
Kapitel 5

Green’s function formalism

5.1 Introduction

Green’s functions appear naturally as response functions, i.e. as answers to the function
how a quantum mechanical system responds to an external perturbation, like for example
electrical or magnetic fields; the corresponding response functions would then describe
the electrical conductivity or the magnetic susceptibility of a system. Here we will be
concerned with small perturbations and thus only the linear response of the system. We
describe the system by a Hamiltonian

H = H0 + Vt (5.1)

where Vt represents the interaction with an external field. H0 describes the system with
the external field switched off; due to interactions H0 is not necessarily exactly solvable.
The external field Ft couples to the observable B̂ of the system:

Vt = B̂Ft (5.2)

Here, B̂ is an operator and Ft is a complex number. We now consider an observable Â of
the system that is not explicitly time dependent and ask how the dynamic expectation
value �Â� reacts to the perturbation Vt. Without field we have

�Â�0 = Tr(ρ0Â) (5.3)

where ρ0 is the density matrix of the system without external fields:

ρ0 =
e−βH

Tre−βH (5.4)

in the grand canonical ensemble H = H−µN̂ (with chemical potential µ, particle number
operator N̂). The density matrix will change if we switch on the field:

ρ0 → ρt (5.5)

This means for the expectation value of Â

�Â�t = Tr(ρtÂ) (5.6)
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In the Schrödinger picture, the equation of motion of the density matrix (the statistical
operator) is determined by the von Neumann equation

i�
∂ρt
∂t

=
�
H + Vt, ρt

�
(5.7)

We consider a perturbation that is switched on at some time so that the boundary con-
dition for our first order differential equation is an unperturbed system for t → −∞

lim
t→−∞

ρt = ρ0 . (5.8)

We now switch to the Dirac picture where we have

ρDt (t) = e
i
�H0tρte

− i
�H0t (5.9)

with the equation of motion

d

dt
ρDt (t) =

i

�
�
ρDt , V

D
t

�
−(t) . (5.10)

Integrating with the boundary condition

lim
t→−∞

ρDt (t) = ρ0 (5.11)

leads to

ρDt (t) = ρ0 −
i

�

� t

−∞
dt�

�
V D
t� (t

�), ρDt� (t
�)
�
− (5.12)

This equation can be solved by iteration (by substituting ρDt (t) repeatedly on the right
hand side):

ρDt (t) = ρ0 +
∞�

n=1

ρ
D(n)
t (t) with

ρ
D(n)
t (t) =

�
− i

�

�n
� t

−∞
dt1

� t1

−∞
dt2 · · ·

� tn−1

−∞
dtn

×
�
V D
t1
(t1),

�
V D
t2
(t2),

�
· · ·

�
V D
tn (tn), ρ0

�
· · ·

�
−
�
−
�
− (5.13)

While this formula is exact, it is not practical. For sufficiently small external perturbations,
we can restrict to linear terms in the perturbation Vt which is called linear response:

ρDt ≈ ρ0 −
i

�

� t

−∞
dt�

�
V D
t� (t

�), ρ0
�
− (5.14)

We can use this result to determine the perturbed expectation value of (5.6):

�Â�t = Tr(ρDt Â
D) = �Â�0 −

i

�

� t

−∞
dt� Tr

��
V D
t� (t

�), ρ0
�
−Â

D
�

= �Â�0 −
i

�

� t

−∞
dt� Ft�Tr

��
B̂D(t�), ρ0

�
−Â

D(t)
�

=B̂ρ0Â−ρ0B̂Â=ρ0ÂB̂−ρ0B̂Â

= �Â�0 −
i

�

� t

−∞
dt� Ft�Tr

�
ρ0
�
ÂD(t), B̂D(t�)

�
−

�
(5.15)
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Here, cyclic invariance of the trace was exploited. This shows how the system reacts to
the external perturbation, as measured from the observable Â:

ΔAt = �Â�t − �Â�0 = − i

�

� t

−∞
dt� Ft��[ÂD(t), B̂D(t�)]−�0 (5.16)

This response is determined by an expectation value of the unperturbed system. The
Dirac representation of the operators ÂD(t), B̂D(t�) corresponds to the Heisenberg repre-
sentation when the field is switched off.
Now we define the retarded two-time greens function

Gr
AB(t, t

�) = ��A(t);B(t�)�� = − iΘ(t− t�)
��
A(t), B(t�)

�
−
�
0

(5.17)

The operators are to be taken in Heisenberg representation of the field free system. The
retarded Green’s function describes the response of a system as manifested in observable
Â when the perturbation couples to observable B̂:

ΔAt = − 1

�

� ∞

−∞
dt� Ft�G

r
AB(t, t

�) (5.18)

It is called retarded because due to the Heaviside function, only perturbations for t < t�

contribute.
With the Fourier transform F (ω) of the perturbation

Ft =
1

2π

� ∞

−∞
dω F (ω)e−i(ω+iδ)t (5.19)

where δ > 0 is infinitesimally small and using the later result that with a Hamiltonian that
is not explicitly time dependent the Green’s function depends only on time differences
t− t�, we can rewrite (5.18) in the form of the Kubo formula

ΔAt =
1

2π�

� ∞

−∞
dω F (ω)Gr

AB(ω + iδ)e−i(ω+iδ)t (5.20)

The δ > 0 in the exponent enforces the boundary condition (5.8).
We will now look into two applications of response functions.

Magnetic Susceptibility

The perturbation is a spatially homogeneous magnetic field that oscillates in time:

Bt =
1

2π

� ∞

−∞
dωB(ω)e−i(ω+iδ)t , (5.21)

which couples to the magnetic moment

�
m =

�

i

mi =
gµB

�
�

i

�

Si . (5.22)

Thus, the perturbing potential term in the Hamiltonian becomes

Vt = − �
m ·

�

Bt = − 1

2π

�

α

� ∞

−∞
dωmαBα(ω)e−i(ω+iδ)t (5.23)
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where α = x, y, z are Cartesian directions. An interesting quantity is now the magnetiza-
tion in response to the applied field. As it is

�

M =
1

V
��
m� = gµB

�V
�

i

�
�

Si� , (5.24)

we have to choose the magnetic momentum operator for both Â and B̂ operators in the
Kubo formula:

Mβ
t −Mβ

0 = − 1

V

�

α

� ∞

−∞
dt� Bα

t�
��
mβ(t);mα(t�)

��
. (5.25)

Only in a ferromagnet there is a finite magnetizationMβ
0 without a field. Eq. (5.25) defines

the magnetic susceptibility tensor

χβα
ij (t, t

�) = − µ0

V

g2µ2
B

�2
��
Sβ
i (t);S

α
j (t

�)
��

(5.26)

as a retarded Green’s function. Thus

ΔMβ
t =

1

µ0

�

ij

� ∞

−∞
dt� Bα

t�χ
βα
ij (t, t

�) (5.27)

or in terms of frequency

ΔMβ
t =

1

2πµ0

�

ij

�

α

� ∞

−∞
dω e−i(ω+iδ)tχβα

ij (ω)B
α(ω) (5.28)

We have implicitly assumed that the system we consider has permanent localized mo-
ments.
Two types of susceptibilities are interesting: The longitudinal susceptibility

χzz
ij (ω) =

µ0

V

g2µ2
B

�2
��
Sz
i ;S

z
j

��
ω

(5.29)

where the index indicates the Fourier transform of the retarded Green’s function. This
can be used to obtain information about the stability of magnetic orderings. For the
paramagnetic phase, one calculates the spatial Fourier transform

χzz
�
q
(ω) =

1

N

�

ij

χzz
ij (ω)e

i
�
q·
��
Ri−

�
Rj

�
(5.30)

At the singularities of this response function, an infinitesimally small field is sufficient
to create a finite magnetization, i.e. a spontaneous ordering of the moments. For that
purpose, the conditions under which

�
lim

(
�
q,ω)→0

χzz
�
q
(ω)

�−1

= 0 (5.31)

are studied; they indicate the paramagnetic ↔ ferromagnetic transition.
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The other interesting case is the transversal susceptibility

χ+−
ij (ω) = − µ0

V

g2µ2
B

�2
��
S+
i ;S

−
j

��
ω

where S±
i = Sx

i ± iSy
i (5.32)

Poles of this susceptibility correspond to spin wave (magnon) energies:

�
χ+−

�
q

(ω)
�−1

= 0 ⇐⇒ ω = ω(
�
q) . (5.33)

The examples show that linear response theory not only treats weak external perturbations
but also yields information about the unperturbed system.

