen-
value of M(0). Using bra and ket notation, one may
therefore write
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L= lim <p,,a<eE) ‘ 1K P(ek)

pva(eE)>, 4.9)
m (ek)

where m (ek) is that eigenvalue of M (€K) which goes to
zero as €—0, and P(ek) is the corresponding eigenprojec-
tor,
lim m (eK)=0, lim P(ek)=-LA2AL
€0 €0 (A[A)
First-order nondegenerate perturbation theory (allowed
for an isolated eigenvalue) applied to Eq. (4.7) [where the
perturbation is €M ?/(K)] gives

m (eﬁ)=ez—l——J—(A M2(K)|A)

(4.10)

4.11
(ATA) @1n
Therefore, the limit can be easily performed, giving
(ppa V()| A)(A|p,a(K)
1,2 |8)(A|pya™()) “.12)

(A|MP(K)|A)

On the other hand, from the € expansion of the identity
Eq. (3.13), one immediately obtains

2 - -
TS k(A pua M)y = —2(A| MO A), @13
M

or using the rotational invariance (AT)’ being a function of
| P | in the absence of degeneracy),

(A|paV(K))=k,E , (4.14)
with

#/mK*E =—2(A | MP(K)|A) . 4.15)
Thus

I,=—(k,k,/K)C2m /1) . .16)

The constant & can be computed directly from the € ex-
pansion of a(el?,f)’), but since we know that K, has the
structure given by Eq. (3.12), the pure longitudinal struc-
ture of I,,, also predicts its coefficient, giving
kyk,
l“(' 2
We may conclude, therefore, that the stability of the
pairing phase we have required leads to the Meissner ef-
fect, with the London length given by the naive theory. A
by-product of our discussion is the proof of the positivity
of the square of the London length (A2 > 0) if the stability
conditions are satisfied. This results from the positivity
of the matrix M (K) that gives rise to the positivity of the
3X3 matrix I,,. A good illustration of the troubles one
faces when this stability condition is not met is given by
an exactly solvable model described in the next section.

<
A

lim K (€K)=— |8,,— 4.17)

V. EXACTLY SOLVABLE EXAMPLE
WITH UNSTABLE PAIRING SOLUTION

Let us consider the case of a constant attractive poten-
tial. Its Fourier transform is
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P(K)=—2m) v | 8(K) . (5.1)

The gap equation (2.9) is then just a simple transcendental
equation,

Ap=v [(Ap/2E)1-2f(E)] . (5.2)
It has an anomalous (pairing) solution,
0, |ex|>E(T)
Ap= [E(TP—€x1" |e.| <E(T) 63
where E (T) is the solution of the equation
1=|v |[12E(D][1-2f(E(T)], (5.4)
or
E(T) _ EmMT.
E©0 "™ |0 T ‘ : -9
with
E(0)=2kT, , (5.6)
and the critical temperature T, is given by
=|v|/4. (5.7)

In this model E(T) is the actual gap above the Fermi
level, and Egs. (5.5) and (5.6) are very close to the similar
relations of the phenomenology. In spite of this, we will
show that this model does not give rise to a Meissner ef-
fect. The profound reason for this perhaps surprising re-
sult is the local instability of the solution. Indeed, along

with the solution A given by Eq. (5.3), Arew? is also a
solution for arbitrary phase P Therefore, the conditions

we required in the preceding section are not met. M (0)
has an infinitely degenerate zero eigenvalue.

To avoid any confusion about the kind of instability
that exists, let us remark that for the difference of the
grand-canonical potentials of the anomalous and normal
phases, one has

1. 1
Q(y’ .71\1)—(2”)3 |€T(.|)
TP—é
16?|—E(T)+T(O;—
2. 1-f(E(D)
._..l —_
BT e
(5.8)

Below the critical temperature this is always negative;
therefore, the anomalous solution is preferred. The insta-
bility refers to the variations of the phase of the order pa-
rameter. Actually we have an infinity of anomalous solu-
tions that are unstable against perturbation.

The linear response of this model to a magnetic field is
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facilitated by the fact that here the matrix M (k) is diago-
nal

M(K) =85 — Bll—|v |d(K,B)]

=8(B—§’)M(i€,i)') , (5.9
allowing an explicit form for K, ( K) for any k.
We give here, however, only the discussion for K—o0.

Now we have, instead of Eq. (4.8),
Iy=lim [ dBpupsa(ek, BAIM (K, B!, (5.10)

or, with the help of the identity Equation (3.13) that now
takes the form

m
K/24 3 1
X |2 By, -1
K247
Ai’/z—i’ 1
+ . [f(ET(/Z—F) 71
K/2-F

one may eliminate M ~! and perform the limit

2 - P P
Lo=—2 [ dBpup, SBa V(K5 . (5.11)
Pk
Using, again, the rotational invariance (that again holds)

a VK, B)=CEIFK,

we get
2m — -
I,,= _7 f dppupA5C(P 2)
= 3ﬁ2 By f dp
or denoting
_ f dp
similar to Eq. (4.14),
I,=—8,%02m/#)

52 =2
B°A;C(B?),
2A_.C(p)-

(5.12)

The constant ¢ is again completely determined by the
gauge-invariance requirement and expressible through the
“London length” of this model. However, now the struc-
ture of I,,, being 8, and not k,k, / K2, the result is identi-
cally zero,

lim K,,V(Ek)

€0

(5.13)

Therefore, there is no Meissner effect in this case.

VI. DISCUSSIONS AND CONCLUSIONS

In this paper we have performed a gauge-invariant
analysis of the Meissner effect in SC pairing theories with
potentials depending only on the distance between the
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electrons. We have shown that if the second variation of
the grand-canonical potential around the pairing solution
is strictly positive (with the exception of a single variation
that corresponds to a change with a constant phase fac-
tor), implying that it is stable against small external per-
turbations, then the field-induced variation of the order
parameter does not change the textbook expression of the
London length. If, however, the phase is unstable, the ex-
pression is modified. In the constant-potential model dis-
cussed in Sec. V, this modification is so important that it
actually cancels out the Meissner effect. It is interesting
to note that this example actually has only a third-order
phase transition. This is due to the fact that in this
model, near the critical temperature, not only the max-
imum value of the order parameter decreases to zero, but
simultaneously the range where it is nonvanishing dimin-
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ishes: Ai»=[E(T)2—eZT(.]‘/26(E(T)— leT(.l) with E(T)
~2V3KkT,(1-T/TY.

All the above results refer to the linear-response kernel
k(K?2) at K=0. It can be seen that if, for example, one
would like to compute dk(k 2)/8k 2| . 5 that determines
the so called “correlation length,” then the stability argu-
ments do not contain enough information about the in-
verse of the matrix M (E), and therefore one cannot avoid
the calculation of the contribution of the field-induced
variation of the order parameter.
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A quantum-statistical derivation of the general frequency dependent Nyquist theorem is
given, that has also a simple circuit-theoretical interpretation. Attention is brought on
its application to some very low conductivity materials, where already at 100 Hz the
equilibrium noise should be attenuated with a factor of 107, with respect to its zero

frequency value.
0. Introduction

In his 1928 paper, Nyquist [1] gave his famous
theorem, explaining the electrical noise produced by
equilibrium fluctuations, first observed experimental-
ly by Johnson [2]. Using an equivalent electric cir-
cuit argument, in which the resistor is placed in
series with a voltage source (identifyed with the
square root of the voltage noise spectral density
6V.2) Nyquist obtained

(BVHN=4ky TR

where T is the temperature, ky — Boltzmann’s con-
stant and R is the resistance of the sample. This is
the famous thermal white noise law. Given its im-
portance, besides the original argument, the need
was felt for a direct proof, valid for arbitrary
frequencies, based only on the statistical mechanics
of an isolated solid in thermal equilibrium. This step
was achieved first by Callen and Wellton in 1951
[3], as a peculiar example to their “fluctuation-dissi-
pation theorem”. The corresponding formula is

V)V =4E(w)R(w)

where R(w) is the resistance at frequency w and

hw

hw
Ep(w)= 5 cth T
B

For not too high frequencies w<kpT the function
Er(w) can be approximated by kT, while as it is
usually argued [4, 5], for most conductors R(w)
=R(0) for @<10*° Hz. Therefore, in the usual fre-
quency range of noise measurements one recovers
Nyquist’s white noise law.

An essential step in the Callen-Wellton proof is, that
the current is assumed to be the “cause” and the
voltage the “effect”.

Later in 1957 Kubo [6] elaborated his linear re-
sponse theory and gave his famous formula for the
conductivity, which actually relates it to the current
fluctuations

1
(OI2Y =4E(w) m

In Kubo’s theory the voltage (identified with the
external one) is the “cause”, while the current is the
“effect”. His formula actually holds in the self-con-
sistent potential approximation.

Tzuyama in 1961 [7] was the first to bring the atten-
tion to the fact, that in a Coulomb system, while the
external electric field is the mechanical “cause”, the
actual field is to be identified with the summ of the
external and internal fields. Therefore, the relation-
ship between the current fluctuations and conduc-
tivity is a non-linear one. (Otherwise stated: The
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inverse of the complex dielectric constant satisfies
the dispersion relations [8].)

In what follows, we will exploit this argument, but
we complete the discussion with a definition of the
“potential drop on the sample”, to compute its fluc-
tuation and relate it (in the thermodynamic limit) to
the current fluctuations. Our result (2.11) is a gener-
alized, frequency dependent Nyquist theorem, that
can be interpreted also in the equivalent circuit lan-
guage. Instead of a simple resistor, one has to con-
sider an RC (resistor-capacitor) circuit, to represent
a material with complex conductivity.

A peculiar class of very low conductivity materials is
brought to attention, where a very strong damping
of the equilibrium voltage noise occurs already at
100 Hz.

1. Equilibrium Current Fluctuations
and the Complex Conductivity

The spectral density of the equilibrium noise of a
dynamical variable X is defined in quantum statis-
tical mechanics as [9]

6X£:4lecoswt<{X,X(t)}>o (L.1)
0

where

{A,B}=%(AB+BA)

and

—BH  iHt Ht
<AB(t)>0=Tr{e —de” Be"T} (1.2)

Using a well-known identity one may express 6X2
through the quantum-mechanical correlator, that ap-

pears in linear response theory
1

© BT
0X2=4E(w)Re [dre " [ dAKXX(t+ihA))o. (1.3)

0 0
Let us now consider a sample of volume Q=LS,
where L is its length (along the OZ axis) and S its
transverse section. The current j, is usually defined
as the average z-component of the current density

o1, 1k 1
Jz—5deJz(X)fs—Lgdzyxdyjz(x, na)=51 (1.4)

where I is the average flux over all cross sections.
The noise of the flux is therefore

5Ii:4%ET(w)Re(p(w) 1.5)
where 1
© BT
e(w)=Q [die " [ dA{j.j(t+ihA))o. 1.6)
0 0
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On the other hand, ¢(w) appears within linear re-
sponse theory as the coefficient between the average
current density and an applied homogenous external
electric field of frequency o [6].

If one does not notice the difference between the
external field and the actual field in a Coulomb
system (described by the complex dielectric constant
¢(w) one is tempted to identily ¢(w), in the thermo-
dynamic limit, with the complex conductivity o(w).
Taking into account the internal field, it can be
shown [7] (see also [10]) that actually

pe)=ow) e T )
1———o(w)
weg

(The Kubo formula gives reasonable estimates of
o(w) within the self-consistent potential approxima-
tion, but then the current correlator is.that of the
s.c. theory. It is obvious then, that at low frequen-
cies, this turns out to be a poor approximation for
the correlator itself.)

Therefore,
S R
2 =43 Erfo) 0 1)
}1 - a(w)
ey
Since it is supposed, that for low frequencies
a(w)r 64+ iw(e— &) (1.9)
it follows that
2
olo)mive+ 20 (1.10)

Oac

(Compare with the s.c. approximation ie. the Kubo
formula, where @(w)**~x 0, +iw(e—¢o)!)

Then

sz ke T (“i) ( L L)

R Ogc N Gdc

ie. the flux noise (in an isolated sample) is vanishing
quadratically at zero frequency.

At a first glance, the vanishing as @? of the current
fluctuations at w=0 seems to disagree with the Ny-
quist formula. However, this is not so. According to
the usual circuit-theoretical arguments, our resistor
being isolated, its equivalent circuit is rather closed
on a capacitor and correspondingly, the current
noise has to vanish quadratically. In this open cir-
cuit, however, we may compute the voltage noise,
and we will show, that by virtue of (1.8), (1.9) the
Nyquist theorem is indeed obeyed at zero frequency
in the classical form.

(1.11)
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2. The Voltage

The potential V(x) at a given point x is determined
by the charge density p(x):

1 p(x)

— [dx

Vx)=
&) 4neg o

—_— 2.1
e @1)
We shall define the “voltage”, or “potential drop
along the sample” as the average potential difference
between the end sections of our sample

V= i xfdy[V(x,y,L)=V(x,y,0)] 22)
or
*‘j"dS V(x 23)

where 2 is the whole surface and dS, is the z-
component of the surface element dS.

This is a reasonable definition, although no proof
can be given, that a voltmeter actually measures this
entity.

Using also the electro-neutrality of the system under
consideration, one may write

1 1 1 1
—Ljd e [ 24
X PRAS: e e  T @4
The last integral represents the potential difference
between the points x’ and O created by the plates of
a plane capacitor with uniformly distributed charge
of opposite signs. In the limit S—co, this difference
tends to

1 ’

—Z.

&0

Therefore, the large S behaviour of Vis
1
=— |dx p(x)z. 2.5
s }; p(x)z (23

Using now the equation of continuity
dp(x,1)
ot

and the vanishing of the normal current density at
the surface, one has

+Vj(x,6)=0 (2.6)

e L
" Sen I(2). @7

Correspondingly, the fluctuations of these entities
are related through

2

L
2 _
oV T 82 (gm)? ol

(2.8)
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Using now (1.8) we get
svioal SEr(@) —7 I __ Reow) 2.9)
(weg)? i N
1———o(w)
Or
This result may also be written as
1
syp=tb B 1 2.10)
S o &(m)
or
1
2= ‘R(w)——————— 2.11
6VzEi=2hwcth - 7k3 (w) . ((u Rea(a)))z (2.11)
where Rea(w)
L 1
Rlw)== ——
©)=5 Reatw)

is the frequency dependent resistance of the sample.

3. Conclusions and Discussions

Equation (2.1) is the general form of the Nyquist
theorem. Indeed, Nyquist’s equivalent circuit for-
mula for the equilibrium voltage noise due to an
impedance Z(w) gives

VZ=2hwcth ——Re L 3.1

2kTB Z(w)’ '

On the other hand, a solid described by a complex
conductivity (whose imaginary part is given by the
dielectric constant) is better represented by an
equivalent circuit made up of a parallely linked re-
sistor R(w) and capacitor C(w). The -capacitor
should be chosen so, that the time constant RC of
the circuit be the same as the time constant of the
material ¢/o. Therefore

11
=R 9 C@) (32)
with

1 Regw) S
@)= R@) Reol@) L) 63

Then from (3.1) our result (2.11) follows.

For ordinary conductors Reo(w)/Reg(w)>10!° Hz
and therefore in the classical noise measurement
range still we recover the ordinary white noise law.
In the case of semiconductors however, the cor-
rection due to the dielectric constant may be impor-
tant.

A special class of materials is worth of mentioning
in this context, because of their peculiar behaviour.
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Many very low d.c. conductivity semiconductors
(¢4c~107** (ohm- cm)~?) (doped crystals at very low
temperatures, glassy and amorphous solids, molecu-
lar solids at room temperatures) show up a charac-
teristic frequency dependence of the conductivity
f11-15]

Reo(w)~w®

with s close to 1, in the low frequency range 10%—
107 Hz. This unusual increase of the conductivity is
atributed to electronic conduction through hopping
near the Fermi level. In the same time, the dielectric
constant is practically frequency-independent, being
determined by other electronic states. Then the sup-
plementary factor

1
1+ ()’

(3.4)

becomes very important, but practically constant in
the above mentioned frequency range, while the vol-
tage noise will have an approximate 1/w behaviour.
{Not to be confused with the usual I/o current-
noise, which is a non-equilibrivm noise.)

Let us give a few numerical examples of this factor,
taken from different experiences. In the n-type Si
experiments of Pollak and Geballe [11] at T=3K,
it is 10~* In the experiments of Lakatos and Ab-
kovitz [16] on amorphous Se at T'=300K it is
10~3. In the experiments of Mansingh and Dhawan
[17] on V,05-TeO, glasses at T=80K, it is 2
x 1078,

Together with the rapid diminishing of the resistance
itself, we have here a dramatic drop of the equilib-
rium voltage noise to 10~7 of its zero frequency
value already at 100 Hz.

Although besides the infuitive circuit theoretical
argument, we gave in this paper a proof of the
general Nyquist formula (2.11) within pure statistical
mechanics, we do think that experimental verifi-
cation on materials of the above mentioned type is
important. Intuitive arguments are not always cor-
rect, while our proof also implied several delicate

L. Banyai et al.: On the Nyquist Noise

points, which are debatable. The most important
ones are: a) The Quantum-Mechanical definition of
the equilibrium noise (1.1). b) Our definition of the
“yoltage”. ¢) The peculiar order of the limits (S— 0
and then L—o0). d) The implicit assumption of con-
figurational averages, that assure macroscopical ho-
mogeneity for disordered systems.

The authors would like to thank Dr. A.Belu for bringing the
noise subject in disordered materials to our attention.
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At the beginning of Section 3 (Conclusions and Discussions) the first paragraph and
Eq. (8.1) shuld read as:

Equation (2.11) is the general form of the Nyquist
theorem. Indeed, Nyquist’s equivalent circuit for-
mula for the equilibrium voltage noise due to an
impedance Z(w) gives

8V;2 = 2hw coth (%) ReZ(w) (3.1)
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Absorption Blue Shift in Laser-Excited Semiconductor Microspheres
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The energy of an electron-hole pair in laser-excited semiconductor microcrystallites is computed with
plasma screening and dielectric polarization taken into account. A strong excitation-induced blue shift
of the absorption is predicted which causes a large optical nonlinearity for crystallite sizes exceeding the

bulk-exciton Bohr radius.

PACS numbers: 71.35.+z, 42.65.—k, 78.20.—¢

Quantum confinement effects in semiconductor sys-
tems with reduced dimensions have attracted consider-
able attention within the last few years. Besides the
well-known multiple-quantum-well structures which pro-
vide confi t in one di ion, quite recently also
semiconductor microcrystallites were investigated which
confine the laser-excited electron-hole pairs in all three
space dimensions.!~> Such systems are readily available
in the form of colloids* or semiconductor microcrystal-
lite-doped glasses. The nonlinear optical properties of the
glasses are presently being studied extensively>>¢-!! and
experimental results on four-wave mixing, phase conjuga-
tion, luminescence, and femtosecond carrier dynamics
have been reported.

It is now well established that the finite size of the mi-
crocrystallites causes an increase in the kinetic energy of
the confined quasiparticles. Efros and Efros have shown'
that quantitatively different confinement effects occur
depending on the ratio of the crystallite radius R and the
Bohr radius of the electron-hole pairs, of the holes and of
the electrons, respectively. For the different regimes of
crystallite sizes one has either quantization of the center
of mass motion of the electron-hole pair, of the hole
motion, or of the electron motion. Besides these kinetic
energy effects, quite recently Brus* has also calculated
the important modification of the electrostatic energy of
an electron-hole pair due to dielectric polarization at the
boundary of the crystallites.

In the present Letter, we predict strong excitation-
dependent quantum-size effects for the regime in which
the crystallite radius is larger than the Bohr radius af of
the exciton in the corresponding bulk material. Under
these conditions, without laser excitation one has only a
relatively small blue shift of the exciton ground-state en-
ergy in comparison to the bulk material. The exciting
light, however, leads to the creation of additional
electron-hole pairs, which screen the Coulomb potential
causing an increase of the exciton Bohr radius ao and

2722

therefore an excitation-dependent ratio R/ag. For larger
Bohr radii confinement effects become increasingly im-
portant, leading to a pronounced excitation-induced blue
shift of the exciton absorption and, hence, to strong opti-
cal nonlinearities in the spectral regime of the semicon-
ductor band gap.

In detail, we consider a system of semiconductor mi-
crospheres with R > af embedded in a host material with
dielectric constant &. For semiconductors such as CdS,
CdSe, or GaAs, this implies crystallite sizes around 100

up to several hundred angstroms, respectively, for
which it is justified to assume the bulk semiconductor
band structure and to apply the effective-mass approxi-
mation. In fact, it has been shown'? that the effective-
mass approximation holds even for very small crystal-
lites, containing as little as 95 atoms. In our computa-
tions, finite-size effects enter in two ways: (i) The elec-
trostatic energy of an electron-hole pair is modified be-
cause of polarization effects and (ii) the quantum-
mechanical motion of the quasiparticles is influenced
through the condition that the wave functions vanish at
the crystallite boundaries.

As usual, we compute the electrostatic energy as
W=+ fd* V(r)p(r), where p is the charge density,
which vanishes for r > R, and the potential ¥ obeys
Poisson’s equation. The charge density inside the sphere
is composed of the external charge p™ (two point
charges +e at ry and —e at ry, respectively) and of the
induced plasma charge p™, which is related to ¥ through
p'™ = —(&,/47)xV, where the inverse screening length is
given by x=[(47e%/e,)(9n/du)1"2. The quantity &, is
the background dielectric constant of the crystalline, n is
the average free-carrier concentration, and u is the quasi
chemical potential. The Poisson equation for ¥ has to be
solved by use of appropriate boundary conditions for a
sphere.

Since the electrostatic energy diverges for pointlike
external charges (self-interaction), we compute only the

© 1986 The American Physical Society
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variation W =W (R)—W (). The properly subtract-
ed bulk electrostatic energy is the screened Coulomb po-
tential

—(e¥|r,— ;] exp(— |1, — 1, ]).

Because of linear superposition, one may solve the prob-
lem by calculating the potential U for a single point
charge,

V(r;r,r) =U(r;n) —U(x;ry).

Expanding U in terms of Legendre polynomials, applying
the conditions of total internal charge neutrality, of fi-
niteness in the origin and vanishing at infinity, one ob-
tains an explicit expression for U, and hence 8W, in terms
of Bessel functions.!> For vanishing x our result reduces
to that of Ref. 4 (although it is not explicitly given
there).

As a second step, we have to solve the quantum-
mechanical two-body problem with the Hamiltonian

_ (hvl)z _ (hV;)z _ eze—‘lr‘_"l
2m, 2mz

H‘
gl —rn|

+8W (kry,xra,1y - 12/r\ra,kR 61/€2)
taking into account the boundary conditions for the wave
functions at the surface of the sphere. In bulk semicon-
ductors (R — <), one can separate the center of mass
and the relative motions of the electron and hole in the
presence of a screened Coulomb potential. Although the

2
°

¢ ¢ ¢ & s g e g B

Rx

FIG. 1. Comparison of the average electrostatic energy ¥ of
an electron-hole pair in a microcrystallite (in units of
2ERra8/R) for two ratios of the background dielectric constants
of the crystallite, &), and of the host material, £,. Solid line,
€1/e2=10; dotted line, £1/s;=1. R is the radius of the micro-
crystallites, x is the inverse screening length, Eg is the bulk-
exciton Rydberg, and a8 is the bulk-exciton Bohr radius (see
text).

Schrédinger equation cannot be solved exactly even in
this relatively simple case, one has a very good approxi-
mation if one replaces the screened Coulomb potential
by the Hulthén potential,'*! for which the s wave func-
tions ¥ and the energy eigenvalues E are explicitly
known. Details of the calculation for bulk semiconduct-
ors are given in Ref. 15. Here, we only mention that
within the discussed approximations, the electron-hole
ground-state energy is E = —Er(1 —1/g)?, where Eg is
the Rydberg energy. The exciton Bohr radius in the
presence of screening is ap=alg/(g —1) with
g =12/(z%afx). Without screening, g =co, and one ob-
tains the known Coulomb results, while for g =1 no
bound states exist.

If the radius R of the semiconductor microspheres con-
siderably exceeds a8, one expects only small size-
dependent energy corrections. However, through the
screening effects caused by the laser-generated electron-
hole plasma of density n, the exciton radius ag increases
and approaches R. For the situation ag=R, one can ap-
proximate the pair wave function ¥ as a product of the
electron and hole wave functions in a spherical potential
well representing the crystallite and compute the lowest
energy level of the electron-hole pair as E, =E,
+(¥|H|¥). Here, E, is the bulk band-gap energy in
the presence of the electron-hole plasma.'> In the regime
R=aq, one obtains the total shift 6E,=FE,(x,R)
—Ex(0,%0) of the bound-state energy due to finite-size
effects as

mgr

SE, 1| | za6 R

E R g R &
The first term on the right-hand side of this equation de-
scribes the reduction of the exciton binding energy in a
bulk semiconductor due to screening,'® the second term
is the kinetic energy contribution due to quantum con-
finement,"* and the third term represents the average
electrostatic energy of the electron-hole pair inside the
microcrystallite in the presence of plasma screening.
The function ¥ has been computed numerically and is
plotted in Fig. 1 for two ratios of &/e;. For & =¢, no
dielectric polarization occurs at the interface between
microcrystallite and bulk material and only the screening
effects are present. For large xR the function ¥ becomes
independent of &;/e; since for strong screening the
Coulomb potential essentially decreases to zero within

2
2a} _|
=h-1] + 428 L

R

TABLE I. Shift of the bound-state energy for different crys-
tallite sizes. g =12/(x%a8x), where «x is the inverse screening
length and a8 is the exciton Bohr radius in the unexcited bulk
semiconductor.

R/af g SEx/Ex
3 1.5 0.86
5 1.25 0.323
10 1.1111 0.0967
2723
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TABLE II. Shift of the bound-state energy for different
crystallite sizes R > ao without screening.

R/a} SE./Er
3 0.158
5 0.055
10 0.0131

the sphere, eliminating surface polarization effects. In
Table I we give some typical results for different ratios
of R/a} and screenings such that the excitation-
dependent exciton Bohr radius ag equals the radius R of
the semiconductor microsphere. For stronger screenings
V approaches zero (see Fig. 1) and 8E, becomes practi-
cally excitation independent. To determine the excita-
tion-dependent part of the energy shifts which give rise
to nonlinear optical properties, we give in Table II the
corresponding energy variations without screening
(g =0, weak excitation), which have to be computed for
the regime R >ag and which can already be obtained
from Ref. 1 taking into account the dielectric correc-
tions.* The results are presented in Table II for the ex-
ample of CdS. The comparison shows that the scr g

size-induced shift is only about 60% of the Mott density
in the corresponding bulk material. These properties
make the semiconductor microcrystallites an extremely
interesting system in which to study nonlinear optical ef-
fects, such as optical bistability, nonlinear wave interac-
tion, wave mixing, to name only a few examples, as well
as for device applications, such as optical logic gates.
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reading of the manuscript. One of us (S.W.K.) acknowl-
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Asymptotic biexciton “binding energy” in quantum dots
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The biexciton “binding energy” in a microsphere is calculated in the limit of vanishing sphere
radius by use of ordinary second-order perturbation theory. This “binding energy” is found to be
always positive and may exceed one excitonic Rydberg, depending on the ratio of the dielectric
constants of the semiconductor and the cladding material, as well as on the electron-hole mass ra-

tio.

Quantum confinement effects in semiconductor micro-
crystallites are the subject of many recent experimental
and theoretical studies' “?2 Efros and Efros' have de-
veloped a theory of the lowest electron-hole pair state (ex-
citon) based on the successive quantization of the center
of mass, the electron, and the hole motions. Brus? imple-
mented the important dielectric effects due to the
difference in the dielectric constants of the semiconductor
and the cladding material.

