
Kapitel 4

Superconductivity

In this chapter, we shall introduce the fundamental experimental facts about supercon-
ductors and present a summary of the derivation of the BSC theory (Bardeen, Cooper
and Schrieffer). This chapter is kept short due to the existence of the parallel lectures in
this semester dedicated exclusively to the superconductivity.

4.1 Experimental results

4.1.1 Zero resistance

In 1911, Kamerlingh Onnes (Nobel Prize 1913) observed that the resistance of Hg shows
an abrupt drop at Tc = 4.15 K (Fig. 4.1). Usually, the resistance of normal metals like

Abbildung 4.1: Resistance of Hg at a superconducting transition.

Cu, Ag or Na shows the following temperature dependence:

R(T ) = R0 + aT 2 + bT 5,

where R0 is proportional to the concentration of impurities in the system. The T 5 contri-
bution is due to electron-phonon scattering processes and the T 2 contribution originates
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from the electron-electron interaction. For a superconductor (as shown in Fig. 4.1),

R(T ) = 0 for T < Tc,

where Tc is the critical temperature. This behavior is independent of impurities. Thus,
a superconductor behaves like an ideal metal without impurities, which means that a
system in the superconducting phase can conduct without dissipation loss. Such behavior
is technologically desirable, and since decades a lot of effort has been devoted to the search
for superconductors with high Tc.

Before 1986, the highest Tc was Tc = 23 K for Nb3Ge. In order to reach this low tempe-
ratures, one has to use expensive liquid helium for cooling. In 1986, Bednorz and Müller
discovered that by hole doping copper oxide La2−xBaxCuO4, they could get the material
superconducting at Tc ≈ 35 K. Following this route of doping copper oxides, in 1987
YBa2Cu3O7−x was shown to become superconducting at Tc ≈ 90 K. This set a hallmark
for technical purposes since in this case one can use cheap liquid nitrogen for cooling.
The highest Tc reached so far with doped cuprates is Tc ≈ 133 K. In 2008, a new class of
high-temperature superconductors, which are based on Fe, was discovered. These super-
conductors were presented in one of the topical seminars.

The superconducting state is not only characterized by zero resistance, but also by other
important features, which we discuss in the following.

4.2 Meißner effect

A superconducting material expels completely any applied external field, thus behaving
like a perfect diamagnet. This property of a superconductor is named the Meißner effect.
There is though a difference between a perfect diamagnet and the Meißner effect. In a
superconductor, the magnetic field is expelled independently of the cooling procedure,
either first cooling and then applying B or first applying B and then cooling (Fig. 4.2).

The superconducting state is a new state of matter. Inside the superconductor, the ma-
gnetic induction B disappears:

B = H + 4πM = 0,

where H is the external magnetic field.

4.2.0.1 Critical magnetic field

If the external magnetic field is too strong, then the superconducting state is destroyed.
The dependence of the critical magnetic field Hc on temperature is given by

Hc(T ) = Hc(0)

�
1−

�
T

Tc

�2
�
,

where Hc(0) is the value of the critical magnetic field at zero temperature.
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Abbildung 4.2: Superconductor versus ideal conductor in a magnetic field.

4.3 Entropy and specific heat

In the normal state, specific heat depends linearly on T ,

cnv ∼ γT,

whereas in the superconducting state the dependence is exponential:

csv ∼ e
− Δ

kBT .

This results in a discontinuity of the specific heat at Tc (Fig. 4.4).
Such behavior indicates the existence of an energy gap for thermal excitations in super-
conductors.
The entropy, given by

S(T )− S(0) =

� T

0

dT � c(T
�)

T � ,

fulfills the relation:

Sn(Tc) = Ss(Tc),

which is characteristic of second order phase transitions.

In the following sections, we shall show that
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Abbildung 4.3: The H − T phase diagram and the H-dependece of magnetization M
for either type I or type II superconductor. “S” labels the superconducting state, “N” the
normal state, and “M” the mixed state.

(i) the electron-phonon interaction in a metal can induce an attractive electron-electron
interaction and

(ii) two electrons at the Fermi sea in the presence of such an attractive interaction can
build an energetically favorable bound state, the Cooper pair state.