Electrical conductivity

Now we consider a spatially homogeneous electrical field that oscillates in time:

�

Et =
1

2π

� ∞

−∞
dω

�

E(ω)e−i(ω+iδ)t . (5.34)

The electrical field couples to the electrical dipole moment
�

P

�

P =

�
d3r

�
rn(

�
r) . (5.35)

We consider N point charges qi at positions
�
ri(t); the charge density is

n(
�
r) =

N�

i=1

qiδ(
�
r − �

ri) . (5.36)

This gives a dipole moment operator

�

P =
N�

i=1

qi
�
ri . (5.37)

The electrical field causes the additional external potential term in the Hamiltonian

Vt = −
�

P ·
�

Et = − 1

2π

�

α

� ∞

−∞
dω PαEα(ω)e−i(ω+iδ)t . (5.38)

An interesting quantity is the response of the current density to the external field:

�

j =
1

V

N�

i=1

qi
d
�
ri
dt

=
1

V

d
�

P

dt
. (5.39)

Its expectation value without field disappears:

��j�0 = 0 . (5.40)

After switching the field on, we have

�jβ�t = − 1

�
�

α

� ∞

−∞
dt� Eα

t�
��
jβ(t);Pα(t�)

��
. (5.41)
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In terms of the Fourier transforms this becomes

�jβ�t =
1

2π

�

α

� ∞

−∞
dω e−i(ω+iδ)tσβα(ω)Eα(ω) (5.42)

This is Ohms law, defining the electrical conductivity tensor

σβα(ω) ≡ −
��
jβ;Pα

��
ω

(5.43)

that has retarded Green’s functions as components. This can be rewritten as

σβα(ω) = i
N

V

q2

m(ω + iδ)
δαβ +

i

�

��
jβ; jα

��

ω + iδ
(5.44)

The first term represents the conductivity of a noninteracting electron system as given by
classical Drude theory, and the second one involving a retarded current-current Green’s
function represents the interaction between the particles.

5.2 Two time Green’s functions

The full Green’s function formalism has two more Green’s functions besides the retarded
Green’s function:
Retarded Green’s function

Gr
AB(t, t

�) ≡ ��A(t);B(t�)��r = − iΘ(t− t�)
�
[A(t), B(t�)]−ε

�
(5.45)

Advanced Green’s function

Ga
AB(t, t

�) ≡ ��A(t);B(t�)��a = iΘ(t� − t)
�
[A(t), B(t�)]−ε

�
(5.46)

Causal Green’s function

Gc
AB(t, t

�) ≡ ��A(t);B(t�)��c = − i
�
Tε

�
A(t)B(t�)

��
(5.47)

Again, we have for the operators in Heisenberg representation

X(t) = e
i
�HtXe−

i
�Ht ,H = H − µN̂, �X� = Tr(e−βHX)

Tre−βH , β =
1

kBT
(5.48)

where we omit the index 0 of H and H as we are not dealing with external perturbations
in this chapter. � has the value ε = − for Fermi operators, ε = + for Bose operators:

�
A[t], B(t�)

�
−ε

= A(t)B(t�)− εB(t�)A(t) (5.49)

ε = − yields the anticommutator, ε = + the commutator.
The Wick time ordering operator Tε sorts operators in a product according to their
time arguments:

Tε(A(t)B(t�)) = Θ(t− t�)A(t)B(t�) + εΘ(t� − t)B(t�)A(t) (5.50)

The ε makes it distinct from the Dirac time ordering operator.
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The spectral density is another very important function of manybody theory:

SAB(t, t
�) =

1

2π

�
[A(t), B(t�)]−ε

�
(5.51)

It contains the same information as the Green’s function.
We now prove the fact that Green’s function and spectral density are homogeneous in
time if the Hamiltonian is not explicitly time dependent:

∂H
∂t

= 0 → Gα
AB(t, t

�) = Gα
AB(t− t�) , (α = r, a, c)

SAB(t, t
�) = SAB(t− t�) (5.52)

We only need to prove that for the so called correlation functions

�A(t)B(t�)� , �B(t�)A(t)� (5.53)

The proof is based on cyclic invariance of the trace:

Tr
�
e−βHA(t), B(t�)

�
= Tr

�
e−βHe

i
�HtAe−

i
�H(t−t�)Be−

i
�Ht�

�

= Tr
�
e−βHe

i
�H(t−t�)Ae−

i
�H(t−t�)B

�

= Tr
�
e−βHA(t− t�)B(0)

�
(5.54)

Thus,

�A(t)B(t�)� = �A(t− t�)B(0)� , (5.55)

and analogously

�B(t�)A(t)� = �B(0)A(t− t�)� . (5.56)

Actually calculating the Green’s function can be done via the general equation of motion
for Heisenberg operators

i�
d

dt
AH(t) =

�
AH , HH

�
−(t) + i�

∂AH

∂t
(5.57)

We also have

d

dt
Θ(t− t�) = δ(t− t�) = − d

dt�
Θ(t− t�) (5.58)

Then, all three Green’s functions formally have the same equation of motion:

i�
∂

∂t
Gα

AB(t, t
�) = �δ(t− t�)

��
A,B

�
−ε

�
+
���

A,H
�
−(t);B(t�)

��α
(5.59)

But the solutions have to obey different boundary conditions:

Gr
AB(t, t

�) = 0 for t < t�

Ga
AB(t, t

�) = 0 for t > t�

Gc
AB(t, t

�) =

�
−i�A(t− t�), B(0)� for t > t�

−iε�B(0), A(t− t�)� for t < t� (5.60)
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On the right hand side of (5.59) a new Green’s functions appears as [A,H]− is again
an operator. Usually this leads to a higher order Green’s function, i.e. one that contains
more operators than the original Gα

AB(t, t
�). For this higher order Green’s function, ano-

ther equation of motion of type (5.59) can be written. This leads to an infinite chain of
equations of motion. The system of equations can only be solved if the chain is stopped at
some point by decoupling, i.e. by making physically motivated approximations to some
higher order Green’s functions.
Often it is more practical to work in the frequency domain rather than in the time domain:

Gα
AB(ω) ≡ ��A;B��αω =

� ∞

−∞
d(t− t�)Gα

AB(t− t�)eiω(t−t�)

Gα
AB(t− t�) =

1

2π

� ∞

−∞
dωGα

AB(ω)e
−iω(t−t�) (5.61)

The spectral density transforms in the same way. If we use the exponential definition of
the Delta function:

2πδ(x) =

� ∞

−∞
dyeixy (5.62)

or equivalently

2πδ(x) =

� ∞

−∞
dye−ixy (5.63)

we have for our case:

δ(ω − ω�) =
1

2π

� ∞

−∞
d(t− t�) e±i(ω−ω�)(t−t�)

δ(t− t�) =
1

2π

� ∞

−∞
dω e±iω(t−t�) (5.64)

the equation of motion (5.59) becomes

ω��A;B��αω =
��
A,B

�
−ε

�
+

1

�
���

A,H
�
−;B

��α
ω

(5.65)

This is now an algebraic equation, not a differential equation any more. Meanwhile, the
difficulty that an infinite chain of such equations is produced remains.