For nonlinear optics two-pair states are relevant. In re-
cent irvestigations?® "2 the lowest two-pair state (biexci-
ton) ptoblem in a sphere of finite radius was analyzed us-
ing the phenomenological theory of Efros-Efros' in the
so-called intermediate quantization regime. In this re-
gime the lighter electron is frozen in its well ground state,
while the heavier hole moves in the average electronic
charge distribution. This picture is expected to apply
whenever the electron-hole ratio is very small and the ra-
dius of the sphere lies between the Bohr radii of the elec-
tron and hole. The rather interesting result of this theory
is that, unlike in bulk, quantum wells or wires, the energy
of the biexciton in microcrystals may be bigger than twice
the energy of the exciton. Such a negative biexciton
‘binding energy” does not destabilize the biexciton be-
cause in a finite sphere one cannot take the excitons far
apart. Whether this theory is well justified for the experi-
mental mass ratios, however remains an open problem.
Unfortunately, variational calculations are not very help-
ful for the delicate energy balance because the exciton and
biexciton problem have different Hamiltonians and, there-
fore, the well-known inequalities do not work. One has to
control the errors of each approximation very accurately
since the biexciton “binding energy” is only a very small
fraction of the exciton energy.

An alternative method to study the confinement prob-
lem is to apply standard perturbation theory for the small-
ness parameter A =R/ap (where R is the sphere radius
and ap the exciton Bohr radius). The peculiarity of this
series expansion is that it starts with A ~2 (kinetic energy)
followed by A ~! (average of potential energy), while the
first regular term in the second-order perturbation theory
starts with A%, Within the first two approximations the
biexciton energy is just twice the exciton energy. This has
led to the assumption, that in the extreme quantum

39

confinement limit the biexciton “binding energy” van-
ishes. However, this is not true. We will show, that
second-order perturbation theory gives a radius-inde-
pendent asymptotic “binding energy” which is always pos-
itive. Its numerical evaluation gives unexpectedly big
values.

Let us consider the quantum-mechanical motion of
electrons and holes with effective masses m, and my, re-
spectively, in an infinite potential well of radius R. The
dielectric constants of the medium ¢, and of the cladding
¢, determine the effective Coulomb interaction between
the particles (surface polarization effect). For a system of
N particles of charge g;(i=1,...,N), the additional

Coulomb energy in the sphere is>??
1 X 1S | mr ! rr 1
€~ irj J
~ iqi— ey P VT < 5
2 29 R &, [ R? ] ‘[r,-r,- ] T+el/G+1)

1

where € =¢,/¢, and r; is the position of the ith particle.

For a neutral system of particles of the same absolute
charge e, this potential energy can be written as a sum of
positive (repulsive) and negative (attractive) two-body in-
teraction energies V' (r;,r;).

We give the explicit form of the potential energy U us-
ing units appropriate for our problem. In what follows, we
shall use coordinates (lengths) in units of the sphere ra-
dius R and energies in units of excitonic Rydberg energy

2 h?
OV, S U1 S S B B
2uag ue H ome  my
Then
2
V(n,rz)-IU(r,,rz). (2)

The partial-wave decomposition of U is given by

ol Ir
U(n,rz)-z Ul(rl,rz,e)Pl ——]“-2-] y (3)
=0 rra
where
8022 © 1989 The American Physical Society
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Ul("ly"lsf)-_[_‘] 0(ry—r)+— |2 0(r;—ry)
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o 2k 4 .2k
-1 e—1 rittr3
+U-80)—5—r =g Y ——— 4
R rry ) R L wlp Yy Ty @
The exciton Hamiltonian is
Heoom =5 [Lv2+ L 92 | - 22U, )
AL | me my A
while the biexciton Hamiltonian is
Huioe=— - [-E—<v}|+v3,)+ £ V2, +V2)
A me my
- %[U(r,,,r;.l)+U(r,z,r,,x)+U(re,,r;,2)+U(rgz,r;,|) —U(te,5e,) = Ulrn,ta)] ®
. f
The wave functions have to vanish for each particle = The corresponding eigenenergies are
coordinate on the sphere boundary (r=1).
We are interested in the biexciton spin state where the €ln, -xlzvﬂ,' an

electrons and the holes are in the spin-singlet state; there-
fore, the exclusion principle does not apply. (This state of
course will be the lowest.)

The ratio of the potential energy to the kinetic energy in
both Hamiltonians is proportional to A =R/a,. This pa-
rameter will be considered small in what follows (quan-
tum dots). Then one may apply standard perturbation
theory with respect to A (actually to the Hamiltonian res-
caled with A2). The zero-order wave functions are prod-
ucts of the one-particle kinetic energy eigenfunctions in
the sphere

—V2y(r) =ey(r) with y(r) | ,=; =0. @
Explicitly, they are given by
Ul.n, .
Yim.n, ‘TP,(cose)e""" ; 8)
with
Uy, =const X j; (x; .r) , ©)

where j are Bessel functions and «;,,, are their zeros, i.e.,

JiCkr.n,) =0. (10)
J

0,01 Hixela,p) = =2 [ax. [ axsvotx v UG 1) wax w0 = = Vag= =V,

Standard perturbation theory for the ground-state
eigenenergy up to second order gives

d 2
E=Eo+0|H'|0)+X’ ‘(OE”_E") , a2
a 0 a

where |0) and E are the unperturbed state vector and en-
ergy Eo, H' is the perturbation, while |a) and E, are the
unperturbed state vectors and energies of all the other
states. In our case, |0) will be the ground state of the ki-
netic energy operator for an electron-hole pair, respective
for two electron-hole pairs in the sphere.

As mentioned in the Introduction, in its orthodox form
perturbation theory should be applied to the rescaled
Hamiltonians A?Hex and A2H yiexc and the correspondingly
rescaled energies, then the perturbational expansion con-
tains only positive powers of the expansion parameter A.
This is however only a formal aspect. The same result is
obtained if one explicitly considers E, of order 1/A% and
H' of order 1/A.

The relevant matrix element in the one-pair problem is

(13)

where a (or B) stands for a given set of one-particle-state quantum numbers (/,m,n,) in the sphere. [0 stands for the set

(0,0,1) describing the one-particle ground state.]

The relevant matrix element in the two-pair problem can be expressed through the same matrix elements V5

(00,00 | Hjexc | aa',BB") =V 0a'8p08p0+ Vpg8a0840— Vapda0850 = Vg 820850 — Vaprda0p0 — VarpBa0dp0 -

(14)

It can be seen immediately, that the “molecular binding energy,” defined as

E 101 =2E ¢xc — Ebiexc »

15)

vanishes in zero- and first-order perturbation theory and has a finite (A-independent), strictly positive value in second-

order perturbation theory:

2 me+my 1

(16)

E(Z) =4 U., 2
w4 % Vel (ulmedew+ (ulmn)em

where e,0 =€, —eo.

o

€,0+ego ’
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This perturbative result, unfortunately, is still difficult enough to evaluate analytically or even numerically. However,

one can easily obtain lower and upper bounds for

lim E o =E )
A—0

The lowest contributing excited state to the summation in Eq. (16) is the degenerate state corresponding to
a=p=1=(=1,m =0, + 1,n, =1) having the one-particle energy increment eo=x? — xg; =10.3174.

Therefore,
m, +m;, .
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The lower bound is just the contribution of the above-mentioned state, while the higher bound comes from the replace-
ment of all the higher-energy denominators through the lowest one.
The sum over all the excited states can be performed using the completeness of the one-particle eigenfunctions:

2
3 (Ul 2 =[x, faeatyolenyoteU G, x4+ ([ dx fdeavoten ot UG

aB>0

—Zde1de2de3[lVo(xl)l[/o(xz)l]lo()t;)]ZU(xth)U(Xz,x;;) N (18)

where yo(x) =sin(zxr)/r~/2x and the vector notation for
the coordinates x was omitted.
Our result thus can be written as

me.+my

+
2u 2

Cu(e),

19)
where the constants C;(¢) and C,(e) depend only on the
dielectric constant ratio €. A numerical evaluation of
these constants for three representative values of € =10, 4,
and 1 gives

C;(10) =0.104 C;(4) =0.076 C;(1) =0.052

me+my ]

[2+ ]C/(f) <Emo <

and
C,(10)=0.71 C,(4) =0.79 C, (1) =0.55.

The distance between the lower and the upper bounds is
still very big; however, the price to pay for a better predic-
tion is too high. Tests of including some other peculiar
states showed that the lower bound can be fairly enhanced
with 50%. However, it is relevant that already this modest

[
lower bound gives a huge asymptotic “molecular binding
energy” exceeding 0.84 exciton Rydberg (for an electron-
hole mass ratio of 0.1 and a dielectric ratio of e=10).
The corresponding upper bound is 5.7 exciton Rydberg.
Our asymptotical results about the huge biexciton
“binding energy” are mathematically exact. They may be
helpful in the understanding of qualitative trends as well
as in checking correctness of other theoretical approaches
like the variational ones. It is not obvious however, that
they may be really checked experimentally. The problem
lies in the inherently wide inhomogeneous as well as
homogeneous width of the microcrystal levels. Another
source of bias is the deviation from parabolicity at high k
vectors, that must be taken into account for very small
sphere radii.
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The surface polarization instabilities of a Coulomb-interacting electron-hole pair in a spherical semi-
conductor quantum dot inside a dielectric medium are studied. Two independent numerical solutions
for the ground state are presented which are based on a direct integration of the pair Schrddinger equa-
tion or on a diagonalization of the Hamiltonian matrix. For decreasing confinement potential at fixed
dot radius, and for decreasing dot radius at fixed confinement potential, it is found that the electron-
hole-pair state changes from a volume state, in which both particles are mostly inside the dot, to a sur-
face trapped state, in which the surface polarization causes the carriers to be self-trapped at the surface
of the dot. The transition from volume to surface trapped states occurs for parameters which are very
close to those of II-VI semiconductors in a glass matrix or in a liquid.

I. INTRODUCTION

The lowest-lying energy levels of electron-hole pairs in
semiconductor quantum dots are a subject of recent
theoretical investigations. The general approach of han-
dling the attractive electron-hole Coulomb interaction
was described in an early paper of Efros and Efros.! The
influence of the surface dielectric polarization was intro-
duced by Brus.?2 This surface polarization is especially
strong for dots inside a glass matrix or in liquid solution,
where the background dielectric constants of the two
media are substantially different, with a typical ratio of
the order of 10. On the other hand, in these systems the
confinement potential barrier for the electron-hole excita-
tions is also quite high, at least in comparison to the band
offsets in epitaxially grown structures. Therefore, most
numerical calculations of the last few years®~'° have been
performed within the approximation of an infinite poten-
tial well, for which the wave functions of the lowest-lying
states vanish on the dot boundaries. Finite-well effects
have been considered in Refs. 11 and 12, but without a
simultaneous inclusion of the surface polarization.

Surface dielectric effects have been taken into account
also in quantum wells'> and quantum-well wires.'* Re-
cently, in the contest of quantum wells,'® it has been
shown that finite barriers lead to substantial and concep-
tual difficulties in the treatment of the dielectric surface
polarization. The classical potential energy (self-energy)
of a charged particle facing a separating surface to anoth-
er medium with higher dielectric constant becomes
infinite negative when approaching this surface. This
singularity is not integrable and allows no normalizable
ground-state solution of the Schrédinger equation. The
particle “falls” onto the surface.

These unphysical results clearly show that the classical
electrostatic description of the interface between dielec-
tric media fails at distances comparable to the interatom-
ic distance. One is forced to introduce a phenomenologi-

45

cal cutoff distance (of the same order of magnitude as the
interatomic distance) that regularizes the potential. With
such a cutoff it was shown' for GaAs-Ga,_,Al As
quantum wells that, although the confinement potential
barriers are low, the corrections due to the dielectric sur-
face polarization are not too important due to the small
difference of the dielectric constants.

In this paper we present an analysis of the interacting-
electron-hole-pair ground state (exciton ground state) in a
spherical quantum dot, including a finite confinement po-
tential barrier and a cutoff dielectric self-energy. For sim-
plicity we assume the same effective masses inside and
outside the dot. In Sec. II we discuss the effective
Coulomb potential energy of charged particles inside and
outside a dielectric sphere. In Sec. III we then present
the Schrodinger problem of an electron-hole pair inside
such a sphere. In Sec. IV we show examples of our nu-
merical solutions and in Sec. V we discuss possible conse-
quences of the results presented.

II. EFFECTIVE COULOMB ENERGY

A charged particle in the neighborhood of a dielectric
interface induces a surface polarization charge, and con-
sequently its potential energy depends strongly on the
distance to this interface. This induced surface charge
acts also on other particles and therefore renormalizes
the Coulomb interaction energy. The total effective
Coulomb energy for two oppositely charged particles of
absolute charge e in a dielectric sphere of radius R and
dielectric constant €; embedded in an infinite dielectric
medium of dielectric constant €, may be written (see the
Appendix) as

W =2L1[V(r,/R,r;/R)+V(r,/R,r;/R)]
+3(r,/R)+Z2(r,/R) ,

where the self-energy is given by

14 136 ©1992 The American Physical Society

Ladislaus Banyai: Profile in Motion m



45 SURFACE-POLARIZATION INSTABILITIES OF ELECTRON- . ..
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V(p1,py)=—2Ey R

lpi—pal
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PiP2
Xd[(P],Pz)] (2.3)
with
_J1 forp<i

CPI= e for p>1

(I+1)plph for p;<1 and p,<1

—elpipy ™! for py<1 and p,>1
d,(p,p2)=

(I+1)p; " 1p} for py>1and p,<1
—Elpl"‘lp{"1 for py>1and p,>1.
€=¢€,/€, is the ratio of the dielectric constants inside and
outside the dot, az and Ey are the exciton Bohr radius
and binding energy (rydberg) of the exciton in the bulk
semiconductor material of the dot.

For the case when both particles are inside the sphere,
this interaction energy coincides with that discussed by
Brus.? The other cases are obtained analogously (see the
Appendix) by solving the Poisson equation with the ap-
propriate dielectric boundary conditions.

The general term of the series defining the self-energy
behaves for /— oo like the geometrical series, and there-
fore the self-energy is diverging as r /R —1. Subtracting
known series, one may put the self-energy into the form

B e—1 1 1 € 2
= —_ 1_.
2(p) ERRe+1 1= p2€+1]n( P
& 21
e+1,§0(l+l)[1+l(e+l)]
for p <1 and
ap e—1 1 1 —2
S(p)=Eg— ——— In(1—
P=Er gty 1-p?  etl n(1=p™5)
€
+_.
p? e+l
w -2
x _-&‘—‘
S U+ D[+ (e+1)]
forp>1.
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FIG. 1. Self-energy of a charged particle (in units of the Ryd-
berg energy Eg) at the radial position p (in units of the sphere
radius R), inside and outside the dielectric sphere having a rela-
tive dielectric constant to the surrounding €é=10. (The dashed
lines correspond to regularizations with §=0.08 and 0.16.)

After this separation of the singularities, the remaining
series are converging everywhere, including the boun-
daries. In Fig. 1 the self-energy is represented in a radial
domain ranging from the center of the sphere to twice its
radius. The divergence at the surface of the sphere is not
integrable and is pathological for the Schrodinger equa-
tion. The attractive potential just outside the sphere cap-
tures (traps) all particles at » =R +0. In what follows we
shall use a regularized self-energy 2'(p), which is finite
everywhere. It coincides with =(p) for |p—1|>8az /R
and in the interval |p—1| <8apz /R the regularized self-
energy is just a linear interpolation between its values at
p=11t8ap /R, respectively. The cutoff parameter &
represents the exclusion of a layer whose thickness 8ap
should be of the order of the lattice constant, a domain in
which electrodynamics of continuous media breaks down.
In Ref. 15 another regularization is introduced which
gives a smooth interpolation. The numerical results,
however, are sensitive only to the range of the interpola-
tion 8.

The series defining the interaction energy are also
diverging for 7; —R and simultaneously for 7, —R, how-
ever, the divergencies are integrable and thus do not pose
too severe a difficulty for the Schrodinger equation.

III. SCHRODINGER PROBLEM
OF AN ELECTRON-HOLE PAIR
IN A QUANTUM DOT

Besides their Coulomb interactions, the electron and
hole in a quantum dot feel a confinement potential,
chosen as a finite potential barrier of height U,. For sim-
plicity we take the same barrier height for both particles.
We are interested to find the lowest-lying eigenenergies
and wave functions of the Hamiltonian operator

H=— g2 _ % 2 Ly 6(r.—R)+6(r, —R)
2me T, zmh T, 0[ re Ty ]
+ W, t,) 3.0

for an electron-hole pair with effective electron and hole
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masses m, and m,, respectively. The superscript r at the
Coulomb energy indicates that the self-energy was re-
placed by the regularized one. [Actually, it is convenient
to work with a continuous potential barrier which also is
linearly interpolated between O and U, in the interval
R —38ap <r <R +8ay and not with the usual step func-
tion barrier UyO(r —R).]

On general grounds one may expect that if the depth of
the dielectric Coulomb trap just outside the dot is much
bigger than the height of the confinement barrier, then
the particles may be trapped in this potential minimum.
The first one to be trapped would be the heavier particle,
i.e., the hole in an electron-hole pair. To investigate this
scenario and to find the range of physical parameters
where the surface trapping occurs, we solved the
Schrédinger equation with the two-particle Hamiltonian
(3.1) using two different numerical methods.

Our first approach is a Hartree or self-consistent poten-
tial approximation. This means that we factorize the
two-body ground-state wave function into a simple prod-
uct of spherically symmetrical one-particle wave func-
tions:

W(r,,r,) =9, (r,)¢,(r,) .

The variational principle then yields the self-consistent,
coupled one-particle Schrodinger equation

(3.2)

_-r%agERny+ U,O(r,—R)

+3%r,/R)—=U,(r,)—e, |¢.(r,)=0 (3.3)
for the electron and analogously for the hole. The poten-
tial energy of the electron in the average field of the hole
is given by

U,(r,)= [dr, V(r, /R,x, /R ()2 . (3.4)
Due to the s symmetry of the one-particle ground-state
functions only the / =0 partial wave of the interaction
potential (2.3) contributes here. The total ground-state
energy E differs from the sum of the one-particle Hartree
ground-state energies through the Hartree constant

E=e¢,+e,+ [dr, [dr,V(r,/R,1,/R)
X, (r ) [y (ry) 17

This system of one-dimensional Schrédinger equations
was solved iteratively for the two particles using the
Runge-Kutta bisection method for one-dimensional
Schrodinger equations.'® The iteration starts by solving
the Schrodinger equation of the lighter particle (electron)
without interaction with the heavier particle (hole). This
wave function is used in the full equation of the heavier
particle and so on. The convergence is achieved typically
within five steps.

Another approach to solving the two-body ground-
state problem is a modification of the matrix diagonaliza-
tion method of Refs. 9-11, which enables us to achieve a
high degree of precision. This method consists in devel-
oping the two-particle wave function in sums of products

(3.5)
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of a complete system of one-particle eigenfunctions.

W(r,,1,)=3C,, ¥Ar, Ph(r,)

v

(3.6)

where v and p are running through the quantum numbers
of a complete basis of one-particle kinetic-energy eigen-
functions for electrons and holes, respectively. Taking
into account the spherical symmetry of the problem, the
angular parts may be separated and each of the indices
v, summarizes the angular momentum basis indices /,m
and a radial quantum number n,:

¢,y,,,v,,r(r):qS,,,,,,,,r(r)Y,'"(Q) .

Taking any finite number of terms in the expansion
(3.6) reduces the Schrodinger problem to a matrix diago-
nalization. Supercomputers permit one to achieve a high
degree of convergence, successively increasing the num-
ber of components. Of course, angular momentum con-
servation allows an efficient reduction of the dimensional-
ity of the matrix. A peculiar aspect of this method, when
applied to the problem in this paper, is the choice of the
radial part of the one-particle basis. Since the potential
barrier is finite and the ground-state wave function is not
to be expected to vanish everywhere outside the sphere
boundary, we choose the basis of the wave functions of a
single particle moving freely in a fictive sphere whose ra-
dius was chosen twice as big as that of the actual dot.
This size of the fictive sphere was found to be large
enough to not influence the results.

Actually the Hartree approximation may be considered
as a peculiar case of the general matrix diagonalization
method. Indeed, if only s-wave one-particle functions are
retained and the coefficients are looked upon only in a
factorized form, one recovers Eq. (3.2). Although these
restrictions are not negligible, we shall see that qualita-
tively, and to a great extent also quantitatively, the Har-
tree solution gives predictions in good agreement with
those of the numerical diagonalization.

IV. NUMERICAL RESULTS

We performed numerical calculations with the de-
scribed methods using identical physical parameters. We
took an electron-hole effective mass ratio m, /m, =0.1, a
dielectric-constant ratio e=10, a dot radius identical
with the exciton Bohr radius R =ay, and a cutoff param-
eter 5=0.08. The height of the potential barrier U, was
varied in discrete steps in a wide domain to catch the
whole scenario of surface trapping.

In Fig. 2 the radial distribution of electrons and holes
for the case of an infinite potential barrier (Uy— ) is
shown both for the Hartree approximation and the
matrix-diagonalization method. Even though we see
some quantitative differences, both methods show that
the electron and hole distributions are displaced from
another, and the heavier hole is cushioned away from the
surface and pushed toward the center of the sphere. For
later reference we call a state with such an electron-hole
distribution a “volume state” of the quantum dot.

In Fig. 3 we show within the Hartree approximation

Ladislaus Banyai: Profile in Motion m
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m,/m;, =0.1 (full line, matrix diagonalization; dashed line, Har-
tree approximation).

the changes of the radial distributions of the electrons
and holes introduced by a finite potential barrier. At
U,=40Ey the barrier is still equivalent to an infinite one,
but a further reduction down to 30E; causes gradual
changes of the hole position. The hole gradually moves
to the surface of the sphere, while the electron still
remains delocalized inside the sphere. This state is
denoted as “surface state.” A following decrease of the
potential barrier brings the electron also to the surface,
but still with a wider distribution than that of the hole.
Qualitatively this picture survives even after the complete
elimination of confinement barrier (U, =0) The particles
remain confined in the minimum of the potential energy
given by the self-energy represented in Fig. 1.

Essentially the same scenario is described by the
matrix-diagonalization calculations, but Fig. 4 shows that
some quantitative differences occur. The hole radial dis-
tribution on the surface is less sharp and the electron ra-
dial distribution follows more closely that of the holes.
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FIG. 3. Radial distributions of electrons (dashed curves) and
holes (full curves) by different potential barrier heights U, (in
units of Eg) with R =ap, €=10, §6=0.08, and m,/m;,=0.1,
within the Hartree approximation.

1.0
r/R

FIG. 4. Radial distributions of electrons (dashed curves) and
holes (full curves) by different potential barrier heights U, (in
units of Eg) with R =ap, €=10, §6=0.08, and m,/m,=0.1,
within the matrix-diagonalization method.

As in the Hartree approximation, we observe a gradual
transition of the electron-hole pair from volume to sur-
face state.

In Fig. 5 we show the energies of the electron-hole pair
ground state as a function of the confinement potential
height. It can be seen that parallel to the localization of
hole and electron on the surface, a strong drop of the en-
ergy follows, which soon becomes negative. Negative en-
ergies here mean a reduction of the electron-hole-pair
ground state in the quantum dot below the band gap of
the corresponding bulk semiconductor material. This
energy reduction would amount to a redshifted absorp-
tion onset in the quantum dot in comparison to the con-
tinuum absorption in bulk. The polarization energy com-
pensates and even overcompensates the confinement ener-
gy. Before localization of both particles on the surface
sets in, the matrix-diagonalization results are lower than
the Hartree results. For smaller confinement potential
values the Hartree calculations give lower energy values.
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FIG. 5. Energies of the calculated electron-hole pair states
for different potential barrier heights U, (in units of Ex) with
R=ag, €=10, §=0.8, and m,/m;,=0.1, within the matrix-
diagonalization method (full curve) and the Hartree approxima-
tion (dashed curve).
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FIG. 6. Radial distributions of electrons (dashed curves) and
holes (full curves) as functions of the normalized radius r /R for
dots of different radii R for the same parameters U,=40Ey,
€=10, 6=0.08, and m,/m,; =01 within the Hartree approxima-
tion.

In principle the matrix-diagonalization energies can al-
ways be reduced to less than or equal to the Hartree cal-
culation values simply by increasing the expansion basis.
In the present case we did not attempt this numerically
increasingly expensive task, since we do not believe that
the domain of negative energies has physical significance.

In an experimentally realized quantum dot system it is
not trivial to change the confinement potential, since this
is basically determined by the chosen semiconductor and
host materials. However, a reduction of the dot size at
fixed confinement potential also leads to a decreasing
influence of the quantum confinement and to a more pro-
nounced penetration of the hole and electron into the
host material. To investigate this experimentally
relevant situation we show in Fig. 6 computed electron
and hole distribution functions (within the Hartree ap-
proximation) for various dot sizes at fixed potential bar-
rier (Uy=40E; and 8=0.08). For large dot radii
(R /ag 20.8) we see the electron-hole-pair volume state.
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FIG. 7. Energies of the calculated electron-hole pair states
for different dot radii R with U,=40Eg, e=10, §=0.08, and
m,/m; =0.1 within the Hartree approximation.
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A transition to the surface state occurs around
R /ap~0.4. In Fig. 7 we represent the corresponding en-
ergy of the electron-hole pair as a function of the dot ra-
dius R. It is always much smaller than the ideal kinetic
confinement energy (7ag /R)Eg.

V. DISCUSSION AND CONCLUSIONS

Our numerical results show that the interplay between
the attractive surface polarization and the repulsive
quantum confinement potential leads to a scenario where
the electron-hole excitations may be confined inside the
quantum dot or trapped close to the surface. For typical
CdS parameters (a3 =30 A and E; =30 MeV) and regu-
larization of the su{face potential at a reasonable cutoff
distance (about 5 A), surface trapping of the optically
generated electron-hole pair occurs at a confinement po-
tential height of the order of 30E;. Alternatively, for
fixed confinement potential (40Eg) the transition from
the volume to surface state occurs around R /ap ~0.4.

The described scenario is a direct consequence of the
use of the continuum theory of the dielectric boundary
effects and the resulting divergence of the particle self-
energies is mainly a difficulty of the theory itself. The
simplification of using the same effective masses outside
the sphere may influence quantitatively the results, how-
ever, the strong attractive potential just outside the dots
remains.

Even though the actual numbers resulting from our
simplified study may have to be considered with skepti-
cism, the qualitative aspects of our theory should be
relevant for the understanding of experimental observa-
tions. Here we think in terms of a scenario with a possi-
ble dielectric self-trapping in small quantum dots, mainly
of the hole, close to the surface of the dot, whereas the
electron is still mainly delocalized inside the dot. In this
way the confinement energy roughly corresponds to the
elementary kinetic confinement energy, while the charge
distribution of the two particles are significantly separat-
ed and the probability for the hole to tunnel out of the
dot into the surrounding material is increased.

A stronger charge separation might be an explanation
for the big Huang-Rhys factors suggested by recent ab-
sorption, luminescence, and Raman scattering experi-
ments.!”'® The localization of the hole on the surface, on
the other hand, might agree with some experimental con-
clusions about possible surface states of quantum
dOtS.w_ZI

An interesting possibility emerges if one takes into ac-
count that the background dielectric constant that should
be used on a short time scale is only determined by con-
tributions from the valence electrons (€, ), while on the
long time scale one should use the dielectric constant &,
which also includes the slow ionic response. Since ac-
cording to our results a variation of the ratio € of the
dielectric constants inside (€,;) and outside (¢,) the quan-
tum dot may result in a drastic change of the pair states,
it is possible in principle to have an effect similar to the
standard Huang-Rhys effect, in the sense of having
strongly different electron-hole-pair wave functions in the
early and late state of the presence of the pair in the dot.
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Hence, the states into which absorption occurs and out of
which the luminescence takes place could be substantially
different. Since €,>¢€, the luminescence could occur
from the surface trapped state, whereas the absorption
takes place into the volume state.