4.4 Cooper pair

4.4.1 Retarded pair potential

In the superconducting state, the attractive interaction between electrons at the Fermi
surface leads to the formation of Cooper pairs. In the traditional superconductors, the
attractive electron-electron interaction is mediated by phonons via the following mecha-
nism:

The ionic motion deforms the lattice, with a time scale τ given by

τ ∼ 2π

ωD

∼ 10−13 s,

where ωD is the Debye frequency. During this time a conduction electron moves a distance
vF τ :

vF τ ∼ 108 cm/s · 10−13 s ∼ 1000 Å,

with vF being the Fermi velocity. A second electron can feel the “retarded“ attraction of
the first electron without the Coulomb repulsion playing a role.
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Abbildung 4.4: Specific heat jump near the superconducting transition.

4.4.2 Cooper instability of the Fermi sea

We consider two electrons near the Fermi surface in the presence of an attractive potential
V (�r1,�r2). The Schrödinger equation for this problem then reads

− �2

2m

�
�∇2

1 + �∇2
2

�
Ψ(�r1,�r2) + V (�r1,�r2)Ψ(�r1,�r2) = (�+ 2EF )Ψ(�r1,�r2) (4.1)

For a disappearing potential V = 0, the binding energy � = 0 and the two-particle
wavefunction is given by

ΦV=0(�r1,�r2) =
1

L3/2
ei
�k1·�r1 1

L3/2
ei
�k2·�r2 =

1

L3
ei
�k(�r1−�r2). (4.2)

Note that here for simplification we are not considering the symmetrized form of the
wavefunction. We also assume �k1 = −�k2 = �k.

We now consider a small V (�r1,�r2) and assume that Ψ(�r1,�r2) can in this case be taken as
a linear combination of the basis functions (4.2):

Ψ(�r1,�r2) =
1

L3

�

�k

g(�k)ei
�k(�r1−�r2) . (4.3)

The �k-summation is here limited to a region near the Fermi surface:

EF <
�2k2

2m
< EF + �ωD ,
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i.e.,

g(�k) = 0 for

�
k < kF
k >

�
2m(EF + �ωD)/�

.

The Debye frequency ωD is much smaller than the typical Fermi energy.

4.4.2.1 Self-consistent equation

By Fourier transforming the Schrödinger equation (4.1) with the ansatz (4.3) we obtain

�2k2

m
g(�k) +

1

L3

�

�k�

g(�k�)V�k,�k� = (�+ 2EF )g(�k), (4.4)

where

V�k,�k� =

�
V (�r)e−i(�k−�k�)·�rd3r

describes the scattering of pairs of electrons from (�k,−�k) to (�k�,−�k�). We approximate
V�k,�k� by an attractive constant:

V�k,�k� =

�
−V0 for EF < �2k2

2m
, �2k�2

2m
< EF + �ωD,

0 otherwise.

Then, Eq. (4.4) assumes the following form

�
−�2k2

m
+ �+ 2EF

�
g(�k) = −V0

L

�

�k�

g(�k�) ≡ −A. (4.5)

We insert g(�k),

g(�k) =
−A

−�2k2
m

+ �+ 2EF

into Eq. (4.5) and get

V0

L3

�

k

A
�2k2
m

− �− 2EF

= A,

1 =
V0

L3

�

k

1
�2k2
m

− �− 2EF

. (4.6)

Out of this equation we can determine the binding energy � of the electron pair.

60



4.4.2.2 Binding energy

We substitute in Eq. (4.6) the sum over k by an integral over the energy with the help of
the density of states N(EF ):

1 = V0

� EF+�ωD

EF

N(EF )
dE

2E − �− 2EF

=
1

2
V0N(EF ) ln

�
�− 2�ωD

�

�
.

Solving this equation for � gives

� =
2�ωD

1− e2/(V0N(EF ))
≈ −2�ωDe

2/(V0N(EF )) < 0 .

For V0

EF
→ 0, we obtain an exponentially small energy win for all V0 > 0, which is not

analytical in V0. Therefore, the previous result cannot be obtained from perturbation
theory.