Spectral representation

Spectral representations of the Green’s functions are important in order to find boundary
conditions for the Eq. (5.65).
We take En and |En� to be eigenenergies and eigenvectors of the Hamiltonian H of the
system we consider:

H|En� = En|En� (5.66)

We assume the states |En� to form a complete orthonormal system
�

n

|En��En| = 1 ; �En|Em� = δnm (5.67)
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First we consider the correlation functions �A(t)B(t�)� and �B(t�)A(t)� (Ω = Tre−βH):

Ω�A(t)B(t�)� = Tr
�
e−βHA(t)B(t�)

�
=

�

n

�En|e−βHA(t)B(t�)|En�

=
�

n,m

�En|A(t)|Em��Em|B(t�)|En�e−βEn

=
�

n,m

�En|A|Em��Em|B|En�e−βEne
i
� (En−Em)(t−t�)

=
�

n,m

�En|B|Em��Em|A|En�e−βEne−β(Em−En)e−
i
� (En−Em)(t−t�) (5.68)

Introducing a unit operator 1 has significantly simplified the time dependence of the
Heisenberg operators. In the last step we have exchanged n and m indices. Analogously
we find for the other correlation function

Ω�B(t�)A(t)� =
�

n,m

�En|B|Em��Em|A|En�e−βEne−
i
� (En−Em)(t−t�) (5.69)

If we now substitute (5.68) and (5.69) into the definition of the spectral density (5.51) or
rather its Fourier transform

SAB(ω) =

� ∞

−∞
d(t− t�)SAB(t− t�)eiω(t−t�)

=
1

2π

� ∞

−∞
d(t− t�)eiω(t−t�)

�
�A(t)B(t�)� − ε�B(t�), A(t)�

�

=
1

Ω

1

2π

� ∞

−∞
d(t− t�)ei(t−t�)

�
ω−En−Em

�

�
e−βEn(e−β(Em−En) − ε)×

×
�

nm

�En|B|Em��Em|A|En� (5.70)

and with the definition of the delta function (5.64)

SAB(ω) =
1

Ω

�

nm

�En|B|Em��Em|A|En�(eβ�ω − ε)e−βEnδ
�
ω − En − Em

�

�
(5.71)

The argument of the delta function contains the possible excitation energies of the system.
Now we will express the Green’s functions with the help of the spectral density. We use
the following representation of the step function:

Θ(t− t�) =
i

2π

� ∞

−∞
dx

eix(t−t�)

x+ i0+
(5.72)

This can be proven using the residue theorem (see below). Using this relation, we can
transform the retarded Green’s function

Gr
AB(ω) =

� ∞

−∞
d(t− t�)eiω(t−t�)

�
− iΘ(t− t�)

��
2πSAB(t− t�)

�

=

� ∞

−∞
d(t− t�)eiω(t−t�)

�
− iΘ(t− t�)

� � ∞

−∞
dω�SAB(ω

�)e−iω�(t−t�)

=

� ∞

−∞
dω�

� ∞

−∞
dx

SAB(ω
�)

x+ i0+
1

2π

� ∞

−∞
d(t− t�)e−i(x−ω+ω�)(t−t�)

=

� ∞

−∞
dω�

� ∞

−∞
dx

SAB(ω
�)

x+ i0+
δ
�
x− (ω − ω�)

�
(5.73)
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This leads to the spectral representation of the retarded Green’s function

Gr
AB(ω) =

� ∞

−∞
dω� SAB(ω

�)

ω − ω� + i0+
(5.74)

Analogous treatment of the advanced Green’s function yields the spectral representa-
tion of the advanced Green’s function

Ga
AB(ω) =

� ∞

−∞
dω� SAB(ω

�)

ω − ω� − i0+
(5.75)

The only (but significant) difference between Gr
AB and Ga

AB is the sign of i0+; it deter-
mines the analytic properties of retarded and advanced functions, Gr

AB can be continued
analytically into the upper, Ga

AB into the lower complex plane. Neither is true for the cau-
sal function Gc

AB. Substituting the spectral representation (5.71) of the spectral density
into (5.74) and (5.75) yields the important expression

G
r
a
AB =

1

Ω

�

nm

�En|B|Em��Em|A|En�e−βEn
eβ(En−Em) − ε

ω − (En−Em)
� ± i0+

(5.76)

Both functions are meromorphic in the complex plane (holomorphic except for a set
of isolated points) with singularities at the exact excitation energies of the interacting
system. As retarded and advanced Green’s functions have the same physical content,
they are sometimes joined into one function GAB(ω); G

r
AB and Ga

AB are considered the
two branches of a single function in the complex ω plane (obtained by considering ω+ iη
or ω − iη a complex variable and calling it again ω):

GAB(ω) =

� ∞

−∞
dω�SAB(ω

�)

ω − ω� =

�
Gr

AB(ω) if Imω > 0

Ga
AB(ω) if Imω < 0

(5.77)

The singularities are on the real axis. In text books, r and a indices are often omitted,
and interpretation of Green’s functions written like in Eq. (5.77) in terms of retarded or
advanced Green’s functions is left to the reader.
We still need the spectral representation of the causal Green’s functions. Using the defi-
nition (5.47), we have

Gc
AB(ω) = − i

� ∞

−∞
d(t− t�)e−iω(t−t�)

�
Θ(t− t�)�A(t)B(t�)�+ εΘ(t� − t)�B(t�)A(t)�

�
(5.78)

Using results (5.68), (5.69) and (5.72), we obtain

Gc
AB(ω) =

1

Ω

�

nm

�En|B|Em��Em|A|En�e−βEn
1

2π

� ∞

−∞
dt��

� ∞

−∞
dx

1

x+ i0+

�
eβ(En−Em)ei

�
ω−En−Em

� −x
�
t�� + εei

�
ω−En−Em

� +x
�
t��
�

=
1

Ω

�

nm

�En|B|Em��Em|A|En�e−βEn

� ∞

−∞
dx

1

x+ i0+

�
eβ(En−Em)δ

�
ω − En − Em

�
− x

�
+ εδ

�
ω − En − Em

�
+ x

��
(5.79)
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This yields the spectral representation of the causal Green’s function

Gc
AB(ω) =

1

Ω

�

nm

�En|B|Em��Em|A|En�e−βEn

� eβ(En−Em)

ω − En−Em

� + i0+
− ε

ω − En−Em

� − i0+

�
(5.80)

We have expressed the retarded and advanced Green’s functions by the spectral density.
Using the Dirac identity

1

x± i0+
= P

1

x
± iπδ(x) (5.81)

that should be interpreted as

lim
δ→0+

�
dx

f(x)

x± iδ
= P

�
dx

f(x)

x
± iπf(0) (5.82)

with the Cauchy principal value denoted by P, we can write the spectral density in terms
of the Green’s functions:

GAB(ω + i0+)−GAB(ω − i0+)

=

� ∞

−∞
dωSAB(ω

�)
� 1

ω − ω� + i0+
− 1

ω − ω� − i0+

�

=

� ∞

−∞
dωSAB(ω

�)
�
− 2πiδ(ω − ω�)

�
=

2π

i
SAB(ω) , (5.83)

and thus

SAB(ω) =
i

2π

�
GAB(ω + i0+)−GAB(ω − i0+)

�
(5.84)

Assuming the spectral density to be real, this means

SAB(ω) = ∓ 1

π
ImG

r
a
AB(ω) (5.85)

We now prove the formula

θ(t) = lim
δ→0+

i

2π

� ∞

−∞
dx

e−ixt

x+ iδ
(5.86)

that was essential for arriving at the spectral representation of the Green’s functions
(5.74) and (5.75). We first consider the case t > 0. For these t values we can obtain a
closed integration contour by adding a semicircle of radius R in the lower complex plane
for the integral (5.86) (see Fig. 5.1); the factor e−ixt ensures that in the limit R → ∞, the
contribution of the semicircle to the integral vanishes (Jordan’s lemma). To see that, we
consider the argument −ixt of the exponential function:

−ixt = − i(x� + ix��)t = − ix�t+ x��t (5.87)

In order to have a vanishing exponential function in the limit R = |x| → ∞, we need
x��t → −∞ and thus a contour in the lower complex plane x�� < 0 for t > 0. Thus the
integral (5.86) can be written as

lim
δ→0+

i

2π

� ∞

−∞
dx

e−ixt

x+ iδ
= lim

δ→0+

i

2π

�

C<

dx
e−ixt

x+ iδ
(5.88)
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Abbildung 5.1: Integration
contour for the case t > 0.