In conclusion, our present work shows that surface
effects, even without defects or surface irregularities, may
play a very important role in the understanding of the
properties of semiconductor quantum dots.
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APPENDIX

We give here the derivation of the classical effective
Coulomb energy [Eq. (2.1)] due to the dielectric polariza-
tion effects at the surface of separation between a dielec-
tric sphere embedded in another dielectric medium. Let
us calculate first the potential created by setting a unit
positive charge in an arbitrary point s inside or outside
the sphere.”? To this effect one has to solve the Poisson
equation inside

€,V =—4mp (r<R), (A1)
and outside the sphere

&,V2V=—4mp (r>R) (A2)
with the charge density

p(r)=58(r—s), (A3)

and match the solutions at the surface of the sphere ac-
cording to

IXVV],cg —o=tXVV|,r10» (A4)

6r-VV|,—r o= VV|,—r 40 - (A5)

The standard method is to look for the solution as a su-
perposition of a peculiar solution of the inhomogeneous
equation with the general solution of the homogeneous
one. For the former we chose the bulk solution

1 for s <R
1 €
V,(r)EI——_—lx 1 (A6)
r—s — fors>R .
€
Then
V=v,+8V, (A7)

where 8V is the general solution of the Laplace equation.
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It follows from the rotational symmetry of the prob-
lem, that the potential ¥ may depend only on the lengths
s,r of the two vectors s,r and the angle 6 between these
two vectors. Then an expansion in Legendre polynomials
is the right way to approach the problem:

V(r)= 3 V,(r)P/(cosf) . (A8)
=0
The Ith partial waves then satisfy the equation
1 @ 1(I+1) _
IS;{[I‘&V,(I‘)]“TSV,(V%-O (A9)

and the behavior in the origin and at infinity allows only
the solutions

A;r'tY for r <R
8V, (r)= B! forr>R . (A10)
Using also the well-known partial-wave expansion
1+1
1 1 &1 ]r
= — _ = e -
r—s| ¢ ,§0 r|s (s=n)
) 1+1
+ 21 e(r—s) |Plcos®) (AlD)

one may fix the arbitrary constants by imposing the
boundary conditions Egs. (A4) and (AS), which for the
partial waves look as

i id (A12)
€—— =€,—0— ,
Y3r |;=r—0 2 0r |r=r+o0
Vili=r —0=Vil,=r +o0 - (A13)
The complete solution is then
1 a
1 1 e—1 & |s r
(r38) € llr—s} R EO R R
s I+1
XP |— | ——
Hors | 1=1(e+1)
(A14)
for s <R and
1 1 1= —I—-1 a;
e— s r
(r;s) & |lr—s| R & |R R
rs l
X — —_—
Pl ]1+I(e+1)l
(A15)
for s > R. Here we did introduce the notations
I forr <R
A= |—1—1 forr>R (ale)
and
€
€e=— (A17)
€
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Now we discuss the electrostatic energy of a system of
point charges g; (i =1,2,...,N) described by the charge
density

N
p(r)=3 ¢;8(r—s;) .

i=1

(A18)

With a continuous potential that vanishes at infinity the
electrostatic energy may be written as

w=1[drvirp(r) . (A19)

On the other side, the potential V, according to the su-
perposition principle, may be expressed as the sum of the
potentials created by each of the particles

N
Vin)= 3 q,V(ts;) .
i=1

(A20)
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Because of the known divergence of the self-energy of
classical pointlike particles the electrostatic energy is
infinite. Nevertheless, after the subtraction of the diverg-
ing contributions

and lim——
-0 &1/

. 1
lim——
10 €]1]

that are identical to those in an infinite medium,? we may
define the effective electrostatic interaction energy

(A21)

i=1

N
Weffz%_z qiqu(si;SJ)+%2qi28V(sl;si) .
i
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The motion of the classical polaron in a dc electric field is investigated numerically. In a limited range
of parameters (field and coupling constant) a stable stationary asymptotic drift of the electron with a
constant velocity is shown to exist. Outside this range of parameters the electron is asymptotically ac-
celerated by the field, like a free charge. This model is an illustration of the dissipative behavior of a
classical mechanical subsystem coupled to a mechanical system with an infinite number of degrees of

freedom (here the classical LO phonon field).

PACS numbers: 71.38.+i

The model of an electron interacting with a longitudi-
nal optical (LO) continuum phonon field through the
Frohlich coupling [1] is one of the basic quantum-
mechanical models used in the description of polar solids.
Many years ago Feynman [2] introduced a path integral
formulation of this polaron model, in which the integra-
tion over the phonon variables is formally performed.
The action functional of the polaron appearing under this
path integral corresponds to a retarded self-interaction of
the electron with itself. In spite of the many applications
of the quantum-mechanical polaron model, its truly clas-
sical version got very little attention. About a decade ago
some analytical asymptotic solutions with finite orbits
[3-5] were found.

In this work the evolution of the system from an initial
state at =0 without polarization (no phonons) and an
applied dc electric field collinear with the initial velocity
of the particle is investigated. Therefore the solutions de-
scribe a one-dimensional collinear motion and do not in-
clude for vanishing dc field the finite orbit solutions of
Refs. [3-5].

The main result of this paper is the analytical and nu-
merical proof of the existence of stationary-flow asymp-
totic solutions in the presence of the dc electric field.
This is an example of a dissipative asymptotic motion of a
particle interacting with a system having infinitely many
degrees of freedom (the phonon field). In recent years
dissipative asymptotic results on a mathematically rig-
orous level have been obtained concerning the motion of a
classical particle in a Rayleigh gas (see Ref. [6] for a
comprehensive review). The peculiarity of the dissipative
behavior described in this paper is that it is not of statisti-
cal nature, but refers to the trajectory of a single particle
and describes a state with stationary flow.

Let us define briefly the model (although it may be
found in many textbooks). It describes a polarization (di-
pole) density P(x), which in the absence of interaction u
obeys an oscillator equation with the mass density x4 and
a single frequency wio. This phonon field interacts with
an electron of mass m and charge e through the Coulomb
energy

e V-P(x,0)p(y.r)
€ fdxfdy x=yl

1674

where p(x,t) =es(x —r()) is the charge density of the
electron, r is the current coordinate of the electron, and
€ is the background dielectric constant.

Unfortunately the model with Coulomb potential is
mathematically ill defined due to the singularity at the
origin. This is due to the idealization to an oscillator con-
tinuum contained in the above formulation. The phonons
of solid-state physics are actually oscillations of a discrete
lattice and the dangerous continuum idealization is usual-
ly repaired by restricting the wave vectors of the phonon
(polarization) field to the first Brillouin zone, therefore
assuring the conservation of the correct number of de-
grees of freedom (Debye trick). This is equivalent to the
replacement of the Coulomb potential through a non-
singular cutoff potential v(x;a) depending on a cutoff
length a. The modification of the potential is such that

lim v (x,a) =L .
a—0 [Xl

Besides the interaction with the phonons we consider
also an external dc electric field E acting on the electron.

The prototype of the classical polaron model we consid-
er in the following is then described by the Lagrangian
function

L=%i—2+é’r+fdx{li(x)z—u(x)2

1/2
+

< V-u(x)v(x—r)}, 0
4rn

where the inverse of the phonon frequency wio was
chosen as a unit of time, the cutoff length a as a unit of
length, the energy unit is m (o 0a)? and the phonon field
was rescaled to a dimensionless vector field u(x,z). After
this rescaling it becomes obvious that the theory depends
only on two dimensionless parameters, the coupling con-
stant and the rescaled dc field,

eZ

e*mwtoa’’

4re? e

6=
nedoto

C=

1 _
e maoio
(For illustrational purposes, with a cutoff length a =16 A
and GaAs parameters C=3.2.)

Since only the longitudinal part of the phonon field is
coupled to the electron, it is sufficient to concentrate on

© 1993 The American Physical Society
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these longitudinal degrees of freedom. The coupled equa-
tions of motion follow as
1/2

Veii(x,t)+V-oulx,t)=— —C’?

VZau(x—r()), (2)

1/2
f(t)=6— -JC;;—] fdev(x—r(t))Vu(x,t). 3)

One may eliminate the polarization charge in favor of
the electronic variable through the formal solution of Eq.
(3). We shall do this by choosing a special solution of the
inhomogeneous equation adequate for defining an initial
value problem at r=0. We chose a vanishing polariza-
tion in the absence of the electron charge (introduced at
t =0); then

12
Voulx,r)=— [%] j; dt'sin(t =t )V (x—r(t")) .
4)

This polarization charge density induced by the electron
is nonvanishing only along the path of the electron within
a tube whose transverse dimension is given by the cutoff
length. Introducing this result into the Newton equation
of the electron one gets the closed equation for the elec-
tron (from now on to be called polaron)

_8
ar(r)
where a new potential ¥ was introduced according to the
definition

V(r)E—zl;fdxv(r—x)vzu(x). )

¥ =6+ [ drsin—1) V@) —r'@), ()

If one chooses for v(x) to be the Coulomb potential, one
gets for V' (r) again the Coulomb potential, but otherwise
the two are different. Nevertheless, if one chooses a
cutoff procedure in which the “smoothed point charge”
p(x)=— ¢ zV2%(x) falls off sufficiently rapidly away
from x =0, the potential ¥ (r) will be also Coulomb-like.

One sees that it is convenient to consider the potential
V(r) as the primary quantity instead of v(r). We chose
for our calculations a simple analytical form for this po-
tential which is regular in the origin, and Coulomb-like at
large distances

V) =(ri+1) 712, @)

In what follows we shall consider only collinear
motions, which are the only solutions if the initial velocity
of the electron is collinear with the field, and arrive at the
one-dimensional equation

dix() _
dr?

x()—x(")
{Ix(t) —x ()12 +1}32
+6. (8)

The solution is completely determined by giving the coor-
dinate and the velocity of the polaron at 1 =0.

t
—Cj; dt'sin(¢ —1")

2 . T —

18 F

1.6

14 |

12 F
5L

0.8 b

0.6

0.4 f ]
02f ’ .

0 u.i»s nf] (1,‘15 (;‘,2 ().Izs (1‘.3 u,i%s n‘,zs 0.115 0.5
€/C
FIG. 1. Possible (asymptotical) stationary-flow velocities of

the polaron u as a function of the ratio of the field & to the cou-
pling constant C.

Equation (11) is a nonlinear integrodifferential equa-
tion with infinite memory and therefore finding its gen-
eral solution analytically is hopeless.

Let us assume that there is a solution in the presence of
the field, which “very rapidly”” develops into a stationary
motion with constant velocity v:

x(t)—ut.
A necessary condition for this velocity is

o=—c [, disint +6, ©)

ut
[ue)?+11%2
which leads to the transcendental equation (in terms of a
Bessel function)

gzgzKOH‘
u u

The dependence of the asymptotically stationary velocity
u on &/C is represented in Fig. 1. It is clear that above a
certain field (Emax=0.483C), which is the upper bound
of the momentum transfer rate to the phonons in a uni-
form motion, no asymptotically stationary-flow solutions
are possible. It is worth mentioning that in order to sus-
tain a stationary flow with a finite (unscaled) velocity au
as a— 0, according to Eq. (8) one needs an infinite (un-
scaled) field E.

Of course the existence of such an asymptotically sta-
tionary solution is not yet shown, but just a necessary cri-
terion for its existence was found. Unfortunately a stan-
dard stability analysis is not possible. First of all, we do
not know the exact solution but just its asymptotically
leading term. Second, any linearized version of the
theory, due to the memory effects looks even more com-
plicated than the original nonlinear equation.

The very existence and stability (against variations of
the initial velocity) of the stationary drift solutions will be
shown only numerically. Equation (8) has indeed a very

(10)
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FIG. 2. Velocity of the polaron as a function of time in the
presence of a field € =0.75 at a coupling constant C =3.2. The
initial velocity was taken to be zero.

simple structure, which is easy to translate into a rapidly
converging discrete numerical algorithm. In what fol-
lows, numerical solutions of this equation obtained on a
work station are reported.

All the solutions found for various coupling constants,
fields, and initial velocities may be classified in one of two
categories: (a) paths which asymptotically tend to a uni-
form drift, whose velocity (within some error) lies on the
lower branch of the curve of Fig. 1; and (b) paths which
asymptotically tend to the uniformly accelerated motion
of the noninteracting electron in the external dc field.

The example given in Fig. 2 illustrates a trajectory of
the first category. At a coupling constant C =3.2 in the
presence of a field & =0.75, after starting with an initial
velocity x(0) =0, one very rapidly obtains a steady
motion, whose velocity corresponds to the asymptotically
predicted value. Under the same parameters, but an ini-

250 T T T T T T

200

150

velocity

100

0 L L
0 50 100 150 200

time

250 300 350

FIG. 3. Velocity of the polaron as a function of time in the

presence of a field § =0.75 at a coupling constant C=3.2. The
initial velocity was taken to be 1.5.
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FIG. 4. Velocity of the polaron as a function of time in the
presence of a field 6 =1.25 at a coupling constant C =3.2. The
initial velocity was taken to be —2.0.

tial velocity x(0) =1.5, the trajectory suddenly changes
its nature and becomes uniformly accelerated as is shown
in Fig. 3. The same kind of transition to accelerated
motion occurs if the initial velocity x(0) =0 of the elec-
trical field is increased to & =1.25, although this is still
smaller than the maximally allowed momentum transfer
rate given for this coupling constant by &max==1.5456.
Nevertheless, an asymptotic motion with a constant drift
may be again realized if the initial velocity is taken oppo-
site to the direction of the field x(0) = —2.0. Above the
maximal field of 1.5456 the asymptotical motion is al-
ways uniformly accelerated.

It can be easily seen from Eq. (4) that in the asymptot-
ically steady drift motion the induced polarization charge
density closely follows the electron, and it is well approxi-
mated by a running wave with the phase velocity v and
the phonon frequency along the electronic path. At the
same time it can be shown that the energy of the phonon
system increases linearly with the time, while the interac-

160 T v T T T

140
120
100 |

80 /

60

coordinate

40 + 1

0 50 100 150 200 250 300 350 400 450
time

FIG. 5. Coordinate of the polaron as a function of time in
the presence of a field 6 =1.25 at a coupling constant C=3.2.
The initial velocity was taken to be —2.0.
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FIG. 6. Coordinate of the polaron as a function of time in
the absence of a field for a coupling constant C=3.2. The ini-
tial velocity for the two trajectories was taken to be 2.0 and 4.0,
respectively.

tion energy remains asymptotically constant. If during
the initial stage of the motion, which is mainly deter-
mined by the initial velocity of the electron and the ap-
plied field (ballistic motion), the electron does not lose
its contact to the polarization charge, then steady mo-
tion follows asymptotically, if in the same time the
field strength does not exceed the maximal momentum
transfer rate &max.

On the contrary, in the asymptotically accelerated
motion the polarization charge density decreases as 1/t at
any finite distance behind the electron. The electron loses
its polarization cloud and the interaction energy vanishes
as 1/t. This kind of asymptotic behavior follows whenev-
er, either due to the high initial velocity or high field al-
ready in the initial (ballistic) state of the motion, the
electron leaves its polarization charge far behind.

On the grounds of the discussion above it is also under-
standable why no drift solutions on the upper branch of
the stationary curve, having high velocities, were found.

A closer inspection (blowup) of Fig. 2 actually shows
small amplitude oscillations, which decay very slowly, if
at all. These oscillations are well pronounced in the case
of the drift motion at C=3.2 and §=1.25 and x(0)
= —2.0 shown in Fig. 4. Nevertheless, the path of this
polaron in Fig. 5 shows a clear constant average drift ve-
locity of 0.455, slightly above the expected ideal value of
0.41. The ground frequency of the oscillations is always
1 (the phonon frequency); however, it has many higher
harmonics. The deviation of the drift velocity from its
ideal value might be attributed either to the fact that the
true asymptotic regime was not yet achieved, or rather to
the rough asymptotical analysis, which took only the
leading asymptotic term into account.

The above described scenario has been checked by vari-
ous coupling constant strengths, fields, and initial veloci-
ties.

Strong asymptotic oscillations are also typical for very

0.5 T T v

0.45 F/M«N'HM
0.4 wm/jﬂw

0.35 S

0.3 wjmq/“
0.25 W
0.15

0.1 M

0.05 ‘AJ/'WA
|

0 50 100 150

coordinate
S

200 250 300 350 400 450
time

FIG. 7. Coordinate of the polaron as a function of time in
the absence of a field at a coupling constant C =3.2, for an ini-
tial velocity of 0.01.

low fields. Therefore, although in the absence of the elec-
tric field according to Fig. 1 the asymptotical drift veloci-
ty should vanish, we cannot exclude oscillating slow
asymptotic drift solutions. According to the numerical
experience, the motion of the electron in the absence of a
dc field first suffers a rapid slowdown and afterward a
very slow drift regime sets in. In Fig. 6, two trajectories
are represented for C =3.2 having two different initial ve-
locities [x(0)=2.0 and 4.0]. The drift velocity of the
slow motion is, however, not constant. One of the trajec-
tories was followed over a long time duration (¢ =1000)
and we found that the average drift coordinate increases
sublinearly approximately as 1%%. We cannot decide,
however, on the basis of our numerical results, whether
the motion is asymptotically very slowly damped, or a
steady asymptotic drift regime with a very small velocity
will be achieved. It is also relevant that for very small in-
itial velocities the oscillatory component of the motion
has a very complicated structure like that shown in Fig. 7
for %(0) =0.01 and C=3.2 and no damping could be put
into evidence.

The author would like to thank H. Haug for many use-
ful discussions and K. El Sayed for discussions and
methodical advices.
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A detailed discussion of the relationships following from time reversal invariance or
covariance of many-body theories is given. The discussion includes equilibrium and non-
equilibrium Keldysh Green functions. It is shown that self-consistent RPA approximations
conserve the above deduced relationships.  © 1994 Academic Press, Inc.

I. INTRODUCTION

Time reversal invariance of mechanical theories is one of the most important
symmetries. Its fundamental relevance for relativistic quantum field theories
has been recognized very early. Within ordinary quantum mechanics it help to
understand important relationships like Onsager relations, detailed balance, etc.
A detailed technical understanding of this basic symmetry is particularly important
to understand the origins of irreversibility observed in nature. Most obviously time
reversal symmetry may be broken for a system in contact with a bath (open
system). If a system is treated in the thermodynamic limit the symmetry may also
be broken, because the system obtains infinitely many degrees of freedom it may act
as its own bath. But the evolution of some systems, e.g., a semiconductor excited
by a laser pulse with a duration of just a few femtoseconds or a small electronic
device with very high internal electric fields, cannot be described as either coherent
or dissipative. The so-called quantum kinetics, developed in the last years [1-3],
tries to combine these two aspects of the evoluotion within a unified formulation.
In this context the time reversal properties of the many-body theories, as well as
those of the usual approximation schemes, may be very useful. With all the progress
of the last decades in the field of many-body theories and the abundance of good
textbooks and reviews, a detailed discussion of the time-reversal symmetry in the
context of non-equilibrium, to our knownledge, is still lacking.

In this paper we follow the book of Lee [4] in the formulation of time-reversal
in the second quantization formalism, but we use the simplifications of the non-
relativistic limit. We derive first relations following from time reversal invariance
for the equilibrium Green function. Afterwards we discuss the case of general
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time-dependent Hamiltonians describing the interaction with external time-
dependent electromagnetic fields. In this case we treat the non-equilibrium Green
functions introduced by Keldysh [5] and speak more correctly about time reversal
covariance, since also changes of the external sources are implied. We show that the
derived relationships are obeyed also within the self-consistent RPA approximation
both for Coulomb interacting particles and interacting particle-phonon systems.

II. TIME REVERSAL

Time reversal invariance in classical mechanics may be understood as the
possibility to reverse the trajectories if the velocities of the particles are inverted at
a certain moment. This simple formulation is true only in the absence of velocity-
dependent forces and of external forces explicitly depending on time. In the follow-
ing we restrict the discussing to interactions via electromagnetic forces which are
the relevant for macroscopic systems (solid state, liquid, and gases). Time-reversal
covariance then reads: If r(z), E(r, t), B(r, t) are the solutions for the particle
coordinates, electric and magnetic fields in the presence of the external charge current
densities p o (r, t) and jo(r, t), then v(—t), E(r, —t), —B(r, —1) are also solutions in
the presence of the external charge and current densities po (¥, —t) and —j..(r, —1).

In quantum mechanics the formulation is a little bit more complicated [6],
because the state of the system is described by a wave function. In the simplest case
of a particle in a time-independent external electromagnetic field characterized by
the potentials #7(r), ./(r), the Hamiltonian

f=i(~ihV—ed)2+e"// (2.1)
2m
has the property
H=HV,d]=(HLV, -], (22)

where the square brackets indicate a functional dependence and the star indicates
complex conjugation. It follows, that if ¥(r,# [¥", «/]) is a solution of the
Schrédinger equation,

i

7 HY (2.3)

with Y(r, 0) =, (x), then ¥'(x, )=y *(r, —1; [¥", —</]) is again a solution of the
same equation with y/'(r, 0) = y&(r).
The charge and current densities are defined as

p(r, 1) = ey *(r, 1) Y(r, 1) (24)
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and
ir, 0)= % Ly *(x, £)(—ihV — e (r)) Y(r, 1) + compl. conj. ]. (2.5)
Therefore,
P06 [V, AL])=pr, —; [V, —]) (26)
and
Vo6V, A1) =—i, =6 [V, —L]), (2.7)

where the prime indicates that the densities are calculated with the wave function

128 .
The time-reversal invariance of the Hamiltonian (2.1) implies that if
V.(r; [¥7, &/]) is an eigenfunction of #,

Y =E, ¥,

with the eigenvalue E,, then Y *(r; [#", —o/]) is again an eigenfunction belonging
to the same eigenvalue.

In the following we shall make precise the formal aspects of the time-reversal
operation in the more abstract formalism of second quantization in the Fock space,
which is very important for many-body physics.

Let H be the Hamiltonian of a non-relativistic many-particle system which may
consist of charged fermions and photons. For the moment we consider a closed
system without external fields. Then H is time reversal invariant (T-invariant) [4]
if there is a unitary operator U in the Fock space such that

U H*Us = H. (2.8)
Here the star means complex conjugation of any complex number. The star does
not act on the creation and annihilation operators (a*, a,b*,b), nor on the

vacuum state [0).
If H is T-invariant and the state vector |®(¢)) satisfies the Schrodinger equation

0
iﬁal¢(1)>=Hl‘P(t)>, (2.9)
then |@'(¢)) = U, |D(—1t))* satisfies the Schrodinger equation, too,

ih% |9(1)> = H |¢'(1) (2.10)
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Frequently used shorthand notation for the time reversal operation on any
operator @ and any state |¢ ) is

TOT '=U;0* U} (2.11)
T¢>=Urlé>* (2.12)

With this definition, the T-operator is anti-unitary, i.e., unitary, but anitilinear, and
has to be handled with some mathematical care.

The classical analogy suggests that quantum numbers like momentum and
angular momentum should be inverted by time reversal. We define accordingly the
unitary transformation U, acting on a fermion annihilation of wavevector k and
spin projection g,=0/2 (6= +1) by

Uray,, Uf =l0la_y, : (2.13)
and on a photon annihilation operator of wavevector k and helicity s= +1 by
Urbe ,Uf =—b_y _. | (2.14)

These linear transformations conserve the equal-time commutators and therefore
the existence of a unitary transformation U is ensured.

With this choice of the time-reversal operator, it follows that the field operator
in the interaction picture,

i — h22
i, =] gl —EENg, (2.15)
k
transforms under time reversal as

Ty, ()T =ay_,(r, —1), (2.16)

whereas the electromagnetic (EM) vector potential operator A in the coloumb
gauge transforms as

TA(, 1) T~ = —A(r, —1). (2.17)

The transformation law, Eq. (2.16), implies that the charge density, current density,
and spin density operators transform as

Tp(r,t) T™"=p(r, 1), (2.18)

Tj(r, ) T~'=—j(r, —1), (2.19)
and

Ts(r,t) T '=—s(r, —1). (2.20)
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Under these transformations indeed the Hamiltonian H describing the interaction
between charged fermions with spin and photons is invariant,

THT '=H. (2.21)
The vacuum state is expected to be non-degenerate and, therefore,
T10>=n10>  (Inl=1) (222)
if |n) is an eigenstate of H with the eigenvalue E,,
H|n)=E,|n), (2.23)
then T'[n)=U, |n)* is also an eigenstate of H belonging to the same eigenvalue:
HTny=E,T|n). (2.24)

We gave a formulation suited for electrons, ions, and photons with EM coupling,
but other elementary objects, e.g., phonons, can be included easily with a suitable
choice of the unitary transformation U, acting on these objects.

ITI. EQUILIBRIUM PROPERTIES

Equilibrium properties of many-body system are determined by the grand
canonical density matrix,

o~ PUH —uN)

R (3.1)

p:

where N is the total number of fermions, f is the inverse temperature, and u is
their chemical potential. In the absence of magnetic fields the T-invariance of the
Hamiltonian implies for the evolution operator,

T ¢~ "Hih T—1 = g1k (3.2)
and for the density matrix,
TpT '=p. (33)
By calculating equilibrium averages
<O>=Tr{p0}, (34)

one is tempted to use the T-invariance property Eq. (3.3) under the trace, and
thereafter to transfer the action of the unitary operator T on the operator O, a trick
one usually applies by standard invariances under a group of transformations
described by a unitary transformation. In the case of an anti-unitary operator this
is not possible. However, any complications can be avoided by using the properties
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of the eigenstates under time reversal. Indeed, in terms of the eigenstates of H
Eq. (3.4) can be written as

COY=Y p,<{nl O|n),

where
e —B(Ey— uNy)

Pn= 7z

The degenerated states U, |n) form also a complete system of eigenstates and,
therefore,

(O =Y. p, *(nl UF O Uz |ny*=(UF 0 Up)*>*. (35)

Now for the operator ¢ we take products of the field operators of the electrons,
Yo(r, 1) = e (r, 0) e, (3.6)

in the Heisenberg picture. With our choice Egs. (2.13)-(2.14) of the unitary
operator U, we obtain

(UF Yo, )" Up)* =~y _,(r, —1)". (3.7)
Using Eqgs. (3.5) and (3.7) we find
olr, )Y, ) =00 Y _o(x, =T YL (1, —1')")* (38)

for the one-particle correlation functions as a direct consequence of the time
reversal invariance of the hamiltonian H.
If only spin-symmetrical systems are considered, then

rom, )Y, 1) =0, o Yolr, )T Y (', 1))
=Y (r, )Y L (0, 1) (3.9)

To simplify the notations we shall drop the spin from now on.

The time-reversal property of the correlation functions gives immediately the
corresponding properties of the equilibrium Green functions. However, we
postpone their discussion until the general framework of the non-equilibrium is
established.
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IV. TiME REVERSAL OF KELDYSH—GREEN FUNCTIONS

For the treatment of non-equilibrium problems Keldysh [5] has introduced a
very elegant diagram technique, which is a natural extension of the usual Feynman
diagrams of the zero temperature equilibrium theory. Even for equilibrium at finite
temperatures this technique tends to replace the standard Matsubara formalism,
which deals with imaginary times.

Let us assume as usual that all interactions are absent in the remote past and
future, that some of them decoupled only adiabatically, and that the system was in
equilibrium in the past, described by the density matrix p,. The Heisenberg and
interaction pictures are chosen to coincide at = —oco. The unitary evolution
operator from time ¢, to the time ¢,, where ¢, >¢,, S(¢,, t;) connects the operators
in the two pictures.

Y(t)=S(t, —o0) ™ Yo(t) S(t, —0). (4.1)

With S(t,, ;) S(¢,,t,)" =1. For notational simplification we omit whenever
possible the coordinate r in the arguments. This relationship may be rewritten also
under the alternative forms

Y(O)=S* T{o(1)S}=T{S*¥o(1)} S (42)

with the help of the chronological (T{ }) and antichronological (7{ }) products of
operators and of the full S operator acting between — oo and co:

S=S(oo, —oo)=T{exp<—%Eo & H’(r))}. (43)

Here H'(t) denotes the interaction Hamiltonian in the interaction picture.

The basic idea of Keldysh is to introduce a time contour that runs from —oo to
oo (upper branch) and back (lower branch, see full time contour C on Fig. 1). One
introduces a chronological product 7,{ } on this contour as well as a full S-matrix
on the same contour:

S, = T{exp(—%fc & H’(r))}. (4.4)

A supplementary time index # = +1 indicates the upper or lower branch on the
contour C and correspondingly the operators carry also this time index.