The result of Cooper shows that in the presence of a (passive) Fermi sea and an infinite-
simally small attractive interaction, two electrons form a bound state (see Fig. 4.5).

Abbildung 4.5: The Cooper pair picture. The attractive phonon-induced interaction is
in real space isotropic and spin-independent. This leads to a pair wavefunction that is
symmetric with respect to the spatial coordinates and antisymmetric (singlet) in the spin

sector. Equivalently, the pairing in the momentum space is between electrons with �k ↑
and −�k ↓.

4.5 BCS theory

The Cooper problem deals with the case of two electrons near the Fermi surface. Since
electrons are indistinguishable, one has to consider a many-body wavefunction in order to
describe all the conduction electrons in the superconducting state.
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4.5.1 Hamilton operator in second quantization

The energy of a crystal lattice can be described in terms of a certain number of harmonic
oscillators, which have an equidistant energy spectrum:

Hph =
�

�qs

�ω(�q, s)
�
a†�qsa�qs +

1

2

�
,

with a†�qs and a�qs being creation and annihilation bosonic operators:

[a�qs, a
†
�q�s� ] = δ�q�q�δss� ,

[a�qs, a�q�s� ] = 0,

[a†�qs, a
†
�q�s� ] = 0.

A highly excited state of a harmonic oscillator corresponds to a larger amount of phonons
with energy �ω(q, s). In the Feynman representation, a phonon can be pictured as a wavy
line with an arrow (Fig. 4.6).

Abbildung 4.6: Feynman’s representation of a phonon.

We consider the total Hamiltonian, written in a second quantization form, that describes
both electrons and phonons, as well as the electron-phonon interaction:

H =
�

�k

�(�k)c†�kc�k +
�

�q

�ω�qa
†
�qa�q +

�

�k�q

M�q(a
†
−�q + a�q)c

†
�k+�q

c�k,

where �(�k) is the kinetic energy of electrons, M�q is the electron-phonon interaction, c†�k
and c�k (a†�q and a�q) are the fermionic (bosonic) creation and annihilation operators. The
fermionic operators obey the anti-commutation relations:

{c�kσ, c
†
�k�σ�} = δ�k�k�δσσ� ,

{c†�kσ, c
†
�k�σ�} = {c�kσ, c�k�σ�} = 0.

We consider now a canonical transformation

HT = e−iSHeiS,

with S being an hermitian operator. We divide the Hamiltonian into a non-interacting
part H0 and an interacting part HI:

H = H0 +HI.
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Then,

e−iSHeiS ≈
�
1− iS − 1

2
S2

�
H

�
1 + iS − 1

2
S2

�

= H + i[H,S]− 1

2
[[H,S], S] +O(S3)

= H0 +HI + i[H0, S] + i[HI, S]−
1

2
[[H0, S], S] +O(S2, H2

I ).

We choose S so that the following equation

i[H0, S] = −HI

is fulfilled. With this condition, the term linear in HI disappears in the canonically trans-
formed Hamiltonian. Thus, we obtain

e−iSHeiS ≈ H0 + i[HI, S] +
1

2i
[HI, S] = H0 +

i

2
[HI, S].

By considering the explicit form of the matrix elements in the basis of H0, it can be
shown (see, for instance, Czycholl ”Theoretical solid state physics”) that after the cano-
nical transformation, the original Hamiltonian results in an effective Hamiltonian of the
following form

H = H0 +HIT,

with

HIT =
�

�k�k�

�

σσ�

�

�q

|M(�q)|2 �ω�q

(��k+�q − ��q)2 − (�ω�q)2

× c†�k+�q,σ
c�kσc

†
�k�−�q,σ�c�k�σ�

describing an effective electron-electron interaction. The matrix elements become negative
and the effective interaction becomes attractive when

|��k+�q − ��k| < �ω�q,

which indicates that there is a probability of an attractive electron-electron interaction in
a region near the Fermi surface, mediated by interchange of virtual phonons (Fig. 4.7).
We can simplify HIT by

(i) neglecting the �q dependence of V (�q):

V (�q) = |M(�q)|2 �ω�q

(��k+�q − ��q)2 − (�ω�q)2
≈ −V ;

then,

HIT = −V
�

σσ�

�

�k�k�

�

�q

c†�k+�q,σ
c†�k�−�q,σ�c�k�σ�c�kσ,

with

|��k − ��k+�q| = |��k�−�q − ��k� | ≤ �ω�q ≤ �ωD.
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Abbildung 4.7: Interchange of a virtual phonon.