C
<

Re

Imx

x

R

0

δ−i

This can be evaluated with the residue theorem
�

∂D

dx f(x) = 2πi
�

xi∈D
Res {f(xi)} (5.89)

where D is a domain in the complex plane with outline ∂D. The contour integration needs
to be done in the mathematically positive sense which is counterclockwise. The sum runs
over all poles xi of f(x) in D. Resf(xi) is the residue of f(x) at xi; if the Laurent series
of f(x) at xi has the form

f(x) =
a−1

x− xi

+
∞�

n=0

an(x− xi)
n (5.90)

then a−1 = Res {f(xi)}. For a simple pole at x0 the residue can be calculated as

Res {f(x0)} = lim
x→x0

(x− x0)f(x) (5.91)

Alternatively if f(x) = p(x)
q(x)

and q(x) has a simple zero at x = x0

Res {f(x0)} =
p(x0)

q�(x0)
(5.92)

For a pole of order m > 1

Res {f(x0)} =
1

(m− 1)!
lim
x→x0

�
dm−1

dxm−1

�
(x− x0)

mf(x)
��

(5.93)

Here,

a−1 = lim
x→−iδ

x+ iδ

x+ iδ
e−ixt = e−δt = 1 for δ → 0 (5.94)
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Thus,

lim
δ→0+

i

2π

�

C<

dx
e−ixt

x+ iδ
= 2πi

i

2π
a−1 = − 1 (5.95)

For the second case, t < 0, we have to close the integration contour C> in the upper half

C
>

Re

Imx

x

R

0

−iδ

Abbildung 5.2: Integration
contour for the case t < 0.

plane (see Fig. 5.2). Then we can write

lim
δ→0+

i

2π

� ∞

−∞
dx

e−ixt

x+ iδ
= lim

δ→0+

i

2π

�

C>

dx
e−ixt

x+ iδ
(5.96)

As the contour doesn’t contain a singularity of the integrand the value of the integral is
zero according to Cauchy’s integral theorem. Combining the cases for t > 0 and t < 0, we
find

lim
δ→0

i

2π

� ∞

−∞
dx

e−ixt

x+ iδ
= Θ(t) (5.97)

Now we can discuss the analytical properties of the Green’s functions, i.e. their analyticity
in the complex ω plane. First we defined the Green’s functions Gα

AB(ω) via (5.61) only
for real frequencies ω, but the spectral representations (5.74) and (5.75) offer an analytic
continuation in the complex ω plane. Meanwhile, Eq. (5.80) for the causal Green’s function
indicates that analytic continuation is not possible asGc

AB(ω) has singularities in the upper
and in the lower complex plane.
For retarded and advanced Green’s functions one can show that the continuation doesn’t
only exist but is analytic – for the retarded Green’s function in the upper complex plane
and for the advanced function in the lower complex plane. To see that we reconsider the
definition

Gα
AB(ω) =

�
dtGα

AB(t)e
iωt (5.98)
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and separate real and imaginary parts of ω:

ω = ω� + iω�� (5.99)

Then, because of

eiωt = eiω
�t−ω��t (5.100)

an analytic continuation in the complex plane is possible if only positive values of t are
accepted for ω�� > 0 and if only negative values of t are admitted for ω�� < 0 because
under these conditions e−ω��t guarantees the convergence of the integral (5.98) and its ω
derivatives for a large class of functions Gα

AB(ω). As the retarded Green’s function is only
nonzero for t > 0 and the advanced function only for t < 0, the convergence conditions are
fulfilled and thus the retarded Green’s function is analytic in the upper complex ω plane
and the advanced function in the lower. The casual function generally doesn’t permit
analytic continuation as ω�� > 0 as well as ω�� < 0 would lead to divergencies. This makes
retarded and advanced functions better suited for many applications.

Spectral theorem

We saw that Green’s functions and spectral density contain microscopic information about
the excitation energies of the considered system. We will now find that also the macrosco-
pic thermodynamic properties are available from suitably defined Green’s functions. We
start with the correlation function �B(t�), A(t)� because its spectral representation (5.69)
is similar to the corresponding representation of the spectral density (5.71). Combining
(5.69) and (5.71) yields

�B(t�)A(t)� =
� ∞

−∞
dω

S
(−)
AB (ω)

eβ�ω + 1
e−iω(t−t�) (5.101)

where we have chosen the anticommutator spectral density with ε = −1. When using
commutator spectral densities (ε = +1) a constant D needs to be added to this expression

�B(t�)A(t)� =
� ∞

−∞
dω

S
(ε)
AB(ω)

eβ�ω − ε
e−iω(t−t�) +

1

2
(1 + ε)D (5.102)

This is due to the fact that the commutator spectral density doesn’t determine the corre-
lation function completely. We can see that by separating diagonal (in ω) and offdiagonal
parts of SAB(ω) (Eq. (5.71))

S
(ε)
AB(ω) = Ŝ

(ε)
AB(ω) + (1− ε)Dδ(ω) (5.103)

where

Ŝ
(ε)
AB(ω) =

1

Ω

En �=Em�

n,m

�En|B|Em��Em|A|En�e−βEn
�
eβ�ω − ε

�
δ
�
ω − En − Em

�

�

D =
1

Ω

En=Em�

n,m

�En|B|Em��Em|A|En�e−βEn (5.104)
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The diagonal terms contained in D fall out of the commutator spectral density even
though they are needed for determining the correlations. We have

�B(t�)A(t)� = D +

� ∞

−∞
dω

Ŝ
(ε)
AB(ω)

eβ�ω − ε
e−iω(t−t�)

�A(t)B(t�)� = D +

� ∞

−∞
dω

Ŝ
(ε)
AB(ω)e

β�ω

eβ�ω − ε
e−iω(t−t�) (5.105)

as can be read off from the spectral representations (5.68) and (5.69).

Exact relations

There are a number of symmetry relations and sum rules for Green’s functions that are
useful as soon as approximations for calculating Green’s functions need to be developed.

1.

Gr
AB(t, t

�) = εGa
BA(t

�, t) (5.106)

follows from the definitions because

��A(t);B(t�)��r = − iΘ(t− t�)�[A(t), B(t�)]−ε�
= iεΘ(t− t�)�[B(t�), A(t)]−ε� = ε��B(t�);A(t)��a (5.107)

2.

Gr
AB(ω) = εGa

BA(−ω) for real ω (5.108)

follows by Fourier transforming Eq. (5.106). From the combined Green’s functions
for complex ω (Eq. (5.83)) we have

GAB(ω) = εGBA(−ω) for complex ω (5.109)

3.
�
Gr,a

AB(t, t
�)
�∗

= εGr,a
A†B†(t

�, t) (5.110)

4. Another important relation follows from the equation of motion:

� ∞

−∞
dω

�
ω��A;B��rω − �

�
[A,B]−ε

��
=

� ∞

−∞
dω ��[A,H]−;B��rω

=

� ∞

−∞
dω (−i)

� ∞

0

dt
��
[A,H]−(t), B(0)

�
−ε

�
eiωt

= �
� ∞

0

dt
�
[Ȧ(t), B(0)]−ε

� � ∞

−∞
dω eiωt = 2π�

� ∞

0

dt
�
[Ȧ(t), B(0)]−ε

�
δ(t)

(5.111)

Using
�∞
0

dx f(x)δ(x) = 1
2
f(0) we find

� ∞

−∞
dω

�
ωGr

AB(ω)− ��[A,B]−ε�
�
= π�

�
[Ȧ(0), B(0)]−ε

�
(5.112)
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and analogously for the other two Green’s functions

� ∞

−∞
dω

�
ωGa

AB(ω)− �
�
[A,B]−ε

��
= − π�

�
[Ȧ(0), B(0)]−ε

�

� ∞

−∞
dω

�
ωGc

AB(ω)− �
�
[A,B]−ε

��
= π�

��
Ȧ(0), B(0)

�
+ ε

�
B(0), Ȧ(0)

��
(5.113)

The importance for these relations arises from the following argument: The right
hand sides, being expectation values of products of operators (observables) are fi-
nite; thus, the integrals on the left hand side need to converge. This leads to the
requirement for the integrands:

lim
ω→∞

Gα
AB(ω) =

�
ω

�
[A,B]−ε

�
(5.114)

The expectation value on the right can usually be calculated directly so that this
relation determined the high frequency behavior of the Green’s function; they fall
off as 1

ω
. In case the (anti)commutator on the right hand side of (5.114) vanishes,

the Green’s function will go to zero with a higher power of 1
ω
for ω → ∞.

Kramers Kronig relations

We have seen that Gr
AB and Ga

AB are completely defined by the spectral density SAB. But
SAB can be obtained solely from the imaginary part of these functions. Thus, real and
imaginary parts of the Green’s functions are not independent. We consider the integral

Ic(ω) =

�

c

dω� Gr
AB(ω

�)

ω − ω� − i0+
(5.115)

Gr
AB(ω) is analytic in the complete upper frequency plane. If we take ω to be real, this

Abbildung 5.3: Integration
contour in the complex ω� pla-
ne for the Kramers Kronig
relations.