C ) oo

- 00 3 > |
Fig. 1. The Keldysh contour C.
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In close analogy to the zero-temperature theory one has a generalized Gell-
Mann-Low formula connecting perturbed to unperturbed entities,

<Tc{'wb(t’ 17) lp+(t,, 71’)}>0= <Tc{l//0(ta 77) l[/(;—(t’a 77’) Sc} >0’ (45)

and the usual Feynman rules are valid with the unperturbed matrix propagator
(causal Green functions):

g2 (4, )= Tl MY (1)} Do (46)

(See Ref. [7-9] for a detailed description of the formalism.)
Instead of these Green functions one often uses also

Go L B Y=gt U )Y (4.7)
because after this redefinition some relations of the Green functions and of the

higher correlators have a higher symmetry. Through a unitary transformation they
might be brought to the very convenient form

RGR—IE<GR G“), 1@:—1—<1 1), (4.8)

0 G, J2\-1 1

showing only the three linearly independent components.
We assume that the unperturbed Hamiltonian H is time-reversal invariant,

U HFUS =H,, (4.9)

whereas the perturbation part H’, including the external, time-dependent EM
potentials ¥'(r, t), &(r, t) transforms as

U H[YV, L)X UF=H[V, —]. (4.10)
In the interaction picture
H'(t; [V, A])=eP"H' [V (1), L(1)] e F, (4.11)
the transformation reads
UrH(; [V, 41)* Ur =H' (=1, [V7, %7]), (4.12)
with the transformed external potentials

V() =7 (—1), ()= —AL(—1). (4.13)
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From Egs. (4.7)—(4.11) the transformation law of the S-matrix follows:

Up S*V, A Ut = T{exp(% [ w7, wT]))}

- T{exp(% [ jo & H'(v: [V, &4]))} (4.14)
= S*[Y5, ],

We can now apply this relationship to derive the time-reversal transformation
property of the Keldysh-Green functions.
Let us now consider, for example,

1
gc_+(r7 [ l", tI)E? <l//(l', t) lp+(r15 t’)>0

which according to Eq. (4.2) may be written as
= ’
F (T{S*Yo(r, )} T{Yq (v, 1')S}o.

Now using Egs. (3.5) and (2.16) as in the previous section we may show that it
equals also

1 s
Tl 08} T3 @ =) 5711

V,L > VT, AT

== CT{or, —0)S} T 0 =057 1o

VY, >V, AT

1
= (SUE, =1, =08 o

V', o - VT, AT.

The S matrices in the last line may be reinterpreted as performing the average on
a new density matrix,

Po=S" po S, (4.15)

instead of p,. This density matrix describes the state of the system in the remote
future.
The result may be rewritten then as

gc(r’ Z rla t,; [,V’ ﬂ])m):gc(r/’ _t/; T, =l [/VT7 J{T])ﬁo (416)

which is actually valid for all the components of the Keldysh-Green function
matrix. This is the time-reversal covariance in terms of the one-particle Keldysh—
Green functions. It is a sort of generalized Onsager relation. In the absence of time-
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dependent fields and no static magnetic fields, the S matrix describes the adiabatic
introduction and elimination of the internal interactions in the remote past and
future. Then the density matrix in the remote future equals that in the remote past
Do = po; the extra notation of the functional dependence on ¥~ and .o/ may be omit-
ted and we obtain, for example, choosing the component (—, +) in the Keldysh
indices,

Y, )Yy (', 1)) = Y, =) Yy (r, —2) ) = Y (r, =) Y+ (', =) )%

i.e., we recover the relationship Eq. (3.8) that is typical for equilibrium.

Proporties analogous to Eq. (4.16) may be derived also for the many-particle
Green functions. Under this form, however, this basic property is not yet very use-
ful, because we need also recipes to calculate the averages on j,. This is the next
step on which we shall elaborate.

V. GREEN FUNCTIONS ON THE KELDYSH ANTI-CONTOUR

Let us now define another set of Green functions according the same rules, but
on the contour C shown in Fig. 2,

. 1
g;cm‘(ra t; rl9 t,) E; <T5{I/I(X, t5 ?]) l//+(x,: tla '7,)} >0' (51)

According to the time ordering on the contour C we have
igfr, t,1't)

=< <~T{¢o(r, DYg @, 1)S}S™ o <T{'//~0(l', NS} T{yy (v, 1')S} >0>
L T{Yg (0, )S*}T{Yo(r, 1)S} Do {ST{Yolr, ) Y (v, ¢')S*} D0 )
(5.2)

This form shows that the matrix elements consists of the Green functions on the old
contour C, but with the average taken for the final density matrix j, instead of the
initial one p.

é gz—+ _gc—+
gl =< . p ) : (5.3)
. g e &-— /Jho

_OO< :
(%}

il
-

Y
8

FiG. 2. The Keldysh anti-contour C.
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In terms of the above G, G,, and G, Green functions (see Eq. (4.8)) this
relationship reads

GS alo, =G5 &ls, (5.4a)

GSlp=GS5, (5.4b)

In the non-interacting case p, equals p, and this index can be dropped. Therefore
G a=G% (5.5a)
G°S = G°¢S. (5.5b)

These last relationships Egs. (5.5a), (5.5b) mean that the diagrammatic rules with
po on the new contour C can be obtained from the old rules with po on the contour
C by just exchanging G°, with G°,. On the other hand, according to Eqs. (5.4a),
(5.4b) one obtains the Green functions on the contour C, but with the density
matrix p,, by exchanging the indices R with 4 of the Green functions on the
contour C, but with the density matrix p,. Therefore, if the one-particle Green
functions with p, on the contour C are known as a given functional of the free
propagators,

GR, i,dlﬁ():gR, A,A[Goga Goia G"f,], (5-6)

the Green functions on the old contour C, but with the new density matrix g,
which appear in the time-reversal relation, Eq. (4.16), are given by

GR, id By gA, R,A[GOZ’ Gog’ GOS], (5-7)

ie., by a double change of the retarded—advanced indices.
Now we may reformulate the basic time-reversal relation, Eq. (4.16), as

gR, A,A(r: Z; rla t’; [GOR, G0A> GOA: V; *52{])
= ‘(gA, R,A(rlz _t,’ r, —t9 [GOA’ GOR’ GOA: ’VT: JyT])) (58)
where also the contour index has been omitted, since everything is on the standard
Keldysh contour C. This is an explicit functional relationship which the

Keldysh—Green functions satisfy in virtue of the time-reversal covariance of the
Hamiltonian (see Egs. (4.9)-(4.10)).
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VI. TIME REVERSAL OF THE SELF-ENERGY

Most of the approximation schemes of many-body theories are formulated within
the frame of the Dyson equations for the one-particle propagators. In a symbolic
notations they read

G=G+G°2G=G"+G X G°, (6.1)

where X' is the self-energy. The self-energy itself is related to higher Green functions
which again are coupled to even higher Green functions. In that way an infinite set
of coupled equations with rising complexity is formed. The standard approxima-
tions consist in choosing a simplified form for 2 which decouples the equations.
We shall assume that we are working within such an approximation; ie., the
self-energy is a given functional of the Green functions G,

z=Z[G].

In the case of the Keldysh formalism it is convenient to write the Dyson
equations (on the contour C, with p,) for the three independent Green functions
Ggr, G4, and G,

Ge=0G "+ G5 B[ G, Gy, ;] Gy

(6.2a)
:GOR+ GR ZR[GRy GA: GA] GOR
GA = GOA'I'GOA EA[GR9 GA: GA] GA (62b)
=G0A +GA ZA[GRa GA> GA] GOA
GAZ GOA +G0R(2R[GR5 GA: GA] GA +ZA[GR> GA’ GA] GA)
+G04 EA[GRQ GA: GA] GA (62C)

= GOA + (GR ER[GRs G4, GA] +GA ZA[GRs Gy, GA]) GOA

+GrZplGr, G4y G41G°,.

Since these equations now implicitly define the functional dependence of the Green
functions G, G4, and G, on the unperturbed ones G°, G°,, and G°,, according
to the given proves at the end of the previous section, we may write down
immediately also the Dyson equations for the Green functions with the density
matrix g,

GR,A,AEGR,A,A|,30-
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Following the recipe of Egs. (5.6), (5.7) we obtain from Eqgs. (6.2a)—(6.2c)

GR=G0R+G0R EA[GAa GRa GA] GR

g i (6.3a)
=G’ +GrZ4[G4, Gr, 641G %
G, =6, +G°, .G, Cr, 6,16
4= Gt Gy REA~R~A 4 (6.3b)
= GOA +G,42r[G 4, Gr, G4l GOA
GA = GOA + GOA(ZR[GA, GR; GA] GA +ZA[G'A’ GR’ Gd] GA)
+G, 2 ,[G 4, Gr G41Gr (6.3¢)

=G%+ {GA E.[G . G G,1+G,Z 0G4, Gr, G,1) G%
+G,2x[Gy,Gr, G,1G°,.

The time-reversal relationship Eq. (4.16) implies, however, besides the replace-
ment of p, through p,, also the replacements of the arguments,

oy, t'=r,—tr, —t,
any of the external fields
V(x, 1), L, )=V (x, —t)=77(r, 1), —AL(x, —t) =L (x, 1).
We introduce again a simplifying notation for this operation, namely
GXr, ;1 t; [V, L) =G0, —t'sx, —; [V 1, L 17]) (6.4)
and
G'=G* (65)

for the complete time-reversal operation. If time-reversal covariance holds, then
according to Eq. (4.16),

GT=G; (6.6)

ie., G fulfills the same equations as G.
The ~ operation is defined through Egs. (6.3a)-(6.3c). Now we have to perform
the now operation *. First we remark that

G =6 (6.7)
and that for matrix products one has

(Gl 2 Gz)X= sz EX GIX
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where the matrix product does not run over the Keldysh indices. From Egs.
(6.3a)-(6.3b) we obtain

G§:G0R + G£ ZA [GAa GR5 GA]XGORa ‘683)
GT=G+GL X [G,, Gr, G,1¥G°,, (6.8b)
ng GOA + (GZ;ZR[GA’ GR) GA]X_'_ GzzA[GA’ GRa GA]X) GOA

& A e (6.8¢c)
+GRZ4[G,, Gr, G417 GOy
Obviously to recover the original Egs. (6.2),
ER,A,A[GRa GA:GA]X=ZA,R,A[G§> GlTp GZ;] (6'9)

is required. If this relationship is satisfied, then also Eq. (6.6) or, equivalently,
Eq. (4.16) holds.

After these preliminaries, we may analyze the time reversal properties of different
approximation schemes of the many-body theory.

VII. TIME REVERSAL OF THE RPA APPROXIMATION

The simplest interaction to be considered is that with some external scalar and
vector potentials ¥7(¢), «/(z). In this case the self-energy is local in time and space
and it does not depend on any Green function. Its time reversal property is obvious.
If further interactions are added, then still this term will be the only one that
depends on the external fields and the time.

A more complicated structure of the self-energy occurs within the self-consistent
RPA approximation for the Coulomb interactions between the fermions described
by the Feynman—Keldysh diagram of Fig. 3. The full straight line represents the
renormalized self-consistent fermion propagator, while wavy line represents the self-
consistent screened Coulomb propagator (or two-time screened potential) the sum
of all Coulomb self-energy corrections is pictured in Fig. 4. Accordingly,

2 x)=1iV, (x,x)G, (x,x)n (7.1)
and

V=o+vIV (7.2)

F1G. 3. RPA self-energy diagram.
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4+ ~ANVVLU = RANRNRY

Fi16. 4. Polarization diagrams in the RPA approximation.

with the polarization diagram given by
I, ,(x,x")==2iG, ,(x,x') G, ,(x, x)n. (73)

In Eq. (7.2) a symbolical matrix notation is used. The entities are matrices with
respect to the space-time coordinates x=r, ¢ and Keldysh indices #. The bare
Coulomb propagator is diagonal in time,

Vo (% X ) =v(r—1'])6(t=1') 6, .\ (7.4)
with the bare Coulomb potential,
v(r)=e%/|r|. (7.5)

Separating the singular part from the Coulomb propagator and introducing its
nonsingular part by

SV=V—v,
we obtain
Zalx, x')= —é {8V r(3%, X') G 4(x, X') + 8V 4(x, X') G(x, X'),
+9(x, x)[G 4(%, X') + Grl(x, x') — G 4(x, x')]} (7.6a)
56 x)= —% {8V 4(x, X) G 4(x, ') + 8V 4(x, X') G 4(x, X')
Fv(x, X )[G 4(%, X') + Gr(x, X') — G 4(x, x')1}, (7.6b)

i
Z (% %)= —3 {6V r(x, x") Gg(x, x')

+ 0V 4(x, x) G 4(x, X') + 6V 4(x, x") G 4(x, x") }. (7.6¢)

and
Ve a=v+vIlg 4 Vg 4 (7.7a)
Va=VelIl V,, (7.7b)
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together with

a(x, x) =§ (Gr(x, X') G4(x', X) + G 4(x, X') GR(x', x)], (7.82)
I ,(x, x) =§ {Ga(x, x') G 4(x', x) + G 4(x, x) G ((x', X)}, (7.8b)

I
Hd(x9 X,) :5 {GR(X7 x,) GA(x,: x) as GA(X, xl) GR(x’7 X)

+G4(x, x') G4(x',x)}, (7.8¢)
The time-reversal covariance of the self-energy, Eq. (6.9), requires
OV a,4LGrs Gas G41¥ =0V, ¢ 4[G], G}, G, (79)
which in turn implies
g 4 4[Grs Gas Gs1* =11, r 4[G], GF, GL1. (7.10)

In virtue of Egs. (7.8a)—(7.8¢c) this is obviously satisfied.

This concludes the proof that the self-consistent RPA approximation for the
Coulomb interaction is time-reserval covariant in the sense of Eq. (5.8).

The proof of this covariance in the case of the self-consistent RPA approximation
for the electron—phonon interaction follows analogously. The self-consistency here
includes also the phonon propagators. The diagrams are the same, but one has a
non-trivial, non-singular unperturbed phonon propagator. One should also take
into account the specific aspects of the boson theory in the Keldysh-Feynman rules.

VIII. CONCLUSIONS

The time-reversal property of a many-body Hamiltoninan determines a certain
relationship, Eq. (4.16), between Keldysh-Green functions with different density
matrices, showing that the same state may be achieved in evolving from the remote
past to a certain time ¢ as evolving in the negative time direction from the remote
future state to the time —i, but with the time-reversed external electromagnetic
fields. No direct statements concerning the existence and nature of the state in the
remote future can be made a priori on this ground.

It has been shown that for exact solution there is an equivalent, but more explicit
form of this relationship, Eq. (5.8), involving only the Keldysh—-Green functions
with the same density matrix. This last relationship looks like an invariance of the
Keldysh—Green functions, defined as functionals of the free propagators, against a
simultaneous permutation of the retarded and advanced indices, time-reversal of
the EM field, interchange of the coordinate-time arguments and time mirroring.
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This functional property is shown to hold also within the self-consistent RPA
approximation, although its interpretation in the sense of Eq. (4.16) is not granted.
In deriving Eq. (5.8), the introduction of a second Keldysh contour served as an
important ingredient.

Although in most of our treatment we considered no spin and a single type of
fermions (no bands), the results may easily be extended also to more general cases.
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Exciton-KLO-Phonon Quantum Kinetics: Evidence of Memory Effects in Bulk GaAs
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Oscillations of the transient four-wave-mixing signal with a period of about 100 fs are observed in
bulk GaAs using 14 fs pulses tuned to the exciton resonance at low temperatures. The measurements
are explained in terms of the non-Markovian quantum kinetics for electron-hole pairs due to LO-phonon
scattering. It is shown that the observed oscillations are evidence for memory effects. The experiments
provide a first test of the central ideas of quantum kinetics, in which the effects of quantum coherence

and of dissipation are intrinsically connected.

PACS numbers: 72.20.Jv, 42.50.Md, 42.65.Re, 78.47.+p

Ultrafast relaxation in liquids and solids can directly
be investigated in the time domain by femtosecond spec-
troscopy. The coupling of electronic excitations to a
vibrational mode is a particularly interesting example.
Semiconductor quantum dots, for which this coupling
has recently been investigated [1,2], can be considered
as an inhomogeneously broadened ensemble of two-level
systems with a diagonal coupling to longitudinal optical
(LO) phonons. This coupling through the Franck-Condon
mechanism gives rise to quantum beats in the four-wave-
mixing signal with exactly the phonon frequency [2],
which are not related to non-Markovian relaxation. In
bulk (polar) semiconductors, where the electronic excita-
tions have a continuous band spectrum, the coupling to the
optical phonons results in real intraband scattering tran-
sitions and provides the fastest relaxation and dephasing
mechanism at low to moderate excitation densities. The
ultrafast scattering kinetics in band states is thus distinctly
different from the dynamics of discrete electronic states
coupled to a lattice vibration mode. Particularly for time
intervals, which are short compared to the period of an
optical lattice oscillation period (= 115 fs in GaAs), the
kinetics can no longer be described by the classical Boltz-
mann kinetics with its completed energy-conserving colli-
sions. Instead, quantum kinetics has to be used in order
to account for the partially coherent nature of electronic
states in the band. This quantum coherence gives rise
to memory effects [3—5]. Earlier solutions of the non-
Markovian quantum kinetic equations for single-pulse ex-
citation in spectral vicinity of the band edge indicated that
the coupling to optical phonons gives rise to a periodic
modulation superimposed on the polarization decay [6,7].

In order to test the theoretical prediction for bulk
semiconductors we employ transient four-wave-mixing
(FWM) experiments which are directly compared with

2188 0031-9007/95/75(11)/2188(4)$06.00

solutions of the quantum kinetic equations under identical
conditions. As usual, two pulses (of equal linear polari-
zation) with wave vectors §; and g, respectively, are
delayed in time and focused onto the sample. The self-
diffracted signal in direction 2§, — g, is detected as
a function of time delay 7. The pulses are derived
from a laser system similar to that of Ref. [8]. The
sech?-shaped pulses have a temporal full width at half
maximum (FWHM) of 14.2 fs and a spectral FWHM of
87 meV, resulting in a bandwidth product of 0.30 close
to the theoretical limit of 0.315. The autocorrelation
has been taken under identical conditions as the FWM
data. Every component introduced into the beams (like,
e.g., neutral density filters) has been precompensated in
a four-prism sequence. The sample is a high quality
GaAs /Al ,Ga 1—xAs (x = 0.3) double heterostructure
grown by metal-organic vapor phase epitaxy with a
thickness of the bulk GaAs layer of 0.6 um, resulting
in a small optical density of 0.3 for continuum states
at a lattice temperature of 77 K. The sample is glued
to a sapphire substrate; its front side is antireflection
coated. Electron-hole densities quoted are determined
via the measured total incident flux and the spot radius
of 35 um, measured with a knife edge technique. For
the effective absorption coefficient we have used half
of the measured unsaturated continuum value of 1.1 X
10* cm™!, since about half of the laser spectrum is below
the band gap. Figure 1 exhibits typical signals as a
function of time delay for three different excited electron-
hole pair densities. The resonant excitation conditions
can be seen from comparison of the laser spectrum with
the FWM spectra in Fig. 2. The FWM signal (Fig. 1)
exhibits a quantum beat [9] behavior, the period of
which is density independent. For increasing density the
modulation becomes less pronounced. We have fitted

© 1995 The American Physical Society
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FIG. 1. Experiment: transient four-wave mixing on GaAs at
77 K. The diffracted signal is shown as a function of time
delay for three different carrier densities (from top to bottom:
1.2 X 10, 1.9 X 10, and 6.3 X 10' cm™3). The curves
are vertically displaced for clarity. The dots are the result
of the quantum kinetic theory. The curve labeled AC is the
autocorrelation of the laser pulses, the exponential wings of
which are well fitted by a 6.5 fs time constant (dashed line).

the decays in Fig. 1 with a function of the form ~
[1 + asin(@ecT — @)lexp(—7/Tess), obtaining best fits
with periods Tose = 27/ wosc of 100, 98, and 98 fs for the
densities 1.2 X 10, 1.9 X 106, and 6.3 X 10'6 cm™.
The decay time constants Tegr are 44.1, 46.7, and 32.5 fs
and the modulation amplitudes a 0.26, 0.17, and 0.17,
respectively. For yet higher densities the modulation is
less pronounced; for lower densities the worse signal-
to-noise ratio inhibits detailed analysis. Interestingly,
we observe only one peak in the FWM spectra as a
function of time delay (Fig.2) and no satellite related
to the LO-phonon energy. Via the Fourier theorem this
is equivalent to the absence of oscillatory structures in
the signal as a function of time for any given time
delay. From the density-independent modulation period
we can clearly exclude any interpretation along the
lines of Rabi or plasmon oscillations. Furthermore, the
magnitude of the expected period is completely off for
either mechanism. Propagation effects would also lead
to a much longer oscillation period. Surprisingly, the
observed period of about 100 fs is smaller than expected
from the well-established LO-phonon energy in GaAs of
fiwyo = 36 meV equivalent to an oscillation period of
115 fs.

For the theoretical analysis we use the semiconduc-
tor Bloch equations [10] combined with the retarded
collision integrals for the LO-phonon scattering. This
accounts for the important fact that the lattice cannot
react on a time scale shorter than a lattice vibration
period. The scattering rates of this delayed, partially
coherent early time regime can be derived either with
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FIG. 2. Experiment: spectrally resolved four-wave-mixing
signal as a function of time delay for a density of (a)
1.9 X 10 and (b) 6.3 X 10'6 cm™3; other parameters as in
Fig. 1. The resonant excitation condition can be seen from the
laser spectrum depicted in the background of (a).

nonequilibrium Green functions (GF’s) [3-6,11,12] or,
alternatively, in a density matrix theory [13-15]. We use
the nonequilibrium GF theory which allows the inclusion
of nonperturbative effects by partial summations. It
results in coupled nonlinear integrodifferential equations
for the density matrix pu,(t) = (aI‘k(t)a,,‘k(t)) (s, v
are band indices, k is the momentum), which is just
the equal time limit of the two-time particle propagator
Grpit,t) = ial ,(Daps(t)) with =1 The re-
sulting collision rates for the equal time density matrix
contain integrals over the history of the system. A typical
term has the form Y ', dt’ Snoxlt, G5, 4, 1),
where Ef,,,k(t, t') are the scattering self-energies.
These self-energies are taken in the simple loop ap-
proximation 35, 4(¢,#') = i ¥, &D3(, )Gy i—q(t, 1),
where for simplicity the phonons are considered as a
thermal bath, and their ‘propagators D= are taken in the
free-particle approximation. g, is the Frohlich interaction
matrix element. The quantum kinetic equation is finally
closed by the generalized Kadanoff-Baym ansatz (GKBA)
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[3,4] which relates the two-time particle propagator to the
denSity matrix: G:u.k(t: t’) == Zo’ G;’ur.k (t, t’)pa'v,k(t,)
for t > 1. For t <t the advanced GF G“ enters in
this relation. The GKBA is exact for a mean-field
Hamiltonian [7] because the correction term to the GKBA
is proportional to a scattering self-energy. With the
GKBA one typical term of the scattering rates becomes,
e.g. Zv,q f’—m dr' K(t, tI)P,u.a,k*q(tl) [1 - pvv.k(t’)]v
where the memory kernel is given by K(, t) =
getrt=NGL _(t,1)G5 . k(t', )y, with the phonon
distribution n,. Previously [3,4,6], diagonal free-particle
Wigner-Weisskopf approximations for the spectral func-
tions have been used. For long times the scattering
rate approaches asymptotically the Boltzmann limit
with a broadened energy-conserving delta function.
With the diagonal approximation Thoai and Haug [16]
showed that oscillations with the LO-phonon frequency
[contained in D=(¢,t')] are superimposed on the decay
of the interband polarization induced by a short laser
pulse. These oscillations are due to interference of
the various LO-phonon sideband polarizations and can
therefore be interpreted as LO-phonon quantum beats.
Here, we have improved the description of the spectral
functions by a mean-field approximation [7] for which
the GKBA is still exact. In this description—combined
again with a Wigner-Weisskopf collision damping—the
spectral functions are calculated under the influence of
the coherent light pulses and the Coulomb Hartree-Fock
interaction consistently with the density matrix equations.
Thus all optical band mixing effects and the important
excitonic effects are now contained consistently in both
the semiconductor Bloch equations and the spectral func-
tions. We solve the quantum kinetic equations for two
delayed excitation pulses Eo(z)e’®® and Eo(t — 7)e'®%,
with Eo(tr) = Ege™ " /cosh(t/At) and a FWHM of
the intensity of 15 fs, corresponding to the experiment.
The diffracted signal in direction 2> — §; is calculated
in the following manner. The interference pattern with
wave vector A = g, — g, can transfer multiples
of Ag to the two beams. We therefore calculate the
time dependence of the total polarization P(t,7,¢) as
a function of the phase ¢ = X - Ag and time delay
7. The various diffracted orders P,(z,7) can then be
projected out of the calculated function P(¢,7,¢). As
in the experiment, we choose the direction 2§, — 41
corresponding to n = 2. This sequential procedure is
essential for the iteration of the huge set of coupled equa-
tions. Furthermore, we neglect propagation effects which
are of minor importance at low optical densities. In
Fig. 3 we show the calculated time-integrated diffracted
signal [*2dt|P,(¢, 7)|? as a function of time delay for
GaAs parameters at 77 K: heavy-hole-electron mass ratio
my/me = 6.67, exciton Rydberg R, = 4.15 meV, and
Bohr radius ap = 12.5 nm. The collisional damping is
taken to be y. = v, = 1 meV. The excited electron-
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FIG. 3. Quantum kinetic theory: time-integrated four-wave-
mixing signal as a function of time delay for GaAs at two
different temperatures. 7T = 77 K, full line: theory with an
additional dephasing mechanism with 7, = 143 fs (same as
dots in Fig. 1); T = 300 K, full line: quantum kinetic theory

_ for phonon scattering only; dashed line: Markovian limit.

hole density is n = 1.6 X 10' cm™3, comparable to
the experiment. In order to model the experiment at
77 K we have added an additional, phenomenological
dephasing mechanism with 7, = 143 fs. This additional
dephasing mechanism is most likely the Coulomb scat-
tering among carriers, consistent with the fact that the
oscillations vanish at higher excitation densities. Except
for very short delay times, the agreement between theory
and experiment is very good. From the same fitting
procedure as in the experiment we obtain Ty = 98 fs,
Tess = 45 fs, and a = 0.17. The oscillation period of
about 100 fs can be interpreted as a simple beating of
interband-polarization components with frequencies w
and o’ which are connected by coherent LO-phonon
scattering. These frequency components are resonant
with the band states k and k': ke = E*k*/2u + Ej
and hw' = K*k2/2u + E!, where u is the reduced
electron-heavy-hole mass wu = m.my/(m, + my) and
E, is the Hartree-Fock renormalized band gap. The
two interfering momentum states are coupled by an
LO-phonon scattering event in the conduction band
R2(k"? — k2)/2m, = hwpo, from which one gets
Wose = @' — @ = (1 + m,/my) wLo, which yields a
period of 100 fs, close to the experiment. We have
checked that this interpretation holds indeed for various
mass ratios up to my/m, = 1. The contribution of
the scattering in the flat valence band is much smaller
because the Frohlich coupling is weak for large momen-
tum transfer. This interpretation clearly shows that the
observed effect is connected to band-to-band transitions;
however, excitonic effects are important because they
increase the necessary coherence considerably. In fact,
the oscillation amplitude becomes very small if the
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electron-hole attraction is switched off in our calculations.
Note that we have treated the LO phonons as a thermal
bath. In reality a certain number of phonons is generated
by the hot carriers excited by the spectrally rather broad
15 fs pulse. It is known for thé numerically much
simpler diagonal approximation for the spectral functions
that the combined quantum kinetics of the electronic
excitations and the LO phonons [15,16] provide both a
faster relaxation and a larger amplitude of the quantum
beats. Therefore we also present calculations at 300 K
with no additional dephasing time and damping constants
which are determined self-consistently using Fermi’s
golden rule. The actual phonon populations in the
experiment are somewhere in between these two curves
which, however, exhibit no qualitative difference. We
also show that the observed oscillations as a function of
time delay are absent in the Markovian limit of the theory
(dashed curve in Fig. 3). Figure 4 finally depicts the
calculated FWM spectra at 77 K versus delay time. They
are in good qualitative agreement with the corresponding
experimental FWM spectra (Fig. 2), even though the
theoretical spectra tend to be somewhat broader. In
particular, the FWM signal exhibits no sign of oscillations
in real time ¢, showing that the dynamics in the delay
time 7 and in real time are not simply connected.
Because of the good agreement between theory and ex-
periment, the reported measurements provide a first direct

INTENSITY
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FIG. 4. Quantum kinetic theory: spectrally resolved diffracted
signal versus time delay. Parameters as in Fig. 3 for T =
77 K.

experimental verification of the basic ideas of quantum
kinetics. According to quantum kinetics, quantum coher-
ence—here observed in the form of LO-phonon related
quantum beats—cannot be separated from dephasing and
relaxation on time scales which are shorter or comparable
to the inverse frequency of characteristic resonances in the
system.
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We report the observation of spectral hole burning exclusively due to the nonequilibrium electron

population in a nondegenerate pump-test configuration.

