Goethe-Universität Frankfurt Fachbereich Physik

Lehrende: Prof. Dr. Roser Valentí, Raum 01.130 Übungsgruppenleitung: Karim Zantout, Room 01.142

Frankfurt, 02.05.2019

Theorie zu Magnetismus, Supraleitung und Elektronische Korrelation in Festkörpern Sommersemester 2019

Blatt 4

(Abgabe: 14.05.2019)

Aufgabe 1 (Pauli Spin matrices) (4 Punkte)

The Pauli matrices $(\vec{\sigma} = (\sigma_1 \ \sigma_2 \ \sigma_3)^t)$ fulfil the simple identity

(1)
$$(\vec{a} \cdot \vec{\sigma})(\vec{b} \cdot \vec{\sigma}) = \vec{a} \cdot \vec{b} + i(\vec{a} \times \vec{b}) \cdot \vec{\sigma}$$

if all components of \vec{a}, \vec{b} commute with all components of $\vec{\sigma}$ for arbitrary operators \vec{a}, \vec{b} . In case that $[a_i, a_j] = 0, \forall i, j \in \{1, 2, 3\}$ we have $\vec{a} \times \vec{a} = \vec{0}$.

Since the components of the momentum operator \vec{p} fulfils such a commutation relation we can write the Hamiltonian H of a spin-1/2 particle without external magnetic field as

$$H = \frac{\vec{p}^2}{2m} = \frac{\vec{p}^2}{2m} + i \cdot \vec{0} \cdot \vec{\sigma} \stackrel{(1)}{=} \frac{(\vec{p} \cdot \vec{\sigma})^2}{2m}.$$

In the presence of a magnetic field \vec{H} the components of $\vec{p} + e\vec{A}/c$ do not commute with each other. Show that one can use (1) to derive the following expression for the Hamiltonian

$$H = \frac{1}{2m} \left(\vec{p} + \frac{e\vec{A}}{c} \right)^2 + \frac{e\hbar}{2mc} \sigma \cdot \vec{H} = \frac{1}{2m} \left[\left(\vec{p} + \frac{e\vec{A}}{c} \right) \cdot \vec{\sigma} \right]^2.$$

In this compact form not only contains the spin contribution but also the orbit contribution to the magnetic part of the Hamiltonian (assumption: $g_0 = 2$).

Aufgabe 2 (Langevin theory of paramagnetism) (6=2+2+2 Punkte)

Consider a system of N atoms with intrinsic magnetic moment μ . The Hamiltonian for this system with external magnetic field \vec{B} is given as

$$H = H_0 - \mu B \sum_{i=1}^N \cos \alpha_i,$$

with H_0 being the Hamiltonian without external field and α_i is the angle between the external field \vec{B} and the magnetic moment of the *i*-th atom.

Show that:

a) The induced magnetic moment is given by

(2)
$$M = N\mu \left(\coth \theta - \frac{1}{\theta} \right),$$

with $\theta = \mu B / k_B T$. Hint:

$$\operatorname{coth} x = 1/\tanh x$$

b) The magnetic susceptibility per atom is given by

(3)
$$\chi = \frac{\mu^2}{k_B T} \left(\frac{1}{\theta^2} - \frac{1}{\sinh^2 \theta} \right).$$

c) For high temperature T the susceptibility χ obeys the Curie law, i.e. $\chi \propto T^{-1}$. Find the corresponding Curie constant C which fulfills $\chi = C/T$ for high temperatures. Hint:

$$\frac{1}{\sinh^2 x}\approx \frac{1}{x^2}-\frac{1}{3} \ \, {\rm for} \ |x|\ll 1$$