0
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ω

ω
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is true for the entire integrand; then the integral along the contour C of Fig. 5.3 becomes

Ic(ω) = 0 (5.116)

Letting the radius R of the semicircle go to infinity, the part of the contour integral along
the semicircle disappears because of (5.114), and using the Dirac identity (5.81) we find

0 =

� ∞

−∞
dω� Gr

AB(ω
�)

ω − ω� − i0+
= P

� ∞

−∞
dω� G

r
AB(ω

�)

ω − ω� + iπGr
AB(ω) (5.117)

This gives

Gr
AB(ω) =

i

π
P

� ∞

−∞
dω� G

r
AB(ω

�)

ω − ω� (5.118)

Analogously we find for the advanced Green’s function if we close the semicircle in the
lower complex ω� plane where Ga

AB(ω
�) is analytic and by replacing −i0+ by +i0+:

Ga
AB(ω) = − i

π
P

� ∞

−∞
dω� G

a
AB(ω

�)

ω − ω� (5.119)

This means that we don’t need to know the entire Green’s functions; it is enough to know
the real or the imaginary part, and the other part is given by the Kramers Kronig
relations which we read off from (5.118) and (5.119):

ReG
r
a
AB(ω) = ∓ 1

π
P

� ∞

−∞
dω� ImG

r
a
AB(ω

�)

ω − ω�

ImG
r
a
AB(ω) = ± 1

π
P

� ∞

−∞
dω� ReG

r
a
AB(ω

�)

ω − ω� (5.120)

Assuming the spectral density to be real, (Eq. (5.85)) is valid and thus

ReGr
AB(ω) = ReGa

AB(ω) = P

� ∞

−∞
dω� SAB(ω

�)

ω − ω�

ImGr
AB(ω) = − ImGa

AB(ω) = − πSAB(ω) (5.121)

Eqs. (5.71) and (5.72) provide a connection to the causal Green’s function:

ImGc
AB(ω) = − πSAB(ω)

eβ�ω + ε

eβ�ω − ε

ReGc
AB(ω) = ReGr,a

AB(ω) . (5.122)

While the Kramers Kronig relations (5.120) are generally valid, the following relations
require the spectral density to be real as it often is; in this case, the different types of
Green’s functions can be converted by these equations; this can be useful as equations
of motion methods determine Gr,a

AB while diagrammatic techniques are used to calculate
Gc

AB.
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5.3 Application to noninteracting electrons

We will get to know the properties of Green’s functions for the simple example of nonin-
teracting electrons. The advantage of using the Green’s function formalism is not obvious
in this case as all results could have been obtained with other methods, but the real
strength of the new formalism will become clear in the case of interacting electrons.
We first consider Bloch electrons that don’t interact with another but are subject to the
periodic potential of the lattice. The Hamiltonian is

H = H0 − µN̂ , H0 =
�
�
kσ

ε(
�

k)a†�
kσ
a�
kσ

, N̂ =
�
�
kσ

a†�
kσ
a�
kσ

(5.123)

All properties we are interested in can be obtained from the socalled one-electron Green’s
function

Gα
�
kσ
(ω) = ��a�

kσ
; a†�

kσ
��αω , α = r, a, c ; ε = − 1 (5.124)

The choice of ε = −1 is plausible as we deal with a purely Fermionic system but it is not
necessary. We now proceed in the same way in which more complicated problems would
be tackled: The first step is writing and solving the equation of motion:

ωGα
�
kσ
(ω) =

��
a�
kσ
, a†�

kσ

�
+

�
+
���

a�
kσ
,H

�
−; a

†
�
kσ

��α
(5.125)

Using the commutation relations

�
a�
kσ� , a�k�σ�

�
+
=

�
a†�
kσ
a†�
k�σ�

�
+
= 0,

�
a�
kσ
a†�
k�σ�

�
+
= δ�

k
�
k�
δσσ� (5.126)

we find

�
a�
kσ
,H

�
− =

�
�
k�σ�

�
ε(

�

k�)− µ
��
a�
kσ
, a†�

k�σ�a
�
k�σ�

�
−

=
�
�
k�σ�

(ε(
�

k�)− µ)δ�
k
�
k�
δσσ�a�

k�σ� =
�
ε(

�

k)− µ
�
a�
kσ

(5.127)

Substituting in (5.125) leads to

ωGα
�
kσ
(ω) = 1 +

�
ε(

�

k
�
− µ)Gα

�
kσ
(ω) (5.128)

solving for Gα
�
kσ

and fulfilling the boundary conditions with +i0+ or −i0+ yields

G
r
a
�
kσ
(ω) =

1

ω − ε(
�

k) + µ± i0+
(5.129)

We will use the convention � = 1 from now on. The singularities of this function correspond
to the possible excitation energies of the system. With complex argument ω we have the
combined function

G�
kσ
(ω) =

1

ω − ε(
�

k) + µ
(5.130)
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The one electron spectral density is

S�
kσ
(ω) = δ

�
ω − ε(

�

k) + µ
�

(5.131)

From the frequency domain we can now change to the time domain. The retarded Green’s
function is

Gr
�
kσ
(t− t�) =

1

2π

� ∞

−∞
dω

e−iω(t−t�)

ω − ε(
�

k) + µ+ i0+
(5.132)

Substitution of ω by ω� = ω − ε(
�

k) + µ leads to

Gr
�
kσ
(t− t�) = e−i

�
ε(
�
k)−µ

�
(t−t�) 1

2π

� ∞

−∞
dω� e

−iω�(t−t�)

ω� + i0+
(5.133)

Using Eq. (5.72) gives

Gr
�
kσ
(t− t�) = − iΘ(t− t�)e−i

�
ε(
�
k)−µ

�
(t−t�) (5.134)

This shows how indeed the introduction of +i0+ has fulfilled the boundary condition.
Analogously we find for the advanced function:

Ga
�
kσ
(t− t�) = − iΘ(t� − t)e−i

�
ε(
�
k)−µ

�
(t−t�) (5.135)

In the noninteracting system, the time dependent Green’s functions show an oscillatory
behavior with a frequency that corresponds to an exact excitation energy. We will see later
that this remains true for interacting systems, but they will additionally have a damping
factor that corresponds to a finite lifetime of the quasiparticles. The time dependent
spectral density is easily found from (5.131):

S�
kσ
(t− t�) =

1

2π
e−i

�
ε(
�
k)−µ

�
(t−t�) (5.136)

The average occupation number �n�
kσ
� of the level (

�

kσ) can be found by substituting
(5.131) into the spectral theorem (5.102)

�
a†�
kσ
(t)a�

kσ
(t)

�
= �n�

kσ
� =

� ∞

−∞
dω

δ(ω − ε(
�

k) + µ)

eβω + 1
=

1

eβ
�
ε(
�
k)−µ

�
+ 1

(5.137)

This is the result known from quantum statistics, the Fermi function

f−(ω) =
1

eβ(ω−µ) + 1
(5.138)

evaluated for ω = ε(
�

k). Using �n�
kσ
� we can fix the total electron number Ne by summing

over wave vector and spin:

Ne =
�
�
kσ

� ∞

−∞
dω S�

kσ
(ω)

1

eβω + 1
=

�
�
kσ

� ∞

−∞
dω f−(ω)S�

kσ
(ω − µ) (5.139)
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If we denote with ρσ(ω) the density of states per spin for the free Fermion system (for
which ρσ(ω) = ρ−σ(ω)), we can write Ne as

Ne = N
�

σ

� ∞

−∞
dω f−(ω)ρσ(ω) (5.140)

N is the number of lattice sites if we consider a one band model; ρσ(ω) is normalized to
1. Comparing (5.139) and (5.140) leads to the definition of quasiparticle density of
states

ρσ(ω) =
1

N

�
�
k

S�
kσ
(ω − µ) (5.141)

These considerations are not only true for the free system but are generally valid. We will
see that (5.141) represents the general definition of the quasiparticle density of states for
any interacting electron system. For noninteracting systems we can enter S�

kσ
(ω):

ρσ(ω) =
1

N

�
�
k

δ(ω − ε(
�

k)) (5.142)

The internal energy U is the thermodynamic expectation value of the Hamiltonian and
therefore determined in a simple way by �n�

kσ
�:

U = �H0� =
�
�
kσ

ε(
�

k)�n�
kσ
� = 1

2

�
�
kσ

� ∞

−∞
dω

�
ω + ε(

�

k)
�
f−(ω)S�

kσ
(ω − µ) (5.143)

The last expression will turn out to be generally valid for interacting systems. From U we
obtain the free energy F and thus the entire thermodynamics by considering that

F (T, V ) = U(T, V )− T S(T, V ) = U(T, V ) + T

�
∂F

∂T

�

V

(5.144)

which leads to

U(T, V ) = − T 2

�
∂

∂T

�
1

T
F (T, V )

��

V

(5.145)

Using the third law of thermodynamics

lim
T→0

�
1

T
(F (T )− F (0))

�
=

�
∂F

∂T

�

V

(T = 0) = − S(T = 0, V ) = 0 (5.146)

and F (0, V ) = U(0, V ) we can integrate (5.145) and obtain

F (T, V ) = U(0, V )− T

� T

0

dT � U(T �, V )− U(0, V )

T �2 (5.147)

All other properties of equilibrium thermodynamics can be derived from F (T, V ). Here
we considered Green’s functions Gα

�
kσ
(ω) corresponding to Bloch electrons; we could also

have worked in Wannier representation. For the Green’s function

Gα
ijσ(ω) = ��aiσ; a†jσ��αω (5.148)
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one finds the equation of motion

ωGα
ijσ(ω) = δij +

�

m

(tim − µδim)G
α
mjσ(ω) (5.149)

that doesn’t directly decouple but can be solved by Fourier transformation:

G
r
a
ijσ(ω) =

1

N

�
�
k

ei
�
k(

�
Ri−

�
Rj)

ω − (ε(
�

k)− µ)± i0+
(5.150)

5.4 Quasiparticles

We will now investigate how to extract information about interacting electron systems
using Green’s functions. We consider the Hamiltonian in Bloch representation

H =
�
�
kσ

ε(
�

k)a†�
kσ
a�
kσ

+
1

2

�
�
k
�
p
�
qσ�σ

v�
k
�
p
(
�
q)a†�

k+
�
qσ
a†�
p−�

qσ�a�
pσ�a�

kσ
(5.151)

where we consider a one band problem so that we can suppress band indices. The Bloch
energies are:

ε(
�

k) =

�
d3r ψ∗

�
k
(
�
r)

�
− �2

2m
Δ+ V (

�
r)

�
ψ�
k
(
�
r) (5.152)

where ψ�
k
(
�
r) is a Bloch function and V (

�
r) is the periodic lattice potential. The ε(

�

k) are
given once the model that we study is specified. The Coulomb matrix element is

v�
k
�
p
(
�
q) =

e2

4πε0

�
d3r1d

3r2
ψ∗

�
k+

�
q
(
�
r1)ψ

∗
�
p−�

q
(
�
r2)ψ�

p(
�
r2)ψ�

k
(
�
r1)

|�r1 − �
r2|

(5.153)

For a constant lattice potential V (
�
r) = const this becomes

v�
k
�
p
(
�
q)

V (
�
r)=const−−−−−−→ v0(

�
q) =

e2

ε0V q2
(5.154)

We will also use the Hamiltonian in Wannier representation

H =
�

ijσ

tija
†
iσajσ +

1

2

�

ijklσσ�

v(ij; kl)a†iσa
†
jσ�alσ�akσ (5.155)

The hopping integrals tij are connected to the Bloch energies ε(
�

k) by Fourier transform.
We will now see that the one electron Green’s functions

Gα
�
kσ
(ω) ≡ ��a�

kσ
; a†�

kσ
��αω ,

Gα
ijσ(ω) ≡ ��aiσ; a†jσ��αω , α = r, a, c ; ε = − 1 (5.156)
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and the corresponding one electron spectral density

S�
kσ
(ω) =

1

2π

� ∞

−∞
d(t− t�)e−iω(t−t�)

��
a�
kσ
(t), a†�

kσ
(t�)

�
+

�

Sijσ(ω) =
1

2π

� ∞

−∞
d(t− t�)e−iω(t−t�)

��
aiσ(t), a

†
jσ(t

�)
�
+

�
(5.157)

determine the full equilibrium thermodynamics also for interacting electron systems. To
calculate them, we write down the equation of motion of the

�

k-dependent Green’s function,
we need the commutator

�
a�
kσ
,H

�
− = (ε(

�

k)− µ)a†�
kσ

+
�
�
p
�
qσ�

v�
p,
�
k+

�
q
(
�
q)a†�

p−�
qσ
a�
pσ�a�

k+
�
qσ

(5.158)

using the higher order Green’s function

αΓσ�σ
�
p
�
k;

�
q
(ω) ≡ ��a†�

p−�
qσ
a�
pσ�a�

k+
�
qσ
; a†�

kσ
��αω (5.159)

we have the equation of motion

�
ω − ε(

�

k) + µ
�
Gα

�
kσ
(ω) = 1 +

�
�
p
�
qσ�

v�
p,
�
k+

�
q
(
�
q)αΓσ�σ

�
p
�
k;

�
q
(ω) (5.160)

The unknown function Γ prevents us from directly solving for Gα
�
kσ
. But we postulate that

the following decomposition is possible:

��[a�
kσ
,H−H0]−; a

†
�
kσ
��αω =

�
�
p
�
qσ�

v�
p,
�
k+

�
q
(
�
q)αΓσ�σ

�
p
�
k;

�
q
≡ Σα

σ(
�

k,ω)Gα
�
kσ
(ω) (5.161)

This equation defines the self energy Σα
σ(

�

k,ω). It allows us to solve Eq. (5.160) for Gα
�
kσ
:

Gα
�
kσ
(ω) =

1

ω − ε(
�

k) + µ− Σα
σ(

�

k,ω)
(5.162)

Comparison with the corresponding expression for noninteracting electrons shows that
the entire effect of the particle interactions is contained in the selfenergy. Usually it is a
complex function of (

�

k,ω); the real part determines the energy of the quasiparticles, and
the imaginary part their lifetime.
We can rearrange (5.162) a bit; writing G

(0)
�
kσ

for the one electron Green’s function of

noninteracting electrons, we have (suppressing the index α)

G�
kσ
(ω) =

��
G

(0)
�
kσ
(ω)

�−1 − Σσ(
�

k,ω)
�−1

��
G

(0)
�
kσ
(ω)

�−1 − Σσ(
�

k,ω)
�
G�

kσ
(ω) = 1 (5.163)

This gives us the socalled Dyson equation

G�
kσ
(ω) = G

(0)
�
kσ
(ω) +G

(0)
�
kσ
(ω)Σσ(

�

k,ω)G�
kσ
(ω) (5.164)
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Electronic self energy

We will now investigate the general structure of self energy, Green’s function and spectral
density. The self energy corresponding to Eq. (5.162) is in general a complex quantity.

Σα
σ(

�

k,ω) = Rα
σ(

�

k,ω) + iIασ (
�

k,ω) , α = r, a, c (5.165)

Eq. (5.110) for the Green’s function implies

�
Σa

σ(
�

k,ω)
�∗

= Σr
σ(

�

k,ω) (5.166)

This simple relation allows us to concentrate on the retarded Green’s functions, and we
will omit the +i0+ if Iσ �= 0. We can rewrite Eq. (5.162) as

Gr
�
kσ
(ω) =

ω − ε(
�

k) + µ−Rσ(
�

k,ω) + iIσ(
�

k,ω)
�
ω − ε(

�

k) + µ−Rσ(
�

k,ω)
�2

+
�
Iσ(

�

k,ω)
�2 (5.167)

Thus, the spectral density is

S�
kσ
(ω) = − 1

π

Iσ(
�

k,ω)
�
ω − ε(

�

k) + µ−Rσ(
�

k,ω)
�2

+
�
Iσ(

�

k,ω)
�2 (5.168)

If we compare this to the spectral representation of the spectral density (5.71)

S�
kσ
(ω) =

1

Ω

�

n,m

���En|a†�
kσ
|Em�

��2e−βEn(eβω + 1)δ
�
ω − (En − Em)

�
(5.169)

which is nonnegative for all (
�

k, σ,ω), we find for the imaginary part of the retarded self
energy

Iσ(
�

k,ω) ≤ 0 . (5.170)