The rapid redistribution of electrons as

well as the other features of the differential absorption spectra are well described by a theory
using quantum-kinetic bare Coulomb collisions in the framework of the semiconductor Bloch

equations.  [S0031-9007(96)01740-1]

PACS numbers: 78.47.+p, 42.65.Re, 71.10.-w, 78.20.Bh

The redistribution of nonequilibrium carrier populations
in semiconductors has attracted considerable interest in
the last two decades. The tremendous progress of fem-
tosecond lasers in terms of pulse duration and stability
has rendered possible the observation of the initial stages
of carrier relaxation [1-6] and the study of very low car-
rier densities [6]. However, studying the contributions of
different scattering mechanisms such as LO-phonon and
carrier-carrier scattering remains a difficult task, because
most experiments measure a combination of electron and
hole dynamics and the signals in ultrashort-pulse experi-
ments contain coherence effects [7] and are not solely
population dependent. Indeed, standard pump-test experi-
ments [1,3,5,6] measure the absorption saturation due to
the Pauli exclusion principle and are sensitive to the sum
of the electron and hole distribution functions ( f, and f;,
respectively) while time-resolved luminescence experi-
ments [2] measure the product f.fs. A selective inves-
tigation of the hole dynamics has been used in Ref. [8]
to measure the heavy-hole thermalization time. However,
this method cannot measure the complete hole distribution
and the initially injected hole population.

Here we have used a modified pump-test scheme in or-
der to isolate the electron dynamics [4]: the pump pulse
excites electrons from the heavy-hole (HH) and light-hole
(LH) valence bands while the test pulse probes the ab-
sorption saturation of the interband transition from the
split-off (SO) valence band to the conduction band C (see
inset of Fig. 1). Because of the large spin-orbit split-
ting in GaAs (340 meV), no holes are present in the
SO band and the differential absorption signal —Aa =
Qyithout-pump — @with-pump depends on the electron dis-
tribution only. This method has a further important ad-
vantage: pump and test are at different wavelengths which
allows the observation of spectral hole burning due to the
initially injected electron population without any contribu-
tion from the induced-grating coherence effect [7,9] which

0031-9007/96/77(27) / 5429(4) $10.00

considerably complicates the interpretation of standard
pump-test experiments. Moreover, due to the isotropic
matrix element of the SO-C transition, the measured sig-
nal is equally sensitive to the presence of electrons with
all possible wave vector directions.

We report the first observation of hole burning which
can be attributed exclusively to the electron population.
While in previous experiments hole burning was not
discernible [4], recent ameliorations of the experimental
setup have permitted the observation of hole-burning
signals for carrier densities ranging from a few 10" to
a few 10'® cm™ and for excess photon energies ranging
from 50 to 110 meV. The ensemble of these results will
be discussed elsewhere. In this Letter, we concentrate
on the very short pump-test delay times at moderate
densities, the rapid redistribution of electrons causing the
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FIG. 1. Differential absorption spectra for the following
pump-test delay times: —80, —40, 0, 40, and 80 fs. The inset
shows the pump-test configuration.
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disappearance of hole burning, and the comparison of this
early-time behavior with theory.

We used a Ti:sapphire mode-locked oscillator (Coher-
ent Mira) and regenerative amplifier system (Coherent
RegA) both pumped by an argon-ion laser. Part of the
output generates a spectral continuum and is used as the
test pulse. After chirp compensation of the continuum
with a combination of prisms and gratings we obtain
nearly Fourier-transform-limited pulses with a duration of
30 and 130 fs for the test and pump pulses, respectively.
The pulses were focused down to 50 and 150 wm for the
test and pump, respectively, on the sample which was an
intrinsic GaAs layer of thickness d = 0.65 pm antireflec-
tion coated on both sides and held at 15 K. In order to
minimize the noise, a shutter is used in the optical path
of the pump at an 8-Hz rate. In addition, a reference
beam is simultaneously detected on a different track of
the CCD detector and is used to normalize the transmitted
test beam.

The differential absorption spectra for a pump width of
15 meV and a pump energy of 1.589 eV (excess energy
of 70 meV with respect to the band gap) and for various
pump-test delay times are shown in Fig. 1. The carrier
density was estimated to be 6 X 10'© cm™3. The zero
delay is defined as the coincidence of the pump and test
maxima and is taken at the middle of the integrated-
signal rise time. The spectra show two broad peaks at
about 1.913 and 1.950 eV due to spectral hole burning
associated with the electron populations photoexcited
from the LH and HH bands, respectively. Note that the
two peaks disappear already before the end of the pump
pulse. While it is clear that the signal in the spectral
region from 1.88 to 1.96 eV is dominated by the induced
transmission due to the electron population, the induced
absorption above 1.97 eV and the oscillatory structure
around 1.86 eV cannot be easily explained. Furthermore,
even in the hole-burning region the differential absorption
spectra do not directly reflect f.(z) due to energy-time
uncertainty and excitonic Coulomb effects. Therefore,
a theoretical analysis in terms of a quantum-kinetic
approach is necessary, since the commonly used theories
based on the golden-rule long-time limit are not applicable
at such ultrashort times.

Quantum kinetics is a generic name for the theory de-
scribing kinetics with memory on very short time scales
(see Ref. [10] for a review). The Markovian rate equa-
tion which has been so successful in the description of pi-
cosecond and nanosecond phenomena should be regarded
as a limiting case of the quantum kinetics. In the experi-
mental results described in this Letter, many scattering
mechanisms are involved. It is most interesting to look
at the limited short-time regime where Coulomb scat-
tering dominates because, although the quantum kinet-
ics of the electron-LO-phonon interaction (at low carrier
densities) has already received attention in the past few
years [11-15] and some observed quantum-kinetic effects
have been explained [16], no treatment of the quantum-

5430

kinetic Coulomb scattering for real experiments has been
attempted yet.

Coulomb scattering presents peculiar features which
require imperatively a quantum-kinetic formulation. It
is well known already from the equilibrium theory of
screening that the screened Coulomb potential has an %
singularity as ¢ — 0 at any finite frequency @. The sin-
gularity is absent only at @ = 0. However, a vanishing
frequency implies an infinite time. Therefore, the sin-
gularity is always present and plays an important role
at short time scales. This singularity which corresponds
to that of the bare Coulomb potential is fatal for the
Boltzmann equation since the argument of the energy-
conserving & function also vanishes at ¢ = 0 and the
collision integral diverges. The energy-time uncertainty
which is taken into account by quantum kinetics automati-
cally eliminates the divergence [17].

For times less than a typical plasma period, screening
is negligible [17] and thus the relatively complicated the-
ory of time-dependent screening [18-20] can be avoided.
We may also simplify the theoretical task by restricting
our calculations to times less than or comparable with the
effective interband polarization decay time. In our con-
figuration, where there is no interference between the
pump and test polarizations, one can use a simple phe-
nomenological description of the polarization collision
term and concentrate only on the quantum-kinetic colli-
sion terms of the electron and hole populations excited by
the pump.

The semiconductor Bloch equations [21] for the popu-
lations and polarizations in the case of the pump field are

"fot«(’) - gs{njga)pa,z(t)} * afo(t) ol
(24 Ly + i = 0n) o)
~Loro0 s s 0] g

Here « = HH,LH and the renormalized energies € and
Rabi frequencies () are given by

€)= E?j{ - ZV,;,,;,f,-V;,(t), i =e HHLH,
R
@
RO () = do i Ep(t) + 2 Vi ipp o jo(0). ®)
k

In the above equations, Ep(7) is the envelope of the pump
field with frequency wp, d,, ; are the respective interband
dipole matrix elements, and V; is the Fourier transform of
the Coulomb potential. Since we consider an isotropic
model with dipole matrix elements independent of the
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field polarization and k, we take them to be equal for
heavy and light holes.

af,‘]((t)
at

The quantum-Kkinetic collision terms for the populations
are (i,i’ = e, HH,LH):

(t—1)

i

h
= Fii-g@) g = Fiz @I = fip @D
©6)

4 o dg dk’
o _ﬁ;f%dt f (2:)3_/- 2n)p |V(q)|2cos(— (e?j + E‘(.),jc, €y e?/,éwq))
X UL g OV = Fig g = Foirea)]

In the Markovian limit one gets from this equation the | Fig. 2. The electron-population peaks are rapidly smeared

usual golden-rule rate equation.

The phenomenological collision term of the polariza-
tion is

ap, it

p‘;—‘k() =~ Pai®),

t coll T,

In the case of the test pulse, one may retain only the
electron population created by the pump and, therefore,
we have to consider only the test polarization equation

« =HHLH. (1)

a i
[— + — (i t+ 520,1} — hwr):|1?so,1;(l)

ar  h
i A7 Pso,%(l)
= 5 Q5000 = fei) — - ®
where the unrenormalized energy of the SO holes E(s)oi

and the renormalized SO Rabi frequency were introduced,
Qg (1) = dso i Er(t) + 22 Vi_wpsoi®. (9

v
Here E7 is the envelope of the test field having the carrier
frequency wy and dgp; the SO dipole matrix element.
To obtain the absorption spectrum, one has to perform a
Fourier transform of the test polarization summed over
all k.

The electron population excited by the pump acts first
as a final-state blocking factor on the right hand side
of Eq. (8) and second as a band shift through the Fock
energy of the renormalized electron energies [Eq. (4)].
These effects are all mixed up, vary in time, and get
Fourier transformed and therefore it is very difficult to
discuss them separately. In addition, specific Coulomb
spectral effects of the Wannier operator in the polarization
equation (exciton and Coulomb enhancement) impede a
simple additive interpretation.

Using a 130-fs pump pulse we performed calculations
of the excited populations up to 300 fs which corresponds
roughly to the plasma period at our pair density of 6 X
10'® cm™3. We took T, = 130 fs. The effective mass ra-
tios were taken to be integer (myn/m, = 6, myu/m, =
1, mgo/m, = 2) for convenience of the numerical algo-
rithm. The numerical calculation on a discrete lattice of
k-space points neglects low-momentum-transfer contribu-
tions which in the Coulomb case are important. Nev-
ertheless, we take into account low-momentum-transfer
collisions within a Landau approximation through a Taylor
expansion around g = 0. The complete quantum-kinetic
calculation gives rise to an electron population as shown in

out and already at about 300 fs after the pump maximum
the distribution is very close to a nondegenerate Fermi dis-
tribution. The calculated differential absorption spectra
with a 30-fs test pulse are shown in Fig. 3. We did not
consider delay times longer than 80 fs since their calcu-
lation involves information on the electron population for
times above 300 fs due to the Fourier transform.

The agreement with the experiment is surprisingly good,
although in many details quantitatively rough. The most
remarkable achievement is the prediction that at about
80 fs after the pump maximum the induced hole burning
is smeared out. This is related to the fact that the elec-
tron population is almost in equilibrium already at about
300 fs after the pump maximum. The only fit parame-
ter was the phenomenological polarization relaxation time
T,. However, if T, is taken comparable or larger than
the pump duration, it affects only the negative parts of
the spectra slightly. In the comparison of theory and ex-
periment, one has to take into account that the exact en-
ergy positions of the various features are affected by the
roughness of the electron energy discretization of about
5 meV, by the slightly modified effective masses as well
as by the inaccuracy of the numerical Fourier transform.
The more pronounced valley above the band threshold (at
about 15 meV) as compared to the experiment may be due
to the neglect of LO-phonon emission, which provides the
cooling of the electron system.

Both the experimental and the theoretical differential ab-
sorptions show a final-state occupation effect (hole burn-
ing) due to our narrow-band excitation and an oscillation

fe

0.03

0.02 300

0.01'\ N

0 =
time (fs)
energy (meV)

FIG. 2. Quantum-kinetic evolution of the electron population.
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FIG. 3. Calculated differential absorption spectra for the same
delay times as in Fig. 1.

that looks like an energy shift in the excitonic region, while
the negative signal on the high-energy side of the excita-
tion is mainly due to the nonlinearity introduced by the
product of the occupation factor with the Coulomb force
term

% 2 Vicipso i1 = foi(0]. (10)
7

which stems from the replacement of the Rabi frequency
by the renormalized one in the presence of the Coulomb
interaction [see Eq. (9)]. Actually, this excitonic enhance-
ment term plays an important role also in the oscillatory
structure on the low-energy side in addition to the true
Coulomb band shift of Eq. (4).

In conclusion, we have observed hole burning in a
pump-test configuration free from coherence effects and
succeeded in giving a satisfactory description of the dif-
ferential absorption spectra for ultrashort delay times with
the semiconductor Bloch equations using the quantum-
kinetic bare Coulomb collision term for the populations.
We stress that the use of quantum kinetics is mandatory
due to the Coulomb singularity. The main success of the
theory is determined by the structure of the semiconductor
Bloch equations but the numerical prediction of the effec-
tive intraband relaxation time (smearing out of the hole
burning) is due entirely to quantum kinetics. Our theo-
retical approach was highly simplified due to the specific
experimental configuration implying a differential signal
determined only by the electron population.

An improved version of the theory should include the
quantum-kinetic polarization collision term, the buildup of
screening, LO-phonon collisions, as well as the transition
to the Markovian behavior in order to extend its applica-
bility to higher densities and longer times. To incorporate
such improvements in the theory for the test beam will
still be an insurmountable task due to the Fourier trans-
form, which requires an enormous time interval.
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The coherent transients generated by femtosecond interband photoexcitation of a semiconductor in crossed
electric and magnetic fields are calculated. The scattering with LO phonons is considered and the complex
interplay between excitation and dephasing is analyzed. While below the LO-phonon threshold the signal is not
effectively damped, above the threshold damping takes place on a picosecond time scale, in qualitative agree-

ment with corresponding experiments.

L. INTRODUCTION

Within the last decade considerable efforts have been de-
voted to the search for terahertz (THz) emitters as well as to
the use of this radiation as a method of condensed matter
spectroscopy. In this context a new research topic known as
the dynamical Franz-Keldysh effect'™ developed. Several
mechanisms have been proven to generate THz signals: co-
herent phonons,®” optical rectification and instantaneous
polarization® > in magnetic fields,">"’® cold plasma
oscillations,'® asymmetric double quantum wells,'7~1°
heavy-light-hole beatings in quantum wells,'"?* and Bloch
oscillations in superlattices.2! % As different as these mecha-
nisms are in detail, they all are footed on common ground: In
a system with broken symmetry it is possible to create co-
herent wave packets by short laser pulses. When the wave
packets are charged, the motion of the wave packets gives
rise to a time-dependent dipole moment and a corresponding
emission of electromagnetic radiation in the form of THz
oscillations. With respect to emitter applications, the tunabil-
ity and the amplitudes of the signals, as well as the damping
of the oscillations, are of crucial interest.

In the present paper we show how THz radiation can be
generated in bulk material exposed to perpendicular electric
and magnetic fields, known as the Voigt geometry. Here the
electric field serves to break the symmetry so that the optical
excitation leads to a coherent generation of electrons and
holes, while the frequency of the oscillations is determined
by the magnetic field, which can be tuned readily. As the
dominant damping process we investigate the interaction
with LO phonons by calculating quantum-number-dependent
transverse relaxation times. A main feature of our analysis is
that these relaxation times are not taken as phenomenologi-
cal fit parameters but are calculated microscopically. It has
been found?’"? that the relaxation time is considerably
larger than that without applied fields. Our calculated relax-
ation times yield an explanation for the observed THz signals
on a picosecond time scale. Furthermore, the complex inter-
play of excitation and the various transverse relaxation times
could not be described by a simple classical model with a
constant damping term.

The paper is organized as follows: First we diagonalize
the one-particle Hamiltonian in the crossed fields and formu-
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late the optical excitation and the scattering due to LO
phonons in this representation. Then we derive the kinetic
equations on a reduced subset of quantities, sufficient to ex-
press the current connected with the THz radiation. Finally
we present numerical results and discuss them with respect
to experimental observations.

II. THE REPRESENTATION OF A SHIFTED OSCILLATOR

For a magnetic field in the z direction and an electric field
in the x direction, the Hamiltonian for an electron or hole
(i=e,h) is in the asymmetric Landau gauge A=xBe,,

where éy is a unit vector in the y direction, given by

o1
H=pr|

:Zm, @1

P 2
V- eieyxB) —ei&x.
1

Because the potential energy depends only on the x coordi-
nate, one can use plane waves in the y and z directions:

L Gllkztky)
W(r) _TH d(x).

The resulting Hamiltonian for ¢(x) is bilinear in x and can
be put into the form

(2.2)

LR R L a e ey (e€)?
~Zm —Zm,-dxz 7 M (x—X)—e 2
(2.3)
where the spatial shift of the oscillator origin is
e e'cr
X=—Pk+— (2.4)

y i
e
hw,

The cyclotron frequency w’; and the magnetic length 7 are
given by

i_eB ]z_h 2 e
“m e (2.5)

w

In these formulas the electron and hole charges are e®=—e
and e=e, respectively. The eigenfunctions are given by
shifted oscillator eigenfunctions

5003 ©2000 The American Physical Society
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L ellkzthy) . o
P(r)=—F=—=d,(x—X), 2.6
LZLy n
where
! —x12r
bu(x)= me H,(x/1),
2 " 2
H(x)=(-1)"" —e™, 2.7
X"
and the spectrum is
2,2 202
€nxh,= g, ThOnt )= eXER ——p, (28)

which is composed of the kinetic free-particle energy in the z
direction, the Landau energies, and two corrections due to
the electric field. Note that the effect of the electric field is
twofold: First the degeneracy of the energies with respect to
X is lifted and second the shift in the wave functions be-
comes mass dependent.

Using this shifted oscillator basis we now treat the cou-
pling to the light field. Because the optical wavelength is
typically larger than /, the interband polarization has to be
averaged spatially. Within the slowly varying envelope ap-
proximation, the averaged polarization is

P(t)= %f FrV(r0P(r,0)+He,  (2.9)
where d is the matrix element between the Bloch states of the
conduction and the valence band close to the band edge. For
the optical transitions the momentum components are con-
served, i.e., k,=—k,, k,=—k;, where the ik wave vec-
tors refer to the electron and hole, respectively. a, x. i, are

the annihilation operators for a particle i in the state n,X, k.
Because the excitation is diagonal in &, the shift quantum
numbers X differ for electrons and holes due to the field
term,
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’ le| &2 ) le| &
X,= =Pk~ ———, Xy=—Pk+ . (2.10)
how ®

c c

Thus the field operators for the electron and the hole 0 ,-(;, f)
in the overlap integral are shifted differently. Expanding the
field operators into the eigenfunctions (2.6) one gets

d

P0=5

2 C&)uam yi e (Daby (D)+He,
nn' Xk, ’ ‘
(2.11)

with C(&) = J dx ¢,(x) b, (x— &), where é=|e|EP/hw,
with l/w,=1/0+1/0"= (m,+m,)/|e|B. Again the effect
of the electric field is twofold: Equation (2.11) shows that the
creation and annihilation of the electron-hole pair is nonlocal
(a hole is created at X+ & while the electron is created at X).
This effect has been well examined in the purely electric case
(B=0), where it is known as optical rectification.® More-
over, the selection rules known from the purely magnetic
case? (£=0) are destroyed: the optical matrix element may
be nondiagonal in the Landau-level quantum numbers. From
the overlap integral one sees that the orthogonality of the
shifted oscillator functions no longer applies, because the
shift of the wave functions is different for electrons and
holes. This point is crucial for our analysis: Only due to the
symmetry-breaking effect of the electrical field does it be-
come possible to excite wave packets with short pulses,
which would otherwise be forbidden by the selection rules.
As will be discussed later these wave packets and the corre-
sponding intersubband polarization give rise to THz signals.

At low densities, where the electron-electron interaction
can be neglected, the interaction with LO phonons is the
dominant scattering mechanism. This interaction is usually
modeled in the basis of plane waves by the Frohlich cou-
pling. To adapt this coupling to the Voigt geometry the
shifted oscillator functions are expanded in terms of plane
waves in order to calculate the matrix elements. Fermi’s
golden rule yields the transition rates

.0 wC’ i i
WZ,X,k,;n',X',k;:m[l +Nhwp0)]16(€ny,~ Ean:k;_ﬁwLo)
) 2
‘ f dxe' ¢ (x) b, (x—(X=X"))
X8, k —x6g k—k , (2.12)
TSR g (U (X=X 2+ (k,— k)P
with et m; \"? 1 1
“TH \2hey) e e
- Amh(heo)®? .
C'= T am is the dimensionless Frohlich polaron coupling constant and
(2m;) m; the effective mass of the electrons and holes; N(fiw; )
=1/(eP*®10—1) is the thermal phonon distribution. The
where transition rates for the phonon absorption can be obtained
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through the ‘‘detailed balance’” relation from the given rate
due to the phonon emission process.

These transition rates can now be used to write the full
collision terms for a Boltzmann scattering. Instead of treating
the full kinetics of the density matrix elements, we will take
only the dephasing of the off-diagonal elements by relax-
ation times into account. For this purpose we calculate the
probability (per time) to scatter from a given state into all
other states (neglecting the fact that this state may be occu-
pied already). Summing over all possible scattering channels
the result is a quantum-number-dependent inverse transverse
relaxation time

1

(2.13)

1 g.i
=TT ,g, > W;,X,kl;nuxuk;'
n

i i =
Tnxk, Tnk, q

z

Thus all scattering processes give rise to exponential decays.
The corresponding characteristic times are individually cal-
culated for any set of quantum numbers.

III. DERIVATION OF THE KINETICS ON A REDUCED
SUBSET

Postponing the scattering kinetics for a moment and put-
ting all quantum numbers n,X,k, in one multi-index v, the
Hamiltonian for the electron-hole system interacting with a
coherent light pulse is

H=Y, (EiaifainL efjaﬁTafZ)
v

1 .
-5 dEy(0)e Y, C,patai+He.|,  (3.1)

where E,(¢) is the amplitude of the femtosecond pulse and »
is the central frequency. For the electron and hole subband
density matrix elements we define £ ,=(aila’,) with i
=e,h. One has to distinguish between populations (v=1v")
and intersubband polarizations (v# v') by the index combi-
nation. The interband polarization components are defined as
P, =e""(a"a’,). In the rotating-wave approximation the
equations of motion are

J i i
(E‘ e ej,)) fo==5 2 Cop( Q8P
M

~Qp8,, P}, (3.2)

9 i \ i
(ﬁ—t— E(eﬁ,—e’b) foy==5 2 Cuw(QSur Py,
M

— Qg8 Py), (33

J i i
(5+ Flente- w)) Py =502 Cur(8yr 8y

pu'
£,
(3.4)

where A€ p() = dE(¢) is the Rabi frequency. In these equa-
tions two consequences of the symmetry-breaking effect of

-8, ,f .~

w' vt v
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the electric field are easily observed. While the equations for
the intraband matrix elements of electrons and holes are nor-
mally equal, they differ here by the coupling to the interband
polarization via the optical field. Even more important is the
observation that the intersubband polarization components
/“V . are excited at all.2>% In the next paragraph it will be
shown that this intersubband polarization is closely related to
the THz signal. Thus it is the electric field in the Voigt ge-
ometry that allows the THz emission. In order to handle the
large number of density matrix elements caused by the ap-
pearance of the intersubband polarizations £, , an approxi-
mation scheme will be introduced, which is based on the
properties of the optical matrix element. We showed that
Chvr=Chn Oy x—¢ 5k,,—k} Although there is no longer a
selection rule in the Landau levels, still the conservation of
momentum enforces 5k,,f 4 and the shift in the quantum

number X to be fixed through 8y y_,. Applying these rules
to the equations one ends with a closed subset of equations.
It has to be emphasized that this subset is closed as long as
only the coherent part (3.2) to (3.4) is considered and scat-
tering processes are neglected. On the other hand, the colli-
sion terms couple to quantities not initially induced by the
light field. In this approximation these quantities are consid-
ered to be of minor importance. Into this reduced set, we
insert finally in the quantum-number-dependent transverse
relaxation times.

With the definitions £, y, .+ = £ xx» PaXin’ X— &k
=P, x-¢pk the equations become

J i
(57“’3) L 7 Em‘, (ComQ P x,—k

*
- Cn’m‘Q‘RPmn,X, - k)

+o £ (3.5)
coll
aJ i
(9—[ *iv") v eni=— 7 % (Conn Py 1 .k
J
= Co QP x )+ e Lo i
coll
(3.6)

9 i
—+jVP)P,,, ==Qgl Cpo— Conf’
(ﬁt ' Xk 2 R( ' n % ( mn® mn', X—&2,— k

4
+ Cn'mffnn,mg/z,k) +E Pt xis
coll
3.7
4 i 1, X (&2)k
—| s — " (n#n’), (3.8)
"X+ (€/2)k i i ’ .
It o ™ « H T;:k[+ T;.'kl)
4 Py
52| Pan=— —i (3.9)
coll E(Tik“*' T"’kz)
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Here v, v, and v” are defined as

:ﬁwi.(n—n’), i=eh (3.10)
hikE Bk
P_ e ho_ z e
vi=e,te,,~w 2me+2 (n +1 7)
5 E? m +m A
+ho (n+_)_ET_ s (3.11)

where A =w— E, is the detuning, i.e., the energy surplus of
the light field with respect to the unrenormalized band gap.
Note that there is no thermalization term in the equations
with the populations n=n". Due to the electric field the
spectrum is not bounded from below if the spectrum is not
limited by imposing boundary conditions. Therefore the par-
ticles do not relax toward a Fermi function. Populations that
do not relax might seem to be a highly unphysical feature on
the picosecond time scale we are interested in, but this
matches our approximation scheme: The THz signal is gen-
erated by the intersubband polarization. With only transverse
relaxation times the equations of populations and intersub-
band polarizations are only coupled on the short time scale
of the pulse (on which thermalization is not very effective).
After the pulse they decouple and the damping of the inter-
subband polarization is (in the model) perfectly described by
the inverse lifetimes applied to these quantities. The longitu-
dinal relaxation time is of the same order (up to a factor of 2)
as the transverse relaxation time. Our calculations show that
the transverse relaxation times are in the picosecond range,
while the excitation pulses are taken to be 141 fs (full widths
at half maximum of the intensity). Because the longitudinal
relaxation time is much larger than the duration of the pulse,
the approximation is well justified. Tzumida et al.'® did ex-
periments with chirped pulses varying the pulse duration.
While they observe differences for longer pulses between
positive and negative chirp, which suggests occupation ef-
fects, there are no discrepancies for pulses of the short dura-
tion that we used. This is a confirmation that our approxima-
tion without thermalization is well applicable.

IV. THz CURRENT OSCILLATIONS

Charge oscillations and thus current oscillations lead to
the emission of electromagnetic dipole radiation. For the in-
spected THz radiation only intraband contributions are taken
into account, i.e., the contributions from the interband polar-
ization are neglected. These contributions are governed by
frequencies related to the band gap and are therefore in the
optical range.

In the literature on THz radiation without a magnetic field
the creation of nonlocal electron-hole pairs has been studied
as ‘‘instantaneous polarization’’ and a distinction has been
made between displacement and transport
contribution. #1119 All these low-frequency parts are in-
cluded in the present model, although the displacement cur-
rent is hardly visible in the range of the considered param-
eters.