Abbildung 4.8: BSC approximation for the virtual phonon interchange.

(ii) by taking into account only interaction between electrons with opposite momentum
and spin (Fig. 4.8).

With that, we obtain the BCS Hamiltonian:

H =
�

�kσ

ξ�kc
†
�kσ
c�kσ − V

�

�k�k�

c†�k�↑c
†
−�k�↓c−�k↓c�k↑ ,

ξ�k = ��k − EF .

This Hamiltonian can be alternatively solved by considering (1) a variational wavefunction
and (2) the mean-field theory. Here we will only give a brief summary of both.
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4.5.2 BCS wavefunction

The BCS wavefunction [Bardeen, Cooper and Schrieffer, Phys. Rev. 108, 1175 (1957)]
consists of a linear combination of unoccupied and doubly occupied states:

|Ψ� =
�

�k

�
u�k + v�kc

†
�k↑c

†
−�k↓

�
|0� .

Here, |0� is an ”empty Fermi sphere“, u�k and v�k are variational parameters. v�k/u�k ∼ g(�k)
provides the link to the Cooper ansatz.

The BCS wavefunction has no definite particle number, but it has a definite phase. The
normalization condition

�Ψ|Ψ� = 1 ⇒ u2
�k
+ v2�k = 1

is fulfilled through the parameterization

u2
�k
=

1

2

�
1 +

ξ�k
E�k

�
, v2�k =

1

2

�
1− ξ�k

E�k

�
,

where E�k is a free parameter, related to the elementary excitations to the BCS ground

state. u2
�k
corresponds to the probability that a pair of states with opposite �k and σ is

unoccupied while v2�k corresponds to the probability that a pair of states with opposite �k
and σ is occupied. The condition of N = const can be implemented either variationally or
by means of the Bogoliubov transformation.

4.5.3 Mean-field treatment of the Hamiltonian

The variational treatment of the BCS Hamiltonian is equivalent in this case to the mean-
field treatment. Let us define the following decoupling of the interacting terms in the
Hamiltonian:

H → Heff =
�

�kσ

ξ�kc
†
�kσ
c�kσ − V

�

�k�k�

�c†�k�↑c
†
−�k�↓�c−�k↓c�k↑

− V
�

�k�k�

�c−�k↓c�k↑�c
†
�k�↑c

†
−�k�↓

+ V
�

�k�k�

�c�k�↑c−�k�↓��c−�k↓c�k↑�;

Heff =
�

�kσ

ξ�kc
†
�kσ
c�kσ −Δ∗

�

�k

c−�k↓c�k↑ −Δ
�

�k�

c†�k�↑c
†
−�k�↓ +

|Δ|2
V

,

with

Δ = V
�

�k�

�c−�k�↓c�k�↑�, (4.7)

Δ∗ = V
�

�k�

�c†�k�↑c
†
−�k�↓�
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being the order parameter of the superconducting phase. This effective Hamiltonian con-
tains anomalous terms, i.e., it is not bilinear with respect to a creation operator and an
annihilation operator:

[Heff , N ] �= 0.

In order to diagonalize the Hamiltonian, we consider the Bogoliubov transformation:

α�k = u�kc�k↑ − v�kc
†
−�k↓,

β�k = u�kc−�k↓ + v�kc
†
�k↑,

with |u�k|2 + |v�k|2 = 1;

{α�k, β
†
�k�
} = 0,

{α�k,α
†
�k�
} = {β�k, β

†
�k�
} = δ�k�k� .