We will now investigate (5.168) further. Without explicit knowledge of Rσ(
�

k,ω) and

Iσ(
�

k,ω) we expect more or less pronounced maxima at the resonances

ωiσ(
�

k) ≡ ε(
�

k)− µ+Rσ

��
k,ωiσ(

�

k)
�
, i = 1, 2, 3, . . . (5.171)

We have to distinguish two cases:
Case 1: In a certain energy range containing ωiσ,

Iσ(
�

k,ω) ≡ 0 (5.172)

Then we have to consider the limit Iσ → −0+. Representing the delta function as the
limit

δ(ω − ω0) =
1

π
lim
x→0

x

(ω − ω0)2 + x2
(5.173)

we have

S�
kσ
(ω) = δ

�
ω − ε(

�

k) + µ−Rσ(
�

k,ω)
�

(5.174)
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Using

δ[f(x)] =
�

i

1

|f �(xi)|
δ(x− xi) ; f(xi) = 0 (5.175)

we can write this as

S�
kσ
(ω) =

n�

i=1

αiσ(
�

k)δ
�
ω − ωiσ(

�

k)
�

αiσ(
�

k) =
���1− ∂

∂ω
Rσ(

�

k,ω)
���
−1

ω = ωiσ

(5.176)

The sum runs over the resonances ωiσ in the energy range for which Eq. (5.172) holds.
Case 2: We consider

Iσ(
�

k,ω) �= 0 (5.177)

but in a certain energy range around the resonance ωiσ

��Iσ(
�

k,ω)
�� �

��ε(
�

k)− µ+Rσ(
�

k,ω)
�� (5.178)

There we expect a pronounced maximum at ω = ωiσ. To see this, we expand the expression

Fσ(
�

k,ω) = ε(
�

k)− µ+Rσ(
�

k,ω) (5.179)

close to the resonance up to the linear term:

Fσ(
�

k,ω) = Fσ(
�

k,ωiσ) + (ω − ωiσ)
∂Fσ

∂ω

���
ω=ωiσ

+ · · ·

= ωiσ(
�

k) + (ω − ωiσ)
∂Rσ

∂ω

���
ω=ωiσ

+ · · · (5.180)

This means

(ω − ε(
�

k) + µ−Rσ(
�

k,ω))2 � (ω − ωiσ)
2
�
1− ∂Rσ

∂ω

���
ω=ωiσ

�2

= α−2
iσ (

�

k)
�
ω − ωiσ(

�

k)
�2

(5.181)

We substitute this expression in (5.168), assuming that Iσ(
�

k,ω) is only weakly dependent
on ω around ωiσ so that

Iσ(
�

k,ω) ≈ Iσ
��
k,ωiσ(

�

k)
�
≡ Iiσ(

�

k) (5.182)

and find the following approximation for the spectral density:

S
(i)
�
kσ
(ω) ≈ − 1

π

α2
iσ(

�

k)Iiσ(
�

k)
�
ω − ωiσ(

�

k)
�2

+
�
αiσ(

�

k)Iiσ(
�

k)
�2 (5.183)

Under our assumptions, the spectral density has a Lorentzian shape close to the resonance.
These considerations show that the spectral density will typically be a linear combination
of weighted Lorentzians and delta peaks. The consequence for the time dependence of
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the spectral density in Case 1 is like in a noninteracting electron system an undamped
oscillation:

S�
kσ
(t− t�) =

1

2π

n�

i=1

αiσ(
�

k)e−iωiσ(
�
k)(t−t�) (5.184)

The resonance frequencies ωiσ(
�

k) determine the oscillation frequencies. In Case 2, the Lor-
entzians lead to damped oscillations. To see that we assume that (5.183) is approximately
valid for the entire energy range. Then we can write

S
(i)
�
kσ
(t− t�) ≈ 1

4π2i

� ∞

−∞
dω e−iω(t−t�)αiσ(

�

k)×

×
�

1

ω − ωiσ(
�

k) + iαiσ(
�

k)Iiσ(
�

k)
− 1

ω − ωiσ(
�

k)− iαiσ(
�

k)Iiσ(
�

k)

�
(5.185)

because

1

ω − ωiσ(
�

k) + iαiσ(
�

k)Iiσ(
�

k)
− 1

ω − ωiσ(
�

k)− iαiσ(
�

k)Iiσ(
�

k)

=
−2iαiσ(

�

k)Iiσ(
�

k)
�
ω − ωiσ(

�

k)
�2

+
�
αiσ(

�

k)Iiσ(
�

k)
�2 (5.186)

The integrals can be solved with the residue theorem. The spectral weights αiσ(
�

k) are
positive definite so that because of Eq. (5.170)

αiσ(
�

k)Iiσ(
�

k) ≤ 0 (5.187)

Thus the first term has a pole in the upper, the second in the lower complex plane.
Therefore we choose the integration contours dependent on t > t� as

� ∞

−∞
dω . . . =

��
C< dω . . . for t− t� > 0�
C> dω . . . for t− t� < 0

(5.188)

where C< is a contour closed by a semicircle in the lower complex plane, C> in the upper
complex plane. Then the exponential function in (5.185) suppresses the contribution of
the semicircle. This yields (see Eq. (2.87))

S
(i)
�
kσ
(t− t�) ≈ 1

2π
αiσ(

�

k)e−iωiσ(
�
k)(t−t�)e−

��αiσ(
�
k)Iiσ(

�
k)

��|t−t�| (5.189)

This is indeed a damped oscillation, again with the resonance frequency, but now damped
with the damping mostly given by the imaginary part of the self energy. Thus we expect
for interacting systems a spectral density S�

kσ
(t − t�) that is composed of damped and

undamped oscillations.
We will learn more about the significance of the spectral density S�

kσ
(t− t�) by considering

the special case T = 0, |
�

k| > kF , t > t� where kF is the Fermi wave vector; thus, the system

is in its ground state |E0�. By addition of a (
�

k, σ) electron at time t the state

|ϕ0(t)� = a†�
kσ
(t)|E0� (5.190)
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is created which is not necessarily an eigenstate of the Hamiltonian. If we now consider
the definition

S�
kσ
(t− t�) =

1

2π

�
[a�

kσ
(t), a†�

kσ
(t�)]+

�

of the spectral density, due to |
�

k| > kF only one term can contribute; thus,

2πS�
kσ
(t− t�) = �ϕ0(t)|ϕ0(t

�)� (5.191)

This has a simple interpretation: 2πS�
kσ
(t−t�) is the probability that the state |ϕ0(t)� that

was created by addition of a (
�

k, σ) electron from the state |E0� at time t� will still exist at

t > t�; S�
kσ
(t− t�) characterizes the time evolution or propagation of an additional (

�

k, σ)
electron in the N particle system. This is why S�

kσ
(and Gα

�
kσ
) are sometimes propagators.

If we had assumed |
�

k| < kF , S�
kσ
(t− t�) would describe the propagation of a hole.

There are two typical states:

stationary state: |�ϕ0(t)|ϕ0(t
�)�|2 = const

state with finite lifetime: |�ϕ0(t)|ϕ0(t
�)�|2 −−−−−→

t−t�→∞
0 (5.192)

We now apply this consideration first to noninteracting electrons. The Hamiltonian in
Bloch formulation is

H =
�
�
kσ

(ε(
�

k)− µ)a†�
kσ
a�
kσ

(5.193)

Now we can calculate
�
H, a†�

kσ

�
− =

�
ε(

�

k)− µ
�
a†�
kσ

(5.194)

and

H0

�
a†�
kσ
|E0�

�
= a†�

kσ
H0|E0�+

�
H0, a

†
�
kσ

�
−|E0� =

�
E0 + ε(

�

k)− µ
��
a†�
kσ
|E0�

�
(5.195)

In this case, a†�
kσ
|E0� turns out to be an eigenstate of H0 again. Further, we find

|ϕ0(t)� = eiH0ta†�
kσ
e−iH0t|E0� = e−iE0teiH0t

�
a†�
kσ
|E0�

�

= ei
�
ε(
�
k)−µ

�
t
�
a†�
kσ
|E0�

�
(5.196)

Because of |
�

k| > kF and �E0|E0� = 1 we also have

�E0|a�kσa
†
�
kσ
|E0� = �E0|E0� − �E0|a†�

kσ
a�
kσ
|E0� = 1 (5.197)