Starting from the definition of the current density operator

PRB 62

—eeXB rt)+Hc

-
4.1

one gets by expanding the field operators in the shifted os-
cillator basis for the current components (again with i
=e,h):

dr. ¢ VI(r h
er; HOU) i

<J‘>*— E fik, Lk s (4.2)

CEN lelfiy2
(Jy=— Ry n; ’ Vit 1Re( £ x)s
ke (4.3)
_ ﬁf
(];}* —° > Jn+1Im( n+1,n,X,/<Z)' (44

n Xk,

Obviously the current in the z direction vanishes, as the ef-
fect of the fields is confined to the x-y plane. The first term
in the y direction describes a net current proportional to the
population. It is mass independent and dependent on the sign
of the charges; in the case of charge neutrality (the optical
field creates as many electrons as holes) it vanishes. It is of
conceptual interest to see that in spite of the electrical field,
the coherent motion does not separate electrons and holes on
a macroscopic scale. Only the asymmetry in their scattering
behavior leads finally to a separation. The influence of this
scattering is weak and can be neglected for very low densi-
ties. Therefore the electric field does not have to be calcu-
lated self-consistently. From Eqs. (4.2) to (4.4) it is obvious
that all contributions to the current and to the radiated signal
stem from the intersubband polarization. More exactly, the
intersubband polarizations for which the Landau-level quan-
tum numbers differ by one are contributing. Reexamining the
equations with respect to these quantities, it is immediately
clear that they oscillate with nothing but the cyclotron fre-
quency after the femtosecond pulse.

V. NUMERICAL RESULTS AND DISCUSSION

The numerical evaluations are given for GaAs parameters
with an LO-phonon energy % w;,=36 meV. We consider
here the contribution of the light holes only, which have been
studied also in the corresponding experiments. As all
experiments?’ 2% were done at low temperatures, in our cal-
culations 7=0 K is taken for the phonon bath, ie., only
phonon emission is considered. In all results the time integral
over the Rabi frequency is taken to be 0.017, and the full
widths at half maximum of the intensity (field squared) is
141 fs (Gaussian pulse shape). Figure 1 shows the inverse
lifetime for electrons for the lowest Landau levels as func-
tions of the kinetic energy (Ej;,=#%%k%/2m,) for a magnetic
field B=6 T, where the electron and the light-hole cyclotron
energies are Aw°=10.5 meV and fw"=8.5 meV. In the
lowest Landau subband with n=0 one sees a smeared-out
one-phonon threshold. For the scattering within this subband
the threshold becomes flatter with increasing electric field.
For the higher Landau subbands the damping increases al-
ready at lower kinetic energies because of the transitions to
lower subbands. For n=1 and E=6 kV/cm, one can see

m Ladislaus Banyai: Profile in Motion



PRB 62

1/t (1ps)

1/t (Ups)

Eldn (meV)

FIG. 1. Inverse of the transverse relaxation times 77, s, for the
electrons in various Landau levels versus Ej;,=#%%k%/2m, for a
magnetic field B=6 T and an electric field E=4 kV/cm (upper
figure) and E=6 kV/cm (lower figure).

clearly first the contributions due to the intersubband scatter-
ing by phonon emission to n=0, followed by the contribu-
tions due to the intrasubband scattering. Because the spectra
of the subbands are not bounded from below due to the term
—e’€X" intrasubband scattering is at least in principle also
possible even at very small kinetic energies ﬁzkg/ 2m,. But
due to the localization of the wave function in the magnetic
field, scattering over a distance, which is considerably larger
than a few magnetic lengths (details are dependent on the
shift due to the electric field and the quantum numbers of the
wave functions), becomes extremely weak. Because the dis-
tance in the scattering process is limited, the energy gained
by the nonlocal process in the electric field is restricted also.
For the parameters we studied (4 T<B<8 T, 4 kV/cm <&
<6 kV/cm) this energy is by far to small to provide the 36
meV necessary for the emission of a LO phonon. Thus for
intrasubband scattering the main contribution has to come
from the kinetic energy.

From the calculated relaxation times one expects an ap-
proximately undamped motion for excitations below the
threshold and damping on a picosecond time scale for above
threshold excitations. This result is in agreement with the
experimental observations?’"? of a few resolved cycles of
cyclotron radiation on a picosecond time scale.

In Fig. 2 the mean current in the x direction is shown as a
function of time and detuning. We limit ourselves to the x
component, for its contributions of electrons and holes add
up, while in the y direction they work against each other, so
that in a model with equal electron and hole masses the y
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FIG. 2. The time evolution of the x component of the current
versus detuning A for fixed fields: E=4 kV/cm, B=4 T.

component of the current would vanish. The two different
regimes below and above the threshold are easily recognized.
Below threshold there is little damping and so there is a
strong beating of electron and hole cyclotron frequencies, but
above threshold the situation is more subtle. There is not
only a strong damping, but due to the optical excitation of
different intersubband polarization components, which differ
in sign, partial cancellation occurs. Together with the
quantum-number dependence of the transverse relaxation
times, the damping of the resulting current is a rather com-
plex interplay of these two effects. One sees, e.g., a revival
phenomena: At a certain time total cancellation of all contri-
butions occurs; after the strongly damped parts have died
out, only the weakly damped contributions (which are below
the one-phonon threshold) survive. By these means the can-
cellation is lost, and therefore some current reoccurs. The
reason for these weakly damped contributions that still exist
even for large detunings is the lack of a selection rule in the
Landau levels for the optical excitation. For large detuning, a
particle (e.g., an electron) can be created high above the
threshold, while its counterpart (e.g., a hole) is created in a
state below threshold, or vice versa. This explains also why
the damping effectively sets in already with a detuning of
about one-LO-phonon energy. A similar one-phonon thresh-
old behavior has been seen in the case of Bloch oscillations
as well 30

All these features are more clearly seen in the Fourier
representation of the current (see Fig. 3). The electron and
hole cyclotron frequencies appear as separate peaks for low
detuning. At about a detuning of an LO-phonon energy,

2 3 ey

£ 2N

E 25 A Nz
) NS
N e 55
7 2 ?;,/!/!!!I"o‘o‘/,{:o?%?o

 (meV)

FIG. 3. Spectra of the x component of the current versus detun-
ing A for fixed fields: E=4 kV/cm, B=4 T.
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FIG. 4. Integrated square amplitude of the derivative of the cur-
rent as function of the detuning A for fixed fields: E=4 kV/cm,
B=4T.

damping broadens the peaks, and the competition of different
interband polarization contributions causes a crossover from
a simple peak structure to a peak-valley-peak structure
around both cyclotron frequencies. This can be understood in
terms of a superposition of two differently broadened
Lorentzians with different signs. Only the additional satel-
lites have no physical meaning, but are numerical artifacts.
Although the parameters of our theoretical analysis do not
match those of the experiments of Ref. 28, in which only an
electric depletion field has been used qualitatively the same
features are observed: decay on a picosecond time scale and
oscillations with the cyclotron frequencies of electrons and
light holes. In Fig. 4 the integrated square amplitude of the
time derivative of the current, which is proportional to the
radiated signal, is shown. Again this result resembles that of
the experiment.?® A peak for small detunings of about 25-30
meV is followed by a dip. This dip is due to the strong
increase of damping for excitations above the LO-phonon
energy. In the experimental results, however, the minimum
of the dip is reached for twice the LO-phonon energy. This
has been explained in terms of the magnetophonon reso-
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nance, with the argument that due to the magnetic selection
rules both electrons and holes had to be excited above
threshold. As shown before, it is a crucial point of our analy-
sis that the selection rules do not hold for £+ 0. Thus for a
magnetophonon resonance at 2fw; o one has to assume the
limit of small electric fields, but then the signals would be
very weak as well. Because the intrinsic depletion field in the
experiment of Ref. 28 has not been under control, further
experimental examinations of the field dependence are
needed.

VI. CONCLUSION

The mechanism of terahertz generation in a bulk semicon-
ductor in perpendicular electric and magnetic fields has been
studied in terms of Bloch equations. We emphasized the im-
portance of the electrical field in breaking the symmetry and
inducing the polarization components between various elec-
tron or hole Landau subbands. These inter-Landau-subband
polarization components are responsible for generating the
oscillating current and thus the terahertz signal. Furthermore,
the damping of these signals, respectively the current, is ana-
lyzed in terms of LO-phonon scattering. As a characteristic
quantity, transverse quantum-number-dependent inverse re-
laxation times have been calculated. A smeared-out one-
phonon threshold is obtained, which leads to two different
damping regimes: below this threshold regime only a weak
damping exists, while above the threshold regime damping
on a picosecond time scale is calculated in qualitative agree-
ment with the few available experimental data in this geom-
etry.
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Bose-Einstein Condensation Quantum Kinetics for a Gas of Interacting Excitons
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A quantum kinetics of the Bose-Einstein condensation in the self-consistent (s.c.) Hartree-Fock-
Bogoliubov (HFB) model of the interacting Bose gas is formulated and numerically solved for the
example of excitons scattering with a thermal bath of acoustic phonons. The theory describes the con-
densation in real time starting from a nonequilibrium initial state towards the equilibrium HFB solution.
The s.c. changes of the spectrum are automatically incorporated in the scattering terms.
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A nonequilibrium many-body description of the con-
densation of atomic or excitonic bosons starting with
experimentally specified initial conditions and ending in
the stationary Bose-Einstein condensation (BEC) state is
an urgent problem since the experimental realizations in
atomic traps [1-3] and experimental indications in semi-
conductors [4—7] of such a phase transition appeared. In
such a phase transition, quantum coherence occurs spon-
taneously once critical conditions are reached. For the
description of such an effect, a helpful analogy is the laser
theory in which the spontaneous creation of a coherent
photon amplitude in a driven nonequilibrium many-body
system is treated [8]. As demonstrated for lasers, rate
equations are the simplest approach to treat the self-
organization of collective coherence in terms of a macro-
scopically populated laser mode. For a nonequilibrium
boson system, semiclassical Boltzmann kinetics has in-
deed been shown to be able to describe a transition into a
state with macroscopically populated condensate, provided
the thermodynamic limit is treated with care [9]. How-
ever, a spatially homogeneous interacting boson system
is known to change its spectrum from a quadratic one in
the normal phase to a nonquadratic one in the condensed
phase. Therefore, a semiclassical kinetics with scattering
between the free-particle states cannot reach the stationary
solution of the condensed state.

In recent years a quantum Kinetic theory has been de-
veloped on the basis of Keldysh nonequilibrium Green
functions and the equation of motion technique in which
such time-dependent renormalizations of the spectra are
contained [10,11]. Particularly for the description of fem-
tosecond semiconductor spectroscopy, a quantum kinetics
in terms of the single-time density matrix has been devel-
oped with non-Markovian scattering integrals. The scat-
tering integral kernels are determined by the spectral (i.e.,
retarded and advanced) nonequilibrium Green functions
which have to be calculated self-consistently together with
the density matrix. This theory has been successful in de-
scribing fine details of recent phase sensitive femtosecond
four-wave mixing experiments [10].

A first approach for the BEC kinetics in a dilute
atomic Bose gas was proposed using a Fokker-Planck
equation [12]. In an atomic trap Markovian rate equation

0031-9007/01/86(17)/3839(4)$15.00

PACS numbers: 71.35.Lk, 03.75.Fi

approaches were used [13] to simulate numerically the
occupation of the lowest levels without touching the
problem of spontaneous symmetry breaking. A more re-
cent formal treatment [14] starts from quantum kinetics
and includes anomalous averages, but finally a Markovian
approximation is made and the nature of the solutions is
not discussed.

We apply a purely quantum kinetic approach to the
nonequilibrium phase transition of a BEC of a weakly
interacting Bose gas within deterministic equations. While
in an atomic system the particle-particle interaction causes
the irreversibility, in a low-density exciton (x) system the
x-phonon scattering dominates the relaxation kinetics.
Therefore we treat weakly interacting x’s with x-phonon
scattering as a relatively simple and thus sufficiently
transparent model system for a BEC phase transition. For
the discussion of possible obstructions to a BEC, e.g., in
the form of nonideal boson commutator relation of x’s, the
polariton effect, too short lifetimes, or Auger processes
we refer to the literature [15,16].

We consider x’s in a spatially homogeneous system as
ideal bosons with creation and annihilation operators in
momentum states ug ,a;. The nonequilibrium x system is
described approximately by the self-consistent (s.c.) time-
dependent Hartree-Fock-Bogoliubov (HFB) Hamiltonian
[17-19]

Hyrg(t) = Z(ek + wn)a;:ra,;
k

+ %Z[c(t)agaii‘ + H.c.]

k
= VIwlp@Pp@ad + Hel, (1)

where w is the x-x contact potential, n is the total density,
V is the volume, and ey is the kinetic energy. The s.c. pa-
rameter c(t) = %[% S F, () + p(t)*]is given by the pair
(or anomalous) function Fy and the coherent amplitude p,

Fo() = (ap0a_p (), m) = (@i (Naz (),
) @

p@) = NG (ao(1)),
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with a;(t) = aj(t) — (ag(¢)). The order parameter in an  where s;(t1) = —/V w|p(t)|*0f; pi(¢) is the cubic Gross-
x system is also its polarization and therefore named p.  Pitaevskii term and

The total density is the sum of the noncondensate and the 0 ) N

condensate n = %Zk ni(t) + | p(t)|?. This approxima- Hyeij(0) = (e + wn)o; + [e(t)oy; —Hel  (5)

tion does not lead to the gapless linear spectrum of the
much simpler Bogoliubov approximation. However, for a
proper definition of, e.g., superfluidity, not the single par-
ticle spectrum but the density response function has to be
gapless [20] and these are indeed well behaved in the HFB
approximation. : h +
We use a “spinor” notation for the boson opera-  through H. p, = v ch,z} g;lahéa;(b;, + bf,;)’ where
tors ap; = a; ar{d aj, = af/; with the commutator — g; = G,/@j is the long-wavelength deformation potential
[a;,,-,a,;,_j], = ia';}jﬁ,;ﬁ,,;,, where o-,-yj is a Pauli matrix. = coupling. The dissipative evolution due to the phonon
coupling is treated in the framework of quantum kinetics.
The hierarchy of equations of motion for the boson density
matrix is truncated on the second level by factorizing the
averages in the equations for the phonon-assisted density
matrices which contain also the HFB motion. After a for-
mal integration of these equations, one finds the following
non-Markovian quantum kinetic collision integrals:

is the k-dependent HFB Hamiltonian matrix, where ot =
(o* + ia”)/2.

Furthermore, the x’s are coupled to a thermal bath of
acoustic phonons with the boson operators bgj,bgr , the
linear spectrum w, = c|g|, and the inverse temperature 3

The condensate amplitude is given by p; = J%(ao,,),
the reduced density matrix for the noncondensate by
Paq,ij = {G-gq,idq,j), and the phonon expectation values by
Ngij = {b-q.ibq j)- ; ;

Splitting the time development & = = lcon + 1 lcoll
into a coherent part due to the HFB Hamiltonian and a
part due to the collisions with phonons we find

2 piOleon = —igﬂo‘,’,-,o)p,-(z) - ﬁw), 5) = piOleon = = [0 v %giﬂk..,;,-<r, )
%pk,ijlcoh = _izl:[g'[k(?il(t)pk,/j + HLy(Opril. @ ‘ X o5 Tt )Ry (1), (6)
3 J g !
g prakn = = 3t | Dt @5y 0 Tai ) + 6 = YR = P | ¢ Doty
X (@5 Taim (s ) T jn (110 5743 () + 05 Ty (1) T jn (1) S 100 (1) - @)

The functions R and S are combinations of the generalized initial and final state population factors. They are taken
at the earlier time ¢/, therefore demonstrating the quantum-kinetic memory structure of the equations, which is caused
by the elimination of higher correlations.

Riij(t) = oiiNjj0)pi(t) + 05 (priz(O)p1(t) + prin(®)p2(1)),
5*';:2_;*3 (1) = Ny (0501, () + 05:p1y,ij(0) + 0 (pry it (D pioj2(t) + piyji (D)o i2(1)) -

For all indices 77 # n is used. The memory kernel is deter-
mined by the phonon propagator Dy (t, ') = e~ *¢=") ' at least for weak phonon coupling. We indeed show nu-
and the particle propagator function T;(z,#'). The latter — merically in what sense this conjecture holds. Note that
describes the HFB evolution, generated by _’}-[ko(t), these equations do not break the gauge invariance of the
1.0.0) fundamental Hamiltonian with respect to a constant phase

0T (2,0) 0 . _ (particle number conservation). Therefore, if the anoma-
Py = H(OTulr.0; TO.0=1. @ lgus quantities p and F are zero initially, they will be zero
for all times. However, a finite, but very small symme-

T.(t,1") replaces the usual free propagation factors  try breaking initial condensate population will blow up for

(=1 in the scattering terms by the coherent HFB dy-  supercritical conditions (n > n.) but decays immediately
namics without any additional adiabatic approximations.  for subcritical conditions. This behavior has been demon-
So the important s.c. temporal evolution of the renor-  strated also in the framework of rate equations before [9].

malized particle energies is fully taken into account. For ~ However, it is unique to our model that the condensate am-
t > ¢/, the evolution matrix Ty (¢, ') is up to a phase there-  plitude | p(¢)|, the pair function |F(r)|, the total anomaly
tarded HFB Green function. The system of Eqgs. (3),(4).(8) |c()], and the noncondensate population n(f) converge

have to be numerically solved simultaneously. to stationary values given by the equilibrium theory of the
One expects that the solution approaches the grand- interacting HFB gas with the proper thermodynamic quasi-

canonical equilibrium averages of the equilibrium HFB,  particle spectrum.
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FIG. 1. Kinetics of the order parameter p. Curves 1 and 2:

| p(t)]? for w = wy and for w = w, respectively. The dashed
lines el and e2 correspond to the solution of the HFB equilib-
rium theory and e0 to the equilibrium of the ideal Bose gas.

In order to illustrate these statements, the full set of
the kinetic equations Eqgs. (3),(4),(8) is solved numerically.
We take the material parameters of Cu,O, a phonon tem-
perature 7 = 1.5 K, and a supercritical density of n =
1.76 X 107 cm~3, typical for related experiments [4]. In
order to speed up the numerics, the coupling constant to
the phonons is chosen to be twice the value reported in the
literature. The interaction strength w is varied around the
estimated x-x coupling.

In Cu,0 and the results for two coupling constants w; =
0.5 X 10° neV nm® and wy = 2w, = 10° uneV nm® and
are shown. The scattering length corresponding to w, is
an exciton Bohr radius. Furthermore, a small initial con-
densate seed of less than 1% of the density is introduced.
A Gaussian initial noncondensed x distribution is assumed
centered at ko = 0.2 nm™! (excess energy 0.5 meV) and
a width Ak = 0.1 nm™".

For the comparison of the asymptotics of the time-
dependent theory with the result of the equilibrium the-
ory, the s.c. equations for the HFB equilibrium parameters
are solved numerically, too. Figure 1 shows how the or-
der parameter | p| converges in the full kinetics towards
the value of the equilibrium theory for both interaction
constants wi and wy. The still existing differences stem
from the nonvanishing energy corrections due to the in-
teraction with phonons. For the actual x-phonon coupling
G in Cu,0 they are negligibly small. An additional small
phenomenological damping of the memory kernel T (z, ')
stabilizes the numerics on a finite grid of k points. Surpris-
ingly, the speed of the condensation is strongly affected by
the HFB corrections in the scattering terms. Future esti-
mates of condensation time scales should take into account
the buildup of the quasiparticle spectrum. A quasiclassi-
cal Boltzmann equation with phonon scattering does not
yield an accurate description of the x kinetics for typi-
cal high-density experiments in Cu,O. In Fig. 2 the time
dependence of the anomalous density [19] 2|c(t)|/w is
shown. The anomalous density approaches the equilibrium
asymptotes quite well. The resulting asymptotic distribu-

e(l)',,J,,l,,L,,L,,L,,L,

—_ ::____m

G120 @

= | ]

<3

Sosr 2 ]

b 1

2

=04 1

S

= L ]
0 4 8 12 16

t (ns)
FIG. 2. Kinetics of the anomalous density 2|c(¢)|/w. Curves 1
and 2: 2|c(t)]/w for w = w; and w = w,, respectively. The

dashed lines el and e2 are the HFB equilibrium solutions and
e0 is the equilibrium solution of the ideal Bose gas.

tions ny and the pair function |Fy| are compared with the
equilibrium solution in Fig. 3. It can be seen that for Cu,O
parameters both results are nearly identical and far away
from the trivial condensation of an ideal Bose gas, which
predicts Fy = 0. For a truly quantitative calculation, one
should take for large k values the k dependence of inter-
action potential into account. However, already our con-
tact potential results demonstrate clearly the importance
of interaction effects for the resulting x distributions. In
particular, they show that experimentally determined dis-
tributions n; for condensed x’s in Cu,O cannot be fitted
with an ideal gas distribution with x4 = 0 as has been tried
quite often; see, e.g., [21,22].

The derived quantum-kinetic equations bring all real
quantities and absolute values to the grand-canonical
equilibrium state of the interacting Bose gas. However,
the equilibrium theory makes no prediction for the phase
of the complex quantities. In Fig. 4 the real parts of
the order parameter p and of the sum of the anomalous
function &Zk Fy are plotted versus the time. Note that
both oscillate with multiples of the chemical potential

0 0.1 0.2 0.3 0.4
k (1/nm)

FIG. 3. Asymptotic distribution functions n; (A) and [Fy| (<)
of the kinetics and the corresponding equilibrium solutions
(curves 1 and 2) for w = w,. Equilibrium solution of the ideal
Bose gas for n; (curve 0) (here Fy = 0).
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FIG. 4. Asymptotic time dependence of the real parts of the
polarization p (curve 1) and of the sum of all anomalous func-

. 1 .
tions 3 Zk Fi (curve 2) for w = wj.

wm = 76.531 ueV of the equilibrium theory. For the
evolution under Hypg(t) — wN, the equilibrium values
are stationary. For the real evolution the second term in
the grand-canonical Hamiltonian is missing, which gives
rise to oscillations for quantities which do not commute
with N.

Our quantum kinetic results can be summarized by the
following asymptotic statement for p(z):

1 ) _
pt) — Z e*mNre*B(HH“Fr,uN)ez,uNt’ ©)

where Z is the partition function. Observables which com-
mute with N relax to their equilibrium value, while the
noncommuting ones oscillate with multiples of u but have
absolute values given by the equilibrium theory. A quasi-
adiabatic approach would not be sufficient for our problem,
because Hypp(f) rotates very fast even asymptotically.
Therefore, quantum kinetics with integral kernels deter-
mined by the HFB evolution is the appropriate way to treat
the buildup of the quasiparticle and thermodynamic prop-
erties. Equation (9) is not an artifact of the HFB approxi-
mation but a special case of a more general statement. In
Eq. (9) the essential point is that H;IqFB does not com-
mute with N. The situation is common in systems with
spontaneous particle number symmetry breaking. In the
Van Hove limit of weak coupling to the bath, the “ro-
tated” density matrix (1) = e'*V p(t)e "#N' relaxes to
a macrocanonical distribution. With infinitesimal symme-
try breaking initial conditions one reaches (as in Ref. [9])
a Bogoliubov quasiaveraging macrocanonical density ma-
trix which also does not commute with N, as in Eq. (9).
In conclusion, a quantum-kinetic theory for the BEC
of an interacting Bose gas has been developed with far-
ranging possible extensions also to atomic systems. It
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has been applied successfully to x’s scattering with a ther-
mal phonon bath. A better insight in the kinetics of a
x-BEC in semiconductors has been obtained. This example
also shows that quantum kinetics with its time-dependent
memory kernels is the appropriate formalism to treat sys-
tems, where a quasiparticle spectrum builds up in time as
in a BEC.
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Abstract

The relaxation of nonequilibrium heavy-hole distributions in highly polar CdTe is studied via femtosecond
transmission spectroscopy and compared to more covalent GaAs. Heavy holes in CdTe show ultrafast energy
redistribution via the Frohlich mechanism even if photoexcited below the LO phonon energy. This sub-threshold
dynamics is a genuine quantum kinetic effect relevant whenever the polaron self-energy is comparable to the LO

phonon energy. © 2002 Elsevier Science B.V. All rights reserved.

PACS: 71.38.+1; 72.10.Di; 78.47.+p
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1. Introduction

In recent years, materials such as I1I-V nitrides
and semimagnetic II-VI semiconductors have
obtained special attention for applications in
optoelectronics and future spintronics [1,2]. A
common feature of these materials is their
relatively high degree of ionicity as compared to
the well established AlGaAs/InP family. Accord-
ingly, the polar-optical Frohlich interaction of
charge carriers with longitudinal-optical (LO)
phonons is significantly stronger in the nitrides
and I1I-VI compounds. This scattering mechanism
is of central importance for the transport and

*Corresponding author. Tel.: +49-89-289-12861; fax: +49-
89-289-12842.
E-mail address: mbetz@ph.tum.de (M. Betz).

optical properties of direct-gap semiconductors.
The coupling strength of LO phonon scattering for
a carrier with effective mass m" may be character-
ized by the dimensionless polaron coupling con-
stant

21 1 mt N\
T <s% - %) <2tho> ’

which determines the ratio between the polaron
self-energy and the LO phonon energy hwio.
Electrons in the I'-valley of GaAs represent a
typical example for weak Frohlich interaction with
o< 1. In contrast, charge carriers in CdTe fall into
the so-called intermediate coupling regime where o
is in the order of unity.

The most direct access to electron—phonon
interaction is provided by ultrafast optical spectro-

0921-4526/02/$ - see front matter © 2002 Elsevier Science B.V. All rights reserved.
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scopy. Situations have been found, where the
semiclassical Boltzmann picture with instanta-
neous scattering events is insufficient for the
treatment of femtosecond kinetics. As an example,
LO phonon quantum beats in the decay of the
excitonic interband polarization [3-6] call for a
quantum kinetic description. Information on the
time dependence of the energy distribution of
nonequilibrium carriers interacting with phonons
is gained analyzing femtosecond transmission
measurements [7]. In GaAs, scattering events
without energy conservation and with memory
effects have been observed for highly energetic
electrons which emit LO phonons [8]. Quantum
kinetic calculations agree with the experiment
[9-11].

In this article, we demonstrate that the dynamics
of nonequilibrium carriers for intermediate elec-
tron—phonon coupling exhibits qualitatively new
and important features which are completely
unexpected in semiclassical physics and may be
understood only on the most sophisticated level of
quantum kinetic theories. The most striking result
is that carriers injected below the one-LO-phonon
threshold, still experience significant relaxation if
the Frohlich coupling is strong enough [12].

2. The experiment

We choose the direct II-VI material CdTe as a
model substance for intermediate Frohlich inter-
action: electrons at the minimum of the conduc-
tion band (m. = 0.09m) exhibit a polaron
coupling constant of ¢, =0.33. Due to their larger
effective mass (as in GaAs, mj, /m, ~10 in CdTe),
the heavy holes are even more strongly coupled
with oy~ 1. The band gap energy of CdTe is
E, =1.60eV at low temperatures and hwro =
21 meV. The results are directly compared to

analogous investigations in GaAs where
E,=1.52eV, m,=0067my, o =006 and
Ohh X 0.15.

In the experiments, we create unbound electron—
hole pairs with Gaussian light pulses of a duration
of 80 fs and a central photon energy above E,. The
samples are epitaxial layers of high-purity CdTe
and GaAs of a thickness of d = 370 and 500 nm,

respectively. They are anti-reflection coated on
both sides, glued to transparent substrates and
mounted inside a He cryostate. In order to gain
insight into the dynamics of the photoexcited
carrier distributions, we measure the pump in-
duced transmission changes with a time delayed
probe pulse of a duration of 15fs and a bandwidth
of 100meV. Perfectly synchronized pulses for
excitation and probing are provided by a special
two-color femtosecond Ti:sapphire laser system
[13]. The test pulse is spectrally dispersed with a
double monochromator (spectral resolution set to
4 meV) after transmission through the sample.

3. Theoretical simulations

In the theoretical treatment, we consider a
quantum kinetic approach based on the Keldysh
Green functions with two-time arguments. The
photoexcited electrons and holes interact with LO
phonons. Coulomb collisions between carriers are
neglected in the low density regime of the
experiment, but the exciton and excitonic enhance-
ment are included through the Hartree-Fock
approximation. The phonons are taken to be in
equilibrium.