By choosing u�k and v�k as

u2
�k
=

1

2



1 +

ξ�k�
ξ2�k + |Δ|2

� �� �
E�k




and v2�k =
1

2


1− ξ�k�

ξ2�k + |Δ|2


 ,

Heff is ensured to be diagonal. These values are also obtained by considering the variational
BCS wavefunction

Heff =
�

�k

E�k(α
†
�k
α�k + β†

�k
β�k) +

�

�k

(ξ�k − E�k) +
|Δ|2
V

,

where α�k and β�k are new quasiparticles, which correspond to excitations to the BCS
ground state.

4.5.3.1 Gap equation

We perform statistical averaging on Eq. (4.7):

Δ = V
�

�k

Δ�
ξ2�k + |Δ|2

�
1

2
− f(E�k)

�
,

with

f(E�k) =
1

eβE�k + 1
;
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Δ = V
�

�k

Δ

E�k

�
1

2
− 1

eβE�k + 1

�
,

Δ =
V

2

�

�k

Δ

E�k

tanh
βE�k

2
,

1 =
V

2

�

�k

1�
ξ2�k + |Δ|2

tanh
β
�
ξ2�k + |Δ|2

2
,

1 =
V

2

� �ωD

−�ωD

d�N(�)
1�

�2 + |Δ|2
tanh

β
�

�2 + |Δ|2
2

.

We now focus on three limiting cases.

Case 1: T → 0.

In this case, we make use of the fact that

tanh
β
�
�2 + |Δ|2
2

T→0−→ 1

and introduce

Δ0 ≡ Δ(T = 0).

Then, the gap equation simplifies to

1 = V N(EF )

� �ωD

0

d��
�2 +Δ2

0

= V N(EF )arcsinh
�

Δ0

����
�ωD

0

= V N(EF )arcsinh
�ωD

Δ0

.

We get

Δ0 = �ωD
1

sinh 1
V N(EF )

≈ 2�ωDe
− 1

V N(EF ) ,

where N(EF ) is the density of states per spin. If the total density is considered,
then

Δ0 ≈ 2�ωDe
− 2

V N(EF ) .

Case 2: T �= 0, T � 1 (high temperature).

Now,

tanh
β
�
�2 + |Δ|2
2

≈ β

�
�2 + |Δ|2

2
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and

1 = V N(EF )

� �ωD

0

d�
β

2

�
�2 + |Δ|2�
�2 + |Δ|2

= βN(EF )
�ωD

2
.

For T → ∞, there is no trivial solution of the BCS equation (the previous equation
goes into an inconsistency). This indicates that there must be a critical temperature
Tc.

Case 3: T = Tc.

In this case, Δ(Tc) = 0 per definition. Then,

1 = V N(EF )

� �ωD

0

d�
tanh �

2kBTc

�

= V N(EF )

� �ωD
2kBTc

0

dx
tanh x

x
.

Since, typically �ωD ≈ 300 K and Tc ≈ 10 K, we can assume that

�ωD

2kBTc

� 1.

Then,

1 ≈ V N(EF )

�
ln

�ωD

2kBTc

−
� ∞

0

dx ln x
�
1− tanh2 x

��

= V N(EF )

�
ln

�ωD

2kBTc

− ln
π

4eγ

�
,

where γ is the Euler constant.

1 = V N(EF ) ln
1.136 �ωD

kBTc

,

kBTc = 1.136�ωDe
− 1

V N(EF ) ,

Δ(0)

kBTc

=
2

1.136
= 1.764 .

This is a universal BCS relation.

The condition for weak coupling: Δ(0) � �ωD. Since �ωD ∼ M−1/2,

Tc ∼
1√
M

,
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which is named the isotope effect. At T → 0 and T → Tc, the order parameter
behaves as (see also Fig. 4.9)

T → 0 : Δ(T ) = Δ0 −
�
2πkBTcΔ0e

−Δ0/kBT ,

T → Tc : Δ(T ) = kBTcπ

�
8

7ξ(3)

�
1− T

Tc

.

Abbildung 4.9: The order parameter Δ as a function of temperature.

All thermodynamic properties of a BCS superconductor can be obtained from the pre-
sented BCS theory. The comparison with experiment is excellent.
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