This finally leads to

�ϕ0(t)|ϕ0(t
�)� = ei

�
ε(
�
k)−µ

�
(t−t�) (5.198)

Thus the propagator is an undamped harmonic oscillation with an exact excitation energy
of the system (ε(

�

k)− µ). As

|�ϕ0(t)|ϕ0(t
�)�|2 = 1 (5.199)
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it is a stationary state.
Next we consider an interacting system. By inserting a unit operator from a complete set
of eigenstates |En� we have:

2πS�
kσ
(t− t�) =

�

n

���En|a†�
kσ
|E0�

��2e−i(En−E0)(t−t�) (5.200)

In the free system, a†�
kσ
|E0� is an eigenstate, and the orthogonality of the eigenstates

implies that only one term in the sum is nonzero. In the interacting system, this is no
longer the case; in the expansion

|ϕ0(t)� = a†�
kσ
|E0� =

�

m

cm|Em� (5.201)

usually infinitely many expansion coefficients will be nonzero. The superposition of oscil-
lations with different frequencies will lead to a sum in (5.200) that is maximal for t = t�

and will destructively interfere for t− t� > 0 so that

|�ϕ0(t)|ϕ0(t
�)�|2 −−−−−→

t−t�→∞
0 (5.202)

Then, the state |ϕ0(t
�)� created at time t� has only a finite lifetime. Under certain con-

ditions, however, the irregular time dependence of the propagator can be represented as
superposition of damped oscillations with well defined frequency:

2πS�
kσ
(t− t�) =

�

i

αiσ(
�

k)e−iηiσ(
�
k)(t−t�) (5.203)

This formally has the same form as the corresponding expression (5.198) for the free
system, but the new single-particle energies are complex quantities:

ηiσ(
�

k) = Re ηiσ(
�

k) + i Im ηiσ(
�

k) (5.204)

The imaginary part is responsible for the exponential damping of the oscillation. The
energies ηiσ(

�

k) are now ascribed to a fictive particle, the so called quasiparticle. This is
motivated by the fact that the particle number (N+1) that is added to the system at time

t� propagates as if it decays into several quasiparticles of energy Re ηiσ(
�

k) and lifetime
1

Im ηiσ(
�
k)

(ηiσ is again measured in units of �, i.e. it is a frequency). Every quasiparticle has

a spectral weight αiσ(
�

k) for which the conservation of total particle number means
�

i

αiσ(
�

k) = 1 (5.205)

If we now compare

S
(i)
�
kσ
(t− t�) =

1

2π
αiσ(

�

k)e−iRe ηiσ(
�
k)(t−t�)e−| Im ηiσ(

�
k)|(t−t�) (5.206)

to (5.189) we recognize the relationship between quasiparticle properties and electronic
selfenergy:

quasiparticle energy: ωiσ(
�

k) = ε(
�

k)− µ+Rσ

��
k,ω = ωiσ(

�

k)
�

quasiparticle lifetime: τiσ(
�

k) =
1

|αiσ(
�

k)Iiσ(
�

k)|
(5.207)
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The spectral weights αiσ are determined by the real part of the self energy. Thus, the
quasiparticle lifetime is also influenced by the real part of the self energy. Another ana-
logy between quasiparticle and free particle is the effective mass m∗

iσ(
�

k) which is also
determined by the real part of the self energy. With the same argumentation as for the
Bloch density of states ρ0(ω) we can define a quasiparticle density of states

ρσ(ω) =
1

N

�
�
k

S�
kσ
(ω − µ) (5.208)

In contrast to ρ0(ω), this density of states for the interacting system will be temperature
dependent; it will also depend on the particle number.
As the spectral density represents a weighted superposition of delta functions, in the
arguments of which appear the excitation energies that are required to add a (

�

kσ) electron
to an N particle system or remove one from it, ρσ(ω) has a direct link to the photoemission
experiment.

Application to interacting systems

We now apply the formalism to a simple interacting problem, the Hubbard model in the
limit of infinitely narrow bands. The Hamiltonian is

H =
�

εjσ

(tij − µδij)a
†
iσajσ +

U

2

�

i,σ

niσniσ̄ , (5.209)

where we use the notation −σ ≡ σ̄. In order to calculate the one electron Green’s function,
it is convenient to proceed in the Wannier representation

Gα
ijσ(ω) = ��aiσ; a†jσ��αω (5.210)

For the equation of motion, we need the commutator

[aiσ,H]− =
�

m

(tim − µδim)amσ + nniσ̄aiσ (5.211)

The second term leads to the higher order Green’s function

Γα
ilm;jσ(ω) = ��a†iσ̄alσ̄amσ; a

†
jσ��αω (5.212)

This leads to the equation of motion

(ω + µ)Gα
ijσ(ω) = δij +

�

m

timG
α
mjσ(ω) + UΓα

iii;jσ(ω) (5.213)

Due to the higher order Green’s function Γα we cannot directly solve for Gα. Therefore
we determine the equation of motion for Γα; we need

[niσ̄aiσ,H0]− =
�

m

(tim − µδim)
�
niσ̄amσ + a†iσ̄amσ̄aiσ − a†mσ̄aiσ̄aiσ

�

[niσ̄aiσ,H1]− = Uaiσniσ̄ (5.214)

98



where the relation n2
iσ = niσ was used. This yields

(ω+µ−U)Γα
iii;jσ(ω) = δij�niσ̄�+

�

m

tim
�
Γα
iim;jσ(ω)+Γα

imi;jσ(ω)−Γα
mii;jσ(ω)

�
(5.215)

Now we will specialize to the limit of infinitely narrow bands (atomic limit)

ε(
�

k) = t0 ⇔ tij = t0δij (5.216)

Then the equation of motion hierarchy decouples and (5.215) simplifies to

(ω + µ− U − T0)Γ
α
iii;jσ(ω) = δij�nσ̄� (5.217)

Translation symmetry implies lattice site independence of the particle number operator:
�niσ� = �nσ�∀i. Eq. (5.217) can now be inserted in Eq. (5.213):

(ω + µ− t0)G
α
iiσ = 1 +

U�nσ̄�
ω − t0 + µ− U

(5.218)

Then we have for the retarded Green’s function

Gr
iiσ(ω) =

1− �nσ̄�
ω − t0 + µ+ i0+

+
�nσ̄�

ω − t0 − U + µ+ i0+
(5.219)

Thus, Gr
iiσ(ω) has two poles corresponding to the excitation energies:

ω1σ = t0 − µ = ω1σ̄

ω2σ = t0 + U − µ = ω2σ̄ (5.220)

The original level at t0 splits, due to the Coulomb repulsion, into two spin independent
quasiparticle levels ω1σ, ω2σ. The spectral density can be easily calculated as Siiσ(ω) =
− 1

π
ImGr

iiσ(ω) to be

Siiσ(ω) =
2�

j=1

αjσδ(ω − ωjσ) (5.221)

The spectral weights

α1σ = 1− �nσ̄� ; α2σ = �nσ̄� (5.222)

measure the probability that a σ electron meets a σ̄ electron at a site (α2σ) or that it
finds an unoccupied site (α1σ). In the first case it has to pay the Coulomb interaction U .
The quasiparticle density of states consists in this limit of two infinitely narrow bands at
the energies t0 and t0 + U :

ρσ(ω) =
1

N

�

i

Siiσ(ω − µ) = Siiσ(ω − µ)

= (1− �nσ̄�)δ(ω − t0) + �nσ̄�δ(ω − t0 − U) (5.223)
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The lower band contains (1− �nσ̄�), the upper �nσ̄� states per atom. Thus the number of
states in the quasiparticle subbands is temperature dependent. Now we have to determine
the expectation value �nσ̄� using the spectral theorem (2.100):

�nσ̄� =
� ∞

−∞
dω

Siiσ̄(ω)

eβω + 1
=

�
1− �nσ�

�
f−(t0) + �nσ�f−(t0 + U) (5.224)

with Fermi function f−(ω). Using the corresponding equation for �nσ̄�, we find

�nσ̄� =
f−(t0)

1 + f−(t0)− f−(t0 + U)
(5.225)

Then the complete solution for ρσ(ω) is

ρσ(ω) =
1

1 + f−(t0)− f−(t0 + U)

��
1−f−(t0+U)

�
δ(ω−t0)+f−(t0)δ(ω−t0−U)

�
(5.226)
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