In a previous publication [14], we have devel-
oped a straightforward procedure to directly solve
the Dyson equation for the nonequilibrium charge
carriers numerically. Our solution for the inter-
mediate coupling regime (0.1<a<1) predicted
important deviations from the earlier one-time
approximations.

Numerical simulations are performed for the
material parameters of CdTe and GaAs taking
into account time delayed optical probe and pump
pulses of the experiment.

4. Results and discussion

Differential transmission spectra for various
delay times 7p are measured at a photoexcited
electron—hole density of 4 x 10'*cm~* with cross-
linearly polarized pump and probe beams in GaAs
(left column of Fig. 1) and CdTe (right column of
Fig. 1) [12]. The excitation density is maintained
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Fig. 1. Spectrally resolved transmission changes AT/T in
GaAs (left column) and CdTe (right column) for various delay
times 7p at a carrier density of 4 x 10em ™ and T, = 4.5K.
The excitation spectra are shown as dashed lines.

extremely low to suppress carrier—carrier scatter-
ing [15]. A lattice temperature of 4.5K ensures
very slow scattering of carriers with acoustic
phonons on a time scale of 10ps. Consequently,
the polar-optical interaction with LO phonons is
by far the dominant relaxation mechanism in the
sub-picosecond regime.

Exciting GaAs with an 80 fs pulse at 1.65eV (see
dashed line) results in a heavy-hole (hh) distribu-
tion centered at a kinetic energy of 18 meV which
is smaller than hwio, i.e. no scattering with LO
phonons is expected. In contrast, the electrons are
created with an excess energy of 112meV and
allowed to transfer energy to the crystal lattice via
rapid emission of LO phonons [7,8]. At tp = 50fs
in GaAs, a signature of the nonthermal carrier
distribution appears near the excitation energy.
For a delay of rp = 500fs, i.e. after twice the
electron—-LO phonon emission time of approxi-
mately 240 fs in GaAs [7,15], most of the electrons
have relaxed towards the minimum of the I"-valley,
inducing a transmission increase below a probe
photon energy of 1.55eV. A well resolved bleach-
ing peak due to the generated heavy holes remains
at 1.63eV (indicated by hh in Fig. 1). As late as
700 fs after excitation, the increased transmission

associated with the hh distribution is still clearly
visible in GaAs.

In strong contrast to GaAs, no analogous
signature of a hh distribution is found in CdTe
(right column of Fig. 1): excitation with an 80 fs
pulse centered at 1.71eV (see dashed line) gen-
erates heavy holes with an average kinetic energy
of 12meV. In the semiclassical picture of carrier
relaxation, the hh distribution should, therefore,
behave similarly as in GaAs. However, at a delay
time of fp = 150fs, approximately twice the
electron—-LO phonon emission time of 70fs in
CdTe [15], no bleaching peak is observed close to
the excitation energy. Apparently, the distribution
of heavy holes in CdTe relaxes on a time scale
comparable to the electrons even though real
emission of LO phonons should be energetically
impossible. This surprisingly fast dynamics can
only be related to the increased polaron coupling
in CdTe since all other parameters are very similar
in GaAs.

To elucidate the physical origin of the missing
bleaching peak in more polar CdTe, we have
performed extensive theoretical studies [12]. The
hh energy distributions computed with the two-
time quantum kinetics (thick lines) and the
semiclassical Boltzmann kinetics (thin lines) are
depicted in Fig.2 for GaAs (left column) and
CdTe (right column). In GaAs, both models result
in rather similar hh populations. A strongly
peaked distribution is conserved on a sub-picose-
cond time scale. In contrast, the populations
obtained with the Dyson equation for CdTe show
a significant femtosecond relaxation of the holes.
A very broad continuous background resembling a
quasi-thermal distribution has formed already
after a delay time 7p as short as 60fs. Even at a
delay time of 7p = 200 fs, the background compo-
nent experiences further relaxation indicating that
the phenomenon is not linked exclusively to the
energy uncertainty during the ultrafast carrier
generation process. This effect is purely quantum
kinetic in nature: if the sub-threshold hole
dynamics in CdTe is simulated semiclassically
(thin lines in Fig.2), the distribution functions
undergo no relaxation. Upon closer inspection
the background component is discernible also in
the quantum kinetic simulation of GaAs, but the
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Fig. 2. Heavy-hole energy distributions in GaAs (left column)
and CdTe (right column), as calculated in the two-time
quantum kinetic simulation based on the Dyson equation
(thick lines) and with the semiconductor Bloch equations
including Boltzmann scattering terms (thin lines) for various
delay times fp.

effects are much smaller than in CdTe. In the
experimental result for CdTe, the relaxation of
the heavy holes is even more pronounced than
expected from the calculated hole distribution.
This finding suggests an additional broadening of
the bleaching signal due to valence band warping
that is not included in the simulation.

To understand the unexpected dynamics of the
heavy holes, one has to take into account the fact
that within the two-time quantum kinetics with a
stronger coupling constant the energy of the free
particles is no longer conserved. The interaction
energy plays an important role and allows transi-
tions that are forbidden in the Boltzmann picture.

The dynamics of the hole distribution is a result
of a dynamical polaron formation: the laser pulse
creates bare electrons and holes. These quasi-
particles get dressed via deformation of the

surrounding polar crystal lattice. The buildup of
this virtual LO phonon wave packet leads to a new
class of carrier dynamics. Such phenomena are
relevant whenever the polaron renormalization
energy is comparable to the LO phonon energy.
The approximate time scale for the polaron
formation is linked to the duration of the LO
phonon oscillation period which is ol = 200fs
for the case of CdTe.

5. Conclusion

In conclusion, we have found an ultrafast
dynamics of low-energy heavy holes interacting
with unoccupied polar-optical modes in CdTe. A
theoretical description of the sub-threshold scat-
tering calls for a sophisticated quantum kinetic
treatment beyond the Kadanoff-Baym ansatz.
This phenomenon represents a typical many-body
effect: the free-particle energy ceases to be a
constant of motion in systems where the coupling
between electronic and lattice degrees of freedom
can no longer be regarded as a weak perturbation.
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We show that Bose condensation in real time occurs in a finite system not only as an accumulation
of the bosons in the ground state below a critical temperature, but also as a rapid enhancement of an
arbitrary small symmetry breaking, followed by a very slow decay of the symmetry breaking order
parameter from the almost ideal value to the vanishing equilibrium value. We show this analytically on
an exactly soluble model and numerically on a model of noninteracting bosons in an oscillator potential.

DOI: 10.1103/PhysRevLett.88.210404

Extraordinary experimental achievements have recently
proven Bose-Einstein condensation (BEC) of atoms in
magnetic traps [1,2]. While the original idea about BEC
was formulated only in the thermodynamic limit of a free
Bose gas, one may easily conceive that, with a finite num-
ber of atoms in a finite volume, below a certain temperature
the number of bosons in the ground state will increase pro-
portionally to their total number (or volume). A more unex-
pected aspect for a theorist is the observation of the order
parameter (interference) implying a spontaneous symme-
try breaking (of phase transformations corresponding to
the particle number conservation) in a finite system. We
show in this paper, by a study of the evolution in real time,
that even with a finite number of bosons in a finite volume
below a “critical temperature” one gets, besides the accu-
mulation of the bosons in the ground state, also a strong
and rapid enhancement of the order parameter, which later
decays very slowly. The more particles one has, the slower
this decay will be, and of course in the thermodynamic
limit it will not decay at all. In other words, what is for-
bidden in equilibrium in a finite volume (a nonzero order
parameter) is allowed and therefore experimentally acces-
sible in the kinetics, for a certain time interval which grows
with the number of particles.

The treatment is based on the Markovian equations for
the particle occupation numbers and the order parameter
as they may be derived through the equation of motion
techniques for a system of noninteracting bosons in con-
tact with a thermostat. A treatment of interacting bosons
already would require going beyond the Markov approxi-
mation [3]. The Markovian equations were derived and
used in earlier publications [4,5] in the context of Bose
condensation, however, without calculation of the order
parameter in finite systems. For completeness these equa-
tions are first discussed. Then, an exactly soluble model
is discussed [4], to prove analytically our statements about
BEC. On the other hand, in order to be closer to experi-
ments, we consider also bosons in an oscillator potential.
We make the assumption of very simple degenerate transi-
tion rates due to a thermostat and get numerical solutions.
The behavior obtained in this numerical study is in per-
fect agreement with the conclusions of the soluble model.
Already with 100 bosons one gets, at (;B—‘UTO = 0.5), very

210404-1 0031-9007/02/88(21)/210404(4)$20.00

PACS numbers: 03.75.Fi, 05.20.Dd

rapidly all the atoms in the ground state, and the order
parameter almost achieves its ideal thermodynamic value
before its very slow asymptotic decay.

Let us consider the interaction between bosons
and a thermal bath (phonons) described by the
Hamiltonian H=>,e.ala, + Zq hwqb;bq +
Daq(@qaaay awby + He.). Starting from the
Heisenberg equations for the creation and annihilation
operators of the bosons a; , dq, taking averages with the
bath being in thermal equilibrium, decoupling the higher
correlations and taking the long-time Markovian limit,
one gets the equations describing the time evolution of
the average boson occupation numbers {a; a,) and of the
(square modulus) of the average ground state annihilation
operator {ap) (anomalous average related to the order
parameter):

d
E<a;aa>t = Z{Wa’a<a;r'aa’>r(l + <a;raa>t)
@

- (a=a')},

= Kaoh P = Kaoh? 3 {7 aa) Weo
1+ (@ an)Wod].

The transition rates due to the interaction with the
thermal bath W, . satisfy the detailed balance relation
Weaa = WeagePla=e) The explicit expression of the
transition rates is given by the golden rule, but it is not
relevant for our further discussion.

It is important to remark that the equation for [{ao);|?
resembles very much the equation of (ao+ ao);, but they are
not identical and, as we shall see, this fact has far reaching
consequences. The stationary solution of these equations is
the Bose distribution for the occupation numbers and a van-
ishing anomalous average. However, if one starts with an
arbitrarily small (but extensive) symmetry breaking initial
condition (an+ ap)—o # 0, one may show [4] that, below a
critical temperature, in the thermodynamic limit the sym-
metry breaking survives as a spontaneous symmetry break-
ing as it is given by Bogolyubov’s quasiaverages theory.

The equation for the phase ¢ of {(ao), however, is not
governed by the transition rates,

© 2002 The American Physical Society 210404-1

Ladislaus Banyai: Profile in Motion m



VOLUME 88, NUMBER 21

PHYSICAL REVIEW LETTERS

27 May 2002

%tﬁ(l) = —ey — Z lgq.00®

q,a#0
(agaa)

_{agaa) +1

alag)

1
X
La —ey — hw, [e’ﬁﬁ‘”" -1

The phase behaves asymptotically as ¢ (1) — —(ep +
Aeg)t, where Ae is the lowest order correction to the
ground state energy due to the interaction with the thermo-
stat. A derivation of these equations is given in Ref. [4] for
free massive bosons interacting with acoustical phonons in
thermal equilibrium, but it does not depend on these spe-
cific details. In what follows, we shall discuss only the first
two equations considering different models for the energies
and transition rates.

All the essential features of the BEC are contained also
in an exactly soluble boson model consisting of a ground
state (particle energy €p) and an excited state (particle en-
ergy €;). The lowest state is taken nondegenerate, while

eflios — 1

:|+ 1 |: 7<a2aa>+1:”
eq —eg + Rwg LeP@ — 1 e Bhes — 1 ||
the higher state is taken to be macroscopically degener-
ate (i.e., the degeneracy is Vn,, proportional to the vol-
ume V). It simulates a continuum. The transition rate
between the two states is Wy = %we’ﬁf" , respectively
Wor = %we’ﬁf', and obeys the detailed balance. This
volume dependence is typical for transition rates between
a bound state and a state in the part of the spectrum; that
in the infinite volume limit goes to a continuous one [5].
Within this model, the real-time evolution can be studied
analytically.
We are looking for degenerate solutions having identical
occupation of the degenerate states. The rate equations for
fa(t) =(atan); (@ = 0,1) are then

J
Efl(t):

9 . _
afo(f) =

and the equation for the square modulus of the order pa-

rameter p(t) = (1/+/V){ao); is

Z1pOF = p@Fniwl fie P = [+ fi(0le P},

These equations conserve the average particle density
Nt = nyf1 + %fo. Since the chemical potential in
equilibrium has an upper bound, u = €y, the particle
occupation in the state 1 is bounded by 1/(ef(co=e)=1),
Therefore, above a critical density at fixed temperature (or
below a critical temperature at fixed n), the equilibrium
occupation of the state (0) has to increase with the volume.
The critical density is given by n, = nj/(ef€=€) — 1),
These equations are exactly soluble for any set of parame-
ters. For the sake of simplicity, we take ¢y = 0, w = 1
(which amounts to choosing the time unit %), and denote
e Bla—a) = ¢ < 1. Then n. = nlﬁ. We eliminate
f1 in favor of f through the conservation equation and
get a closed equation for fo:

2t = -1 E o

+ (- &) ( — 7

+ Rt -

)

The discriminant of the polynomial in fj, on the right side
is positive, the roots (x,x,) are real with opposite signs,
and we choose x; as the positive one. Then the solution of
the differential equation [with fo(0) = 0] is

1) s,
N+ xapmege

1+

N = .
fol?) ;.(—O_)fnf) o—alai—x)t
0(0)—x2

210404-2

VO + A@le P9 = RO+ fon)]e P9},

mw{ f1(O)[1 + fo()]le P — fo()[1 + f1()]e P},

with a = % Now, as it is easy to see, the roots behave

for large volumes as V (nioy — n.) + n./[(1 = &) (nor —

ne)] and —n./[(1 — €) (mot — ne)], respectively. Then

since limy—ofo(f) = x; = 0, one gets the following for

i

no(t) = 7 fo(0): ; -
Jim limno(r) = { o Mot = e
00 [—%

Nyt — Mo for nygy = ne.

Thus, BEC for the population occurs above the critical
density. By taking the opposite order of the limits, one
has to be careful regarding the initial condition. Let us
now consider the infinite volume limit of the condensate
particle density. For ny < n. (subcritical density),
no(0) (n. — ”101)57(11:)(""7"““)[
ne = o + mo(0) (1 = ¢~ (-0=mar)
for nyy > n. (supercritical density),
no(0) (nior — 1)
n0(0) + [nor = ne = no(0)Je (=) tra=nels ?
and for ny = n. one gets a “critical slowing down,” i.e.,
powers of ¢ instead of exponentials:
1(0)
1+ no(0) (1 — €
Therefore, if no condensate is present at the initial time
[(n0(0) = 0], then there is no evolution of the condensate
at all, while for any finite initial condensate [(n0(0) > 0]
one gets condensation at t — o above the critical density,
while the condensate disappears below the critical density.
One gets the square modulus of the order parameter by
simple integration using the previous solution:

no(t) =

no(t) =

no(t) =

2 x1—fo(0)
lp®F _ L* 70 e 1O @/V=mutnor
PO 1+ Wﬂum—mlr
(1) —X2
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FIG. 1. Evolution of the average occupation of the lowest level
in the soluble model for the volumes V = 20 and 400.

The last exponential behaves for V — o as
e~ W/WV)lne/ma=nlt jn the supercritical regime, and as
e~ =8 (n=mult ip the subcritical one. It is clear that one
encounters here two time scales: a fast or “microscopic”
one, i.e., weakly affected by the volume, and a slow
or “macroscopic” one, describing evolutions which get
slower as the volume increases. The relaxation of the
population to the equilibrium BE distribution is in this
sense fast, as is the decay of the order parameter to zero
under subcritical conditions. On the contrary, in the
supercritical regime the order parameter decays slowly.
A further consequence of this is the observation that the
time constant of this slow decay can be readily obtained
directly from the equation of |p(r)|>. Indeed, the popu-
lations are quickly thermalized and therefore one may
replace f1(z) with f;(e). Using the properties of the BE
functions, together with the detailed balance, one gets the
following for large volumes:

In(t)|2 at lp( I~

in agreement with the discussion above.

It is clear that for any large but finite volume at t — %
the order parameter disappears. However, if the infinite
volume limit is performed first, then the order parameter
reaches the stationary value,

lp)*

_ no(*)
PO no(0)°
and the Bose condensation is perfect also in the sense of
the order parameter if it was different from 0 at t = 0. If
in the initial state one had | p(0)|> = n((0), then also in the
final state |p(e)|> = ng(). In a finite but sufficiently big
volume, under supercritical conditions, the order parameter
will be first enhanced from any small initial value and then
disappears very slowly Flgures 1 and 2 illustrate the time

1 ne
ne(l = e = =g T
tot c

evolution of ng and W above the critical density for
finite volumes V = 20 and 400. [We took here n, =
20;n. = 10;n0(0) = 0.01; ¢ = 0.001.]

The features shown above are actually rather general and
not pertinent only to this soluble model. The same kind
210404-3

t

FIG. 2. Evolution of the square of the order parameter in the
soluble model for the volumes V = 20 and 400.

of scenario for the order parameter can be shown through
numerical simulation to occur also in a more complicated
model of noninteracting bosons in a finite volume in con-
tact with a thermal bath of acoustical phonons, but we give
here no numerical details of it. Instead we shall analyze
a quite different model with discrete spectrum, where no
useful concept of a volume may be defined, but the spec-
trum is discrete.

We consider a three-dimensional isotropic oscillator
whose states may be characterized by three integers
ni,n;,n3y =0,1,2,..., but its spectrum is deter-
mined only by n = n| + ny + n3, €, = howo(n + %);
n=20,1,... and therefore each energy level has the
degeneracy %(n + 1)+ 2).

This model has an appropriate thermodynamic limit (see
Ref. [6]) by letting the distance between the levels go to
zero (Fwp — 0) and at the same time the average num-
ber of particles (N) go to infinity in such a way that
v = (N) (iwp)? remains constant. In this limit, Bose con-
densation with a critical temperature defined by kg7, =
}iwo(%)l/3 occurs, with £(3) = 1.20206 the Riemann
/(n) function for n = 3.

A
-
B
a

09
08
07
06
05
04
03
02
0.1

Rl LR S~y
I

?

5 10 15 20 25
t

w
S

FIG. 3. Time evolution of the relative occupation of the lowest
level [{ao)|*/{N) (dashed line) and the square of the order param-

eter |P|? (solid line) in the oscillator model. ((N) = 100, ’;’;c =
0.5, Kao)7=0 = {ag ao)=o = 1.)
210404-3
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We will treat now the kinetics of a finite average number
(N) of bosons in the oscillator potential with a finite dis-
tance (fi&o) between the levels. We consider very simple
transition rates depending only on the energies of the ini-

tial and the final states: W, ., nooninyny = Waw, and

d < |1
—fn= Z 7(”’ + 1)(”’ + 2){Wun fu(1
ot =2

a < |

SIPE = [PEY. S 1+ 1)+ 2 {Waof

n=1

We suppose again that the transition rates satisfy
the detailed balance relation: Wy = Wy, ePi@on=n),
These equations conserve the total number of bosons:
> o %(n + 1)(n + 2)f, =(N) and the station-
ary (equilibrium) solution is the Bose distribution
for the populations and a vanishing order parame-
ter:  fO = 1/(ePlieont3/2-n] — 1), pO =, We
shall illustrate the kinetics of evolution to equilib-
rium for finite numbers of bosons below the formerly
discussed critical temperature by numerical calcu-
lations with transition rates only to nearest states
W = w(eV/2PRo0g, iy + e~ (1/DBRog,, 1),

For the numerics, we choose the temperature as
Bliwy = 2.0 far below the “critical” one. (Of course, in
the discrete spectrum one has no true critical temperature,
and we borrow the value given above in the specific ther-
modynamic limit.) We choose initial conditions satisfying
Kao)?—o = (ag ao) at (+ = 0) and put very few particles
in the lowest state as a “seed” for |P|? and the rest in a
high lying excited state (20th level).

Surprisingly enough (see Fig. 3), one gets practically
the complete enhancement scenario of the order parameter
as described before within the soluble model at a finite
volume already at (N) = 100. The dotted curve in Fig. 3
shows the population condensation ((ag ao)/(N)), and one
may see that the square of the order parameter reaches
very rapidly almost half of the ideal value and thereafter
slowly decays. The maximally enhanced value of the order

L L
80 100 120 140

FIG. 4. Long-time behavior of the order parameter |P|? for
(N) = 100 and (N) = 1000. The rest of the parameters are as
in Fig. 3.

210404-4

+ fn) - Wnn’fn(l + fn’)};

we look only for degenerate solutions {a, .. ,.dn,nyn,) =
Snimamy = fa(n = n1 + ny + n3). Therefore the equa-
tions for the populations f, and the square modulus of
the “order parameter” P = {ag0)/+/{N) are

(n=0,12,...),

- WOn(l + fn)}-

parameter is still strongly dependent on the initial con-
dition. For an initial condition with an initial conden-
sate of 0.1 instead of 1, one gets a 4 times smaller order
parameter.

The slow decay of the order parameter after its enhance-
ment may be understood along the same lines as in the
soluble model. By introducing in the right-hand side of
the equation for the order parameter the equilibrium popu-
lation given by the Bose function, and using again the de-
tailed balance, one gets a decay constant proportional to
%hmn — p. As(N) — o, u — %ﬁwo and the decay con-
stant goes to zero.

Indeed, as is shown in Fig. 4, where the time evolution
of the order parameter is shown on a longer time scale for
(N) = 100 and (N) = 1000 with the same initial condition
as before, the decay slope changes drastically with the
increase of the average number of bosons. In the same
time, the maximal value of the order parameter increases
slowly with (N). On the same figure one may see also
explicitly the exponential character of the decay (at least
for (N) = 100).

In conclusion, we have shown, in a Markovian approach
within a soluble model, how in a finite system the full
scenario of the BEC develops in real time with a strong
enhancement of any small initial symmetry breaking.
However, asymptotically the symmetry breaking order
parameter very slowly disappears. We obtained an analo-
gous numerical result also for bosons in an oscillator
potential with as few as 100 atoms. The more atoms one
has, the more slowly the order parameter disappears.

*Present address: Institut fiir Theoretische Physik, Univer-
sitdt Bremen, Bremen, Germany.
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We show on a solvable model in equilibrium and non-equilibrium, that in the thermodynamic limit
the c-number approximation of the macroscopically occupied lowest state is exact for all averages
of products of these operators.

Introduction One of the basic ideas of the theory of condensation of weakly interact-
ing bosons is the replacement of the creation and annihilation operators of the conden-
sate states by their averages (c-numbers) in the many-body Hamilton operator. The
argumentation goes over the macroscopic occupation of these lowest states. This step
has allowed the developement of a specific diagramm technique [1]. Although very
successful, this theory is mathematically still not very well understood (see Ref. [2]).
Among others, it is not clear whether this is a self-consistent approximation, or in some
limiting sense equivalent to the exact theory. In this paper we describe a simple solva-
ble model, in which the infinite volume limit of the averages of the exact theory coin-
cides with the predictions of the c-number version. We describe first a non-equilibrium
version in which the symmetry breaking and the macroscopic occupation result from
the coupling to an external field. This model emerges from solid state theoretical mod-
els for excitons interacting with optical fields. Then we describe the equilibrium conden-
sation, in which the symmetry breaking in the Hamiltonian remains infinitesimal and
one gets spontaneous symmetry breaking in the sense of Bogolyubov’s quasi-averages.

Non-Equilibrium Model in an External Field Let us consider the time-dependent Ha-
miltonian for a single boson mode interacting with itself and with an external field £()

H(t) = ca’a+, aa +VV E(0) (a+a"). (1)
Here V is the volume and the creation and annihilation operators satisfy
0, a*) = 1. @)

The field term is typical for bosonic models of excitons in a semiconductor interacting
with an optical field. We may omit the one-particle energy term ca*a, since it can be
eliminated from the Heisenberg equations by a simple phase transformation of the op-
erators a — a e ",

1) e-mail: banyai@itp.uni-frankfurt.de
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‘We shall make use of the commutation relations

[a™a”, aP?a*] =2(m —n) a™a™" + (m(m — 1) —n(n — 1) a""a™

+n m

[at"a™, a] = —na™"'a™

[(,frnam7 a+} _ ma+nam—1

to obtain the Heisenberg equation of motion for the operators B, , defined as

Bym=a™d" (n,m=0,1,...), 3)
and we get
0 w
Wh % Bum = v (2(m —n) Bpiim + (m(m —1) — (n—1)) By,m)

+ \/V 5(0 (mBnmfl - an—Lm) .

Obviously the undefined symbols with 7 = —1 or m = —1 have vanishing coefficients
and therefore do not appear.

Now let us define the infinite volume limits (in the thermodynamical sense) of the
averages

. 1
bpm = lim —— (B, ) < 00. 4)
V—oo V2

We anticipated here, that the so defined objects have a finite thermodynamic limit.
For these limiting objects one gets

h g bum =2w(m —n) by me + E(t) (Mby, 1 — nbp_1,m) . 5)
The obvious solution is

bp,m = b obgy (6)
with

h g bo1 = 2wbyobg; + (1) ; bio=bj1. (7)
This shows, that in the thermodynamic limit the weighted averages all factorize in pro-
ducts of averages of N (a)) and its conjugate.

Equilibrium Model for Bose Condensation Now let us consider the Hamiltonian

W o2 K NG +
H:Va0 “0"‘](;)%“1(@"' Vn(ao +ag) (8)

describing bosons of wave-vectors k. The & = 0 mode interacts with itself and an infinitesi-
mal symmetry breaking parameter # was introduced, according to the definition of the
quasi-averages of Bogolyubov and it will vanish after performing the infinite volume limit
(in the thermodynamic sense) of the averages over the macro-canonical density matrix

(..)=Tr <% e PUH-uN) ) . 9)
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16 L. BANYAL: About the c-Number Approximation of the Macroscopical Boson Degrees
The degrees k = 0 and k # 0 are coupled only through the average particle number
1
v zk: (afax)y =n. (10)

Let us define as usual for any operator A
A(r) = etH=uN) g g=t(H-uN). (r<p). (11)

d
Of course i (A(t)) = 0, however, we get along the same scheme the factorization of

the averages at V — oo,

: 1 +n my _ o : 1 "
‘}1_120 V"? (ag"ag’) = ‘}21;0 \/— {ao) Vh_fgo Na (ao) ) - (12)
With the notation P = 11m T (ap) we obtain the relation:
—uP+2w|PF P+y=0. (13)

Now one can go over to the limit # — 0 and get besides the “normal” solution P =0
also the symmetry-breaking one

w="2wlPP. (14)

Above the critical temperature of the free Bose gas one gets the normal solution,
while below it one gets the symmetry breaking one. In both cases we recovered the
results of the c-number approximation to be exact for the averages of products of op-
erators in the thermodynamic limit.

Unfortunately, we cannot generalize our proofs to the case of a true coupling be-
tween the kK =0 and k # 0 modes, therefore we cannot proof the Bogolyubov model
itself, which includes as an important feature also a modified quasiparticle spectrum.
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Quasiclassical approach to Bose condensation in a finite potential well
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We treat the problem of self-consistently interacting bosons in the presence of a finite (but macroscopic)
potential well within a quasiclassical approximation for the normal component and the order parameter. We
solve the equilibrium problem and show that condensation actually occurs in two steps: one already at low
densities with Bose condensation only in the well, and another one corresponding to the usual condensation in
bulk. The peak and width of the distribution of trapped particles in the well display a distinct signature of the
local condensation. A possible connection to recent experiments with excitons is discussed.

DOI: 10.1103/PhysRevB.70.045201

L. INTRODUCTION

Since Bose-Einstein condensation (BEC) of trapped at-
oms was experimentally put into evidence,"> much theoreti-
cal work was devoted to the discussion of the various aspects
of BEC (see Refs. 3-5 for recent reviews). The theoretical
description of the real-time evolution of Bose condensing
systems has also received much attention in the last few
years.52! While condensation and spontaneous symmetry
breaking in real time may be well understood for a homoge-
neous system of noninteracting bosons coupled to a thermal
reservoir in the frame of the rate equation formalism!* as an
amplification of the however small initial condensate, the
problem of weakly interacting bosons remains a problem of
high complexity. The fact that the quasiparticle spectrum
outside equilibrium is itself time dependent necessitates a
quantum kinetic approach. This leads, however (even after
various approximations), to very complicated systems of
nonlinear integro-differential equations which cannot be ana-
lyzed with the usual methods of nonlinear dynamics. Never-
theless, numerical solutions illustrating BEC in real time are
available.'® Additional complications arise in inhomoge-
neous situations like in an external trap due to the fact that,
strictly speaking, one cannot expect a true phase transition in
a discreet spectrum.?

In order to describe Bose-Einstein condensation of par-
ticles in a potential well which contains many closely spaced
energy levels, a quasiclassical approach may be appropriate,
because the detailed knowledge of the population of higher
lying energy levels is not of much interest and may cause an
enormous numerical effort for its determination. Our atten-
tion is devoted here mainly to finite potential wells, for
which the trapping in the well is controlled by the bulk popu-
lation.

Quasiclassical approximations have been used already in
the literature either for the description of the equilibrium® or
of nonequilibrium.'%!2 In both cases this approach was used
only for the noncondensate. On the other hand, the quasiclas-
sical equilibrium distribution is not the stable solution of the
quasiclassical kinetic equation, which is not quite satisfac-
tory. In this paper we develop a consistent quasiclassical ap-
proach for the description of weakly interacting bosons with
condensate and noncondensate in equilibrium and nonequi-
librium in an external potential. The clue of our approach is

0163-1829/2004/70(4)/045201(8)/$22.50

70 045201-1
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to apply overall the quasiclassical limit. We consider the
bosons as coupled to a thermostat by Markovian collision
terms. This is a situation typical for excitons in solids. Within
this frame one obtains a very simple and intuitive system of
local equations (without memory effects) describing interact-
ing bosons via a self-consistent (Hartree) potential. These
equations conserve the average number of bosons and under
critical conditions have a unique stable equilibrium solution
with condensation and a quasiclassically distributed noncon-
densate. Of course this description, although mathematically
consistent, is far from being satisfactory for all purposes,
since pure quantum-mechanical effects beyond the quasiclas-
sics such as the Fock terms were neglected.

In a previous publication?® the evolution of a noninteract-
ing Bose gas coupled to a thermal reservoir towards equilib-
rium in the presence of a finite potential well with many
energy levels was discussed. It was shown that above a criti-
cal density the lowest state will be macroscopically popu-
lated, i.e., the local density will go to infinity. In this paper
we take into account the repulsion between the bosons which
eliminates this unphysical behavior. We develop this theory
within a quasiclassical approach and a self-consistent treat-
ment of the repulsion. We discuss in detail the exact equilib-
rium solution of these equations on a finite potential trap.
The resulting scenario is a Bose condensation in two stages:
At a first (rather low) critical overall density a locally con-
fined condensate appears in the well; its distribution broad-
ens with increasing overall particle density and at a second
(higher ) critical density one gets the usual bulk condensate.
The spatial distribution of the trapped particles changes
abruptly as the local condensation in the well occurs. The
width of the distribution displays as a function of the overall
particle density a minimum in the form of a cusp, while the
slope of the peak changes discontinuously.

The described scenario may have a connection to recent
experiments24 on excitons in a Cu,O semiconductor under
mechanical stress, where a strong, narrow luminescence
from the center of the well was observed.

II. QUASI-CLASSICAL DESCRIPTION
OF A BOSE SYSTEM

The Wigner function depending on the momentum p and
the coordinate x is defined as

©2004 The American Physical Society
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150+ [ e ol 5.0 - 1.0). )

where #(x, ¢) is the second quantized wave function and (...)
means averaging over a given ensemble. This implies the
normalization

N dp RN
fdxf ﬁ Ap.%0 = (N). @)

All the averages of operators which are a sum of two
operators O(%, #1/1V)=A(%)+B#/1V) depending on coor-
dinate and momentum, respectively, may be expressed as
integrals (O(x,%/1V))=[dx dp/(2mh)*Ap, %, O(%,p). In
the quasiclassical limit A(p,x) is real and positive. For the
case of an interaction with a thermal bath and slowly varying
potentials?®?6 the following bosonic kinetic equation holds:

Jd 1. - .
(o”_t+ ;pV;{— V,;U(X,I)Vl;>1(p,x,l)

- f B 559155001+ 1 ) - (5 ).
®

where the left-right arrow indicates an analogous term with p
exchanged with p’ and the positive transition rates W(p, p’)
satisfy the detailed balance relation

Wp.p) = WE' e 2m =), )

and U(X,1) is a given potential. Generally speaking, one has
an external potential Upy(x), which we choose to be time in-
dependent (the given potential well) and an internal one, due
to the interaction between the bosons through a potential
v(X) (where X is the relative coordinate of the two particles)
related to the particle density n(x) (Hartree self-energy)

Ux,0) U0(§)+fd,\7’u()?—,?’)n()?’)

:Uo<;a+Jd;'u(;-§')J(2d7”)3 B30, (5)

The Fock term, which in the case of a contact interaction?’
cannot be distinguished from the Hartree one has no classical
counterpart and will be ignored in our treatment. The kinetic
equation Eq.(3) has a single stable solution, corresponding to
equilibrium

1

fo(pX)=——
*“l(p %) eﬂ[(pzxzm)weq(;)m]_ 1

(6)

where p is the chemical potential and U,(%) is determined
by the self-consistency equation

PHYSICAL REVIEW B 70, 045201 (2004)
Ueg(%) = Up(®) + f dx'v(x-¥)n(x")

O, dp .
= Up(x) +f dx'v(x-x') f ﬁ foo(p.X').
(7)

The above-described equations are valid only in the ab-
sence of a condensation. As it is easy to understand, above a
critical overall density (N)/V the Bose distribution in 3D
cannot provide a description of the whole particle density,
and this is in conflict with the conservation of the particle
number. It can be shown rigorously' that for supercritical
conditions, where a condensation occurs, Eq.(3) has no solu-
tions with ordinary functions but only with distributions.

An appropriate approach to avoid this problem is to con-
sider a two-component treatment where f(p,x,?) describes
only the noncondensate and a condensate is taken into ac-
count explicitly.

The existence of such a phase transition with spontaneous
symmetry breaking in the presence of a potential is of course
an idealization, which admits that the distance between the
energy levels is negligible. This admition is implicitly made
by the quasiclassical approximation. A discussion of the
meaning of BEC in systems with discrete spectrum is given
in Ref. 22.

In the presence of a condensate the self-consistent poten-
tial is then given by the total density (noncondensate and
condensate)

(G0 = f (2"7")3 Api0+[WGEoR  ®

where ((X, ) is the condensate amplitude (average of the
second quantized wave function) and thus the two compo-
nents are coupled. A further coupling will result from irre-
versible transitions from and to the condensate.

In order to include the condensate one needs an equation
for its amplitude. For the mathematical consistency of the
whole model, however, the quasiclassical approximation for
the condensate also has to be formulated. One may start from
the average of the exact equation of motion for y(x)

2

J 3
h—(p(x,0) = (— —Vis UO(X))((//(X, 0)+ f dx'v(x—x')
at 2m
XA ) WK ) x 1),
and again retaining only the Hartree term we get in terms of

the self-consistent (s.c.) potential U(x, ¢) the equation for the
condensate ampitude

2
mﬁ<w<i.r>>=(—ﬁ—v2+U(i,z))w(iz». ©
at 2m

Neglecting the contribution of the noncondensate to the s.c.
potential, this equation coincides with the Gross-Pitaevskii
equation, but we do not neglect this contribution.

045201-2
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QUASICLASSICAL APPROACH TO BOSE...

One has to recall here that the quasiclassical limit means
fi—0, and therefore in this limit the kinetic energy term
disappears (but as usual, the 7 from the time derivation sur-
vives) and we get

A5 0) = U D5 0). (10)

Next, as already mentioned, we have to include the tran-
sitions between the normal component and condensate due to
the irreversible interaction with the thermostat in the Eqs.(3)
and (10).

In the kinetic equation Eq. (3) we have to add the scatter-
ing rate due to the transitions from the state p to the p=0
condensate

- W(p.0) Rp, % D(W(X, ). (11)

The initial state has to be populated, hence the factor
f(p,X,0. The final state factor contains the term due to
stimulated transitions *|(y{X, /))|?, because the term describ-
ing spontaneous transition is lost in the thermodynamic limit
(see also Ref. 14). Similarly, the scattering rate due to tran-
sitions from the condensate to a state p is given by

WO, p)(1 + A, % )%, D). (12)

Formally, these terms result by adding to the distribution
function A(p’, X, ) in the collision term of Eq. (3) a conden-
sate term (277)°8(p") (X, D).

The gain and loss rates for the order parameter amplitude
have to be calculated by taking the initial and final state
factors for the condensate to be 1

1h N dp . .
5 (&) j ﬁ(w(pﬂ)f(p.x.t)
~ WO.P)(1 + A5 5.1). (13)

Such collision terms have been obtained!* in the frame of the
equation of motion method for a system of bosons weakly
interacting only with a thermostat, decoupling higher order
correlations and taking the long-time Markovian limit (see
also Ref. 22).

The resulting system of coupled kinetic equations de-
scribes the quasiclassical evolution of interacting Bosons
within the self-consistent approximation as

g 1. - .
((9_t+ ;pv;—V;U(X,t)V!;)f(p,X,t)

dp’ . . o -
= f ﬁ(wmp'mp,x,o(l + 5 %0)

- (pe p))- (Mp.0)Ap.E0 - WO.p)(1 + Ap.%.0))
Xy x, 0|, (14)

together with

PHYSICAL REVIEW B 70, 045201 (2004)
ad . - -
Iha—t(l&(x, 0) = Ux, (i x, 1)

h . dp . .
+ R0 f mwmow,x,o

- W0.p)(1 + f(p.x.0)), (15)

and of course with the self-consistency condition
UG = Ui+ [ (s )(f P50
x0=Uy(x)+ | dX'v(x-x ——=ApX,
0 v @mh) P

+|<¢()?’,t)>[2)- (16)

The equation for the condensate density [((x, £))| emerges as

d R . dp - -
ﬁ—t|<l//(x,t)>\2= \(w(x,t)>lzf ﬁ(w(pﬁ)f(p,x,t)

- W0,p)(1 + f(p.x.0))). (17)

One sees that the equations conserve the total average num-
ber of bosons

[ awazone+ [ a [ s R0 =, (19)

These equations describe an irreversible evolution. Above a
certain overall particle density (at a given thermostat tem-
perature) any arbitrarily small, but nonvanishing initial con-
densate in all points X will evolve to its finite stable equilib-
rium (nonhomogeneous) value, while below this density it
will disappear.

Because the #— 0 limit for the Schrodinger equation is
equivalent to the infinite mass limit, in this quasiclassical
approximation the condensate does not propagate, but will be
created or destroyed locally.

A theory, in which the quasiclassical approximation is
used only for the noncondensate, runs into mathematical in-
consistencies. Other inconsistencies would arrise if one
would try to develop a quasiclassical theory starting from the
s.c. Bogolyubov-Popov theory?” with a contact interaction
and retaining automatically also the Fock terms. Although in
this last frame one may introduce an “effective potential,”
this one is not the same for the noncondensate and conden-
sate.

The theory we described takes into account the effect of
the particle repulsion for the spatial distribution only.
Anomalous pair correlations giving rise to a modified quasi-
particle (Bogolyubov-) spectrum were ignored. This is also
the price to be paid in order to get a local Markovian descrip-
tion. Since the quasiparticle spectrum in nonequilibrium is
time dependent, only a quantum kinetic approach with
memory effects would be adequate for its incorporation.

As for any quasiclassical approach, we expect the validity
of the above-described theory for slowly varying potentials
where the distance between the energy levels is very small. A
detailed discussion of these conditions is given in the last
section, where the theory is tentatively applied to interpreta-
tion of experimental data.
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For a local interaction v(X)=wd(X) the self-consistency
equation also becomes local
dp
(2mh)?

Ap.%, r)),
(19)

which facilitates its treatment. In what follows we shall re-
strict the discussion to the equilibrium problem with such a
local interaction.

Uk 0= Up(X) + W(IO/J()?, L) +j

III. BOSE CONDENSATION

We discuss here the equilibrium solution of Eqgs.
(14)—(16) considering a local interaction with w>0 (repul-
sion) at a given temperature for various overall densities 7
=(N)/ V. Here, the thermodynamic limit is implicitly under-
stood.

In the absence of an equilibrium condensate [((%),|?
=0, the equilibrium solution for the normal component is the
Bose distribution, Eq.(6). Above a certain overall density i
[see Eq.(18) divided by the volume V] a local condensate
appears. The normal component should be further distributed
according to the Bose distribution, which is a stationary so-
lution of the left-hand side of the kinetic equation, Eq.(14),
and of the part of the collision term which does not involve
the condensate. The equilibrium condensate must be such as
to cancel the additional collision term

Kz o)l f SIS MGOG.50 - O H( + 1550,

(20)

of both Eq. (14) and Eq. (17). Inserting the Bose function,
the equilibrium condensate density ny(x), together with the
detailed balance relation Eq. (4), this term becomes

dp N -
) f o B0 (A1 = HUlI). - 21)

As a result, the equilibrium condensate density ny(x) may be
different from zero only where qu()?% ©=0. Due to the
positivity of £,,(p,%), the chemical potential always must lie
below the minimum of the potential u<min U,,. Therefore,
the condensate can exist only in the minimum of the equilib-
rium self-consistent potential. This again corresponds to the
behavior of particles with infinite mass.

The order parameter itself cannot be constant in time, but
according to Eq.(15) oscillates as (X, 1)) .,= e '\ no(¥) and
is actually determined only up to an arbitrary coordinate-
dependent phase factor, which is determined from the initial
condition. In general, the order parameter in equilibrium al-
ways oscillates with the chemical potential because the par-
ticle number operator does not commute with the macro-
canonical density matrix in the case of the spontaneous
symmetry breaking (see Ref. 18).

Without repulsion, the chemical potential can increase
with the overall density up to the minimum of the potential
Up(x). Further increase of the overall density 7 is possible

PHYSICAL REVIEW B 70, 045201 (2004)

only if the local condensate density ny(x) itself increases as
the volume. This means that the assumed slow spatial varia-
tion which was required in the derivation of the quasiclassi-
cal description breaks down. However, we shall see that the
situation changes substantially by the existence of a repul-
sion between the bosons, allowing a quasiclassical descrip-
tion of BEC.

Let us discuss what happens in the presence of a repulsion
when one increases the chemical potential starting form be-
low the minimum of the external potential, Uy(x). This is of
course equivalent to increasing the overall density 7.

The self-consistency condition for equilibrium with a lo-
cal interaction is

dp -
Uuf ) = Un(D + w{nooa . f T feq<p.2>). (22)

This equation has been extensively used in the equilibrium
theory of Bose-FEinstein condensation of atoms trapped in an
oscillator potential (see Ref. 3 and references therein), where
similar considerations apply, although the nature of the trap-
ping kinetics is different.

We choose an attractive external potential Upy(x)<0
which vanishes outside a finite domain around x=0, and has
a minimum in ¥=0. One may expect that the potential U,,(x)
also will have a point of minimum or a minimum surface and
will be constant outside the range of Uj,. Generally speaking,
min U,,>min U, since the repulsion opposes the attractive
external potential.

For a repulsive interaction the increasing density in-
creases also the minimum of UN]()?) and eventually flattens
the bottom of the potential. The number of locally condensed
particles will still remain finite and therefore does not con-
tribute to the overall density. Only for an overall density 7
greater than the critical density

dp 1
nc:f (2mh)3 BWP2m _ 1’ (23)

an overall condensate appears.

Because outside the range of Uy(x) both the local density
and the self-consistent potential are constant, we have for n
=<n,. the following equation for the determination of the
chemical potential:

dp 1
(27Tﬁ)3 eﬁ[(pl/zm)w,m] 1

=n. (24)

This equation has a solution only for u< wn,. Above this
value an overall condensate has to appear.

For simplicity, let us consider a spherically symmetric
situation [Up(r) with Upy(r)=0 for r> R and a negative mini-
mum in r=0]. We consider the case where u is above the
minimum of U, but below wn,. Let us look at the shape of
ch(r) coming from large r. Here, one has a spatially con-
stant self-consistent potential

Uey(r) = wit; (r> R). (25)

For r<R one gets a radius-dependent density and the self-
consistency equation
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e
U5 = Up(r) + w f B ﬂ; g

1
X A2+ Upg=] _ 1’ (n<r<R) (26)

for U, (X)—p>0 giving rise to a negative U,q(r) varying
monotonously. At a certain r=ry one may get U,(rp)=u and
the integral achieves its maximal value n.. Due to the condi-
tion qu(i)—p.ZO all the points r<r; must belong to the
minimum of a monotonous U(,q(r) and a condensate ny(r)
must emerge

Ue(1) = Up(1) + w(n+ my(r)); (r<r), (27)
in order to ensure that U,,(r) remains constant for r<ry, i.e.,

Up(D) = Upf1p+ 0) = pulr < 1), (28)

implying

o) = (Ul) - G <), (29)
When the overall density 7 reaches the critical value n,, i.e.,
p=wn,, the self-consistent potential is completely flat, r
approaches R, while the local condensate density approaches
—(1/w)Uy(n).

For overall densities above the critical one, one gets an
overall condensate, while the local condensate density is n
—n.~(1/w)Uy(r).

This scenario is complete and self-consistent!

However, local condensation shows nonanalyticities only
of local entities, but does not affect the analyticity of the total
thermodynamic entities. Therefore, according to the usual
terminology it does not define a phase transition.

We expect the following scenario in a self-consistent but
quantum-mechanical picture: In the presence of a repulsive
interaction between the particles the chemical potential ap-
proaches the lowest s.c. level and pushes it up without actu-
ally touching it until the bound states disappear completely
and the true bulk phase transition occurs. In this way a finite
local density appears first, which can be higher than the criti-
cal density of the bulk.

IV. NUMERICAL ILLUSTRATION

For the following, we choose a spherically symmetric,
attractive (v <0) external potential

an-{-(5)

For further discussions it is convenient to measure densities
in units of the critical density n,, the energies in units of kzT
U=BU,q Uy=BUy, M= Bpu, V=), the radius in units
of R(p=r/R), and use the dimensionless interaction constant
W= Bwn,.

Then

(30)

PHYSICAL REVIEW B 70, 045201 (2004)

Ulp)

== " L L L I I I L
0 005 01 015 02 025 03 035 04 045 05
P

FIG. 1. External potential Uy(p) (dashed line) and self-
consistent potential U(p) (full line) for a subcritical condition M
=-5.2(n=0.0021n,) with a potential depth V=-5, and an interac-
tion constant W=0.05.

U(p) = Un(p) + W————

e /

© r
Vs
db
J:) SUp-M_ 1

(32)

o €-1

in every point py<<p<1 in order to reconstruct the conden-
sate density as described above. Obviously the radius p,
=ry/R for which the self-consistent potential touches the
chemical potential is defined by the solution of the equation
M=V(1-p3)+W, (33)
which exists in the interval 0<py<1 only for M >V+W.

Since the transcendental equation Eq. (32) is local, for a
numerical solution it is convenient to solve it in favor of U
at a given U, thus performing a simple integration. The as-
sociation with a certain radius is given by the explicit defi-
nition of Uy(p).

We illustrate the above-described scenario with some nu-
merical examples. We choose V=-5 and W=0.05, and dis-
cuss later what happens for stronger coupling interaction po-
tentials.

In Fig. 1, the potentials Uy(p) (dotted line) and U(p) (full
line) are shown for a chemical potential M =-5.2 just below
the minimum V of the external potential, i.e., slightly below
the onset of the local condensation. One sees that the self-
consistent potential (p) is pushed up. For the chemical po-
tential of M =-4.8 (corresponding to a supercritical density)
just above the minimum V of the external potential, Fig. 2
shows that the self-consistent potential obtains a flat bottom
at the chemical potential. This is a typical signature for the
appearance of a condensate here in the range 0<p<0.2.
Figure 3 shows the resulting peak in the density. It is remark-
able that the overall densities for the two cases 7=0.0021n,
and 7=0.0031n, do not differ very much, both being much
lower than the critical one, while the condensate density in

he second case exceeds the critical density by a factor of 4.

Up(p) = W1 - pA(V<0), 3 ¢ y by

ole) =M1 =) ) (1) A further increase of the chemical potential M (or

and one has to solve the equation equivalently of the overall density 1) will lift the bottom of
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FIG. 2. External potential Uy(p) (dashed line) and self-
consistent potential U(p) (full line) for a supercritical condition
M=-4.8(1=0.0031n,) with a potential depth V=-5, and an inter-
action constant WW=0.05.

the self-consistent potential further as it may be seen in Fig.
4, while the corresponding condensate density in the mini-
mum of the self-consistent potential reaches very high values
and the spatial density distribution (shown in Fig. 5) widens
out. Actually, it is already very close to —(1/ W), which
will be its value at n=n,.

The general feature of the condensation scenario is seen
most clearly in Fig. 6, where we represented the density peak
of the trapped particles and its half-width as functions of the
overall density 11 (here, with the choice W=0.05 and V=-5).
The height of the density peak increases with the overall
density, but its slope increases abruptly at the overall density
of 0.0027n,. The half-width of the local distribution at the
same overall density has a minimum resembling a cusp.

For a stronger interaction, corresponding to W=0.5, the
role of the local condensate is not so striking. It can enhance
the density in the well maximally by a factor of 10, resulting
in a less pronounced peak. Nevertheless, the density inside
the well may reach very high values compared to the overall
density. This is illustrated in Fig. 7 for two positions of the
chemical potential M =-4.7 and M =-4.3, corresponding to
situations without and with condensate. In both cases the

45 T T T

after i B

before condensation

0 02 0.4 0.6 0.8 1

FIG. 3. The local density n(p)/n, for the sub- and supercritical
overall densities 7=0.0021n, (dashed line) and n=0.0031n, (full
line), respectively with a potential depth V=-5, and an interaction
constant WW=0.05.
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FIG. 4. The external potential U(p) (dashed line) and the renor-
malized potential U(p) (full line) for the normalized chemical po-
tential M =-0.1, and the corresponding density ( 7=0.584n, ) with
a potential depth V=-5, and an interaction constant W=0.05.

overall density is much lower than the critical one (n
=0.0035n, and 0.0052n,).

The densities described above, with condensate only in
the local potential well, are all below the critical density of
the bulk. In terms of the temperature it corresponds to being
much higher than the critical temperature of the bulk
kBTg“lk=6.028 85(h2/ m)*3, however below the critical tem-
perature of the ideal oscillator potential kpTv"
=0.831 907%wyN'* (in terms of the energy distance %, be-
tween the oscillator levels and the number of particles (N) in
the well).> At the same time, for the validity of the quasiclas-
sical approach, the temperature must be much higher than
the distance between the levels. It is, however, possible that
just around the critical temperature of the well 7*" our ap-
proximations lose their validity due to critical fluctuations.

V. EXCITONS IN A LOCAL POTENTIAL

In recent experiments®’ Naka and Nagasawa have ob-
served after uniform illumination a strong luminescence in
the center of a strain-induced potential well in a Cu,O
sample at 7=2 K. This luminescence may be due to the con-

100 T T T T
90 T
80 b
701 T
60 T

n(p)/n,
3

0 L L L 1
0 0.2 04 0.6 0.8 1

P

FIG. 5. The local density n(p)/n, for the chemical potential
M=-0.1 (corresponding density i1=0.584n,) with a potential depth
V=-5, and an interaction constant YW=0.05.
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FIG. 6. The dependence of the
height (thick line) and half width
(thin line) of the density distribu-
tion of the trapped particles on the
overall density in the vicinity of
the condensation point.
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densation of para-excitons (having a Bohr radius a,,
=0.710"7 cm). The luminescence peak was concentrated in a
small vicinity around the potential well minimum. The strain
induced potential in their experiment is asymmetric, but may
be approximated qualitatively by a parabolic potential well
like the one we choose having a depth of v~-1 meV and a
radius of ry~107% cm. This would correspond in our dimen-
sionless parameters to V=-5. In an ideal oscillator potential
with the same curvature one gets an energy spacing of the
quantum-mechanical levels of Aw=~10"* meV and a very
small radial extension of the ground-state oscillator wave
function of 5107° cm for the Cu,O exciton mass of m
=2.7my. Since v/hiw>1 many energy levels are contained in
the potential well and one may expect the validity of the
quasiclassical description. At this temperature one has in
Cu,0 a critical density of n,~10'7 cm™3. The density of the
excitons created by laser illumination has not been measured
directly.

On the other hand, the interaction constant w is not di-
rectly experimentally accessible. Tentatively one may con-
sider the well-known potential between hydrogen atoms ob-
tained by the Heitler-London theory of the hydrogen

& dfter condensation T

before

FIG. 7. The local density n(p)/n, for the sub- and supercritical
overall densities at 7=0.0035n, (dashed line) and 7=0.0052n,. (full
line) for the strong interaction case with a potential depth V=-5,
and an interaction constant W=0.5.

0.009 001

molecule?® and replace the Rydberg energy and the electron
mass, with the corresponding entities of the exciton (exciton
Rydberg Ejy and exciton Bohr radius ag

E N . . . -
”(‘)=Tr'§2 f i f dyz((¢(yl>¢(yz)¢(yl+a¢(yz~a)

X( LU SR SR )
Wi-yo+d 1A n+d -1
Xzﬁ(%)rﬁ(?z)), (34)

where the normalization factor is

=1 [ [ 567066, D979, 5.

(3%)
The 1s wave functions ¢(x) are
1 o
B(R) = =¥/, (36)
Vmag

Actually, Sugiura®® evaluated analytically all the involved
integrals. The positive sign corresponds to the symmetrical
state, while the negative one corresponds to the antisym-
metrical state in the coordinates. There are also more sophis-
ticated variational calculations for the bound molecular state
(symmetrical state), however not for the repulsive (anti-
symmetrical) case, where a variational approach is not justi-
fied.

The para-excitons (singlet spin state) in Cu,O are the low-
est exciton state. Then, antisymmetric wave functions in the
coordinates for the identical particles should be constructed
and the resulting force between the excitons will be repulsive
as shown in Fig. 8. The Heitler-London potential decreases
with the distance between the excitons exponentially as
€225 and the local approximation should hold. The calcu-
lated value of the interaction constant w is 49.26 Ega}, re-
spectively. For Cu,O this value leads to W= 1. This means
that in Cu,O the strong coupling case is realized.
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FIG. 8. The Heitler-London potential for the symmetrical and
antisymmetrical configurations (lower, respectively, upper curve).

Because we had to identify excitons with point-like
bosons, it is questionable to consider a Heitler-London po-
tential between the excitons at distances smaller than 2ap.
Actually, one should consider such quantitative estimates
with some reservations. Therefore, one cannot make a reli-
able quantitative prediction for the trapping wells in Cu,0O.
However, the photoluminescence of the trapped excitons
should display the characteristics of Fig. 6 if a local Bose
condensation occurs.

Finally, we want to draw attention to similar
observations® with excitons confined to an indirect
GaAs/AlGaAl quantum well layer. Here also a strong local-
ized luminescence has been observed due to trapping, but the
system is rather two-dimensional.

PHYSICAL REVIEW B 70, 045201 (2004)

Actually, all the considerations relating to Bose-Einstein
condensation of excitons are subject to the condition, that the
electron-hole pairs are mainly bound into excitons, which
under experimental conditions may be too restrictive.

In conclusion, we have formulated a quasiclassical con-
densation kinetics of interacting bosons which are in contact
with a thermostat and trapped in a finite macroscopic poten-
tial well. The theory is based on the coupled equations Egs.
(14)-(16) for the noncondensate and condensate. The equi-
librium solution has been discussed in detail. Due to the
repulsive interaction, the trapping potential becomes renor-
malized after the condensation has occurred, allowing the
chemical potential to increase over the minimum of the well
for an increasing overall particle density. In particular, it has
been shown that the spatial distribution of the trapped par-
ticles shows distinct changes as a local Bose Einstein con-
densation occurs. The possible relation of these results to
recent experiments with trapped excitons has been discussed.
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