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Kapitel 1

Density functional theory

1.1 Introduction

The Hartree-Fock approximation is an approximate solution to the problem of interacting
electrons. It constitutes an effective simple particle theory

Hα
effϕ

σ
kα(

�
r) = − �2

2m
∇2 + V kα,σ

eff (
�
r)ϕσ

kα(
�
r) = εσkαϕ

σ
kα(

�
r) (1.1)

with an effective potential that depends on the state ϕσ
kα
(
�
r), i.e. on the orbital indices kα:

V kα,σ
eff (

�
r) = Vext(

�
r) + VHartree(

�
r) + V kα,σ

x (
�
r) (1.2)

Here, the “external” potential is that of the ionic cores

Vext(
�
r) =

�

n

V (|�r −
�

Rn|) =
�

n

Zne
2

|�r −
�

Rn|
, (1.3)

the Hartree potential arises from the Coulomb interaction of an electron with the electro-
static potential generated by all the other electrons

VHartree(
�
r) = e2

�
d3r�

n(
�
r�)

|�r − �
r�| (1.4)

with

n(
�
r) =

�
Φ
���

Ne�

α=1

δ(
�
r − �

rα)
���Φ

�
=

Ne�

α=1

��ϕkα(
�
r)
��2 (1.5)

The exchange operator V kα,σ
x (

�
r) is given by

V kα,σ
x (

�
r) = − e2

�

β

�
d3

�
r� ϕσ

kβ
∗(

�
r�)ϕσ

kα(
�
r�)

1

|�r − �
r�|

ϕσ
kβ
(
�
r)

ϕσ
kα
(
�
r)

; (1.6)

it involves an integral over ϕσ
kα
(
�
r) and all other ϕσ

kβ
(
�
r) with the same spin. The complica-

ted, nonlocal form of the exchange operator is the reason why the Hartree-Fock equations
are difficult to solve for large systems; they are mostly used in quantum chemistry where
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molecules with a small number of atoms and thus of electrons are studied. Solution typi-
cally involves N4

basis integrals where Nbasis is the size of the basis set. Hartree Fock also

has a well-known unphysical feature which is a diverging velocity vF = dε
dk

���
k=kF

at the

Fermi surface in all metallic (i.e. ungapped) systems.

Exchange and correlation

The key problem of electronic structure is that the electrons form an interacting manybody
system whith a wave function Ψ(

�
ri) = Ψ(

�
r1,

�
r2, · · · ,�rN). Since the interactions involve

always pairs of electrons, two-body correlation functions are sufficient to determine many
properties like for example the total energy E = �Ψ|H|Ψ�

�Ψ|Ψ� = �H�. Explicitly, the joint

probability of finding electrons of spin σ at
�
r and of spin σ� at

�
r� is given by

n(
�
r, σ,

�
r�, σ�) =

��

α,β

δ(
�
r − �

rα)δ(σ − σα)δ(
�
r� − �

rβ)δ(σ
� − σβ)

�

= N(N − 1)
�

σ3,σ4,···

�
d3r3 · · · d3rN

��Ψ(
�
r, σ;

�
r�, σ�;

�
r3, σ3; · · · ;�rN , σN)

��2 (1.7)

for normalized Ψ. For uncorrelated particles, the joint probability is just the product of
probabilities, so that the measure of correlation is

Δn(
�
r, σ;

�
r�, σ�) = n(

�
r, σ;

�
r�, σ�)− n(

�
r, σ)n(

�
r�, σ�) (1.8)

and thus

n(
�
r, σ,

�
r�, σ�) = n(

�
r, σ)n(

�
r�, σ�) +Δn(

�
r, σ;

�
r�, σ�) (1.9)

It is also useful to define the normalized pair distribution

g(
�
r, σ;

�
r�, σ�) =

n(
�
r, σ;

�
r�, σ�)

n(
�
r, σ)n(

�
r�, σ�)

= 1 +
Δn(

�
r, σ;

�
r�, σ�)

n(
�
r, σ)n(

�
r�, σ�)

(1.10)

This is 1 for uncorrelated particles; correlation is measured by g(
�
r, σ;

�
r�, σ�) − 1. All

long range correlation is included in the average terms so that the remaining terms
Δn(

�
r, σ;

�
r�, σ�) and g(

�
r, σ;

�
r�, σ�) − 1 are short range and vanish at large |�r − �

r�|. The
Hartree-Fock approximation (HFA) consists of neglecting all correlations except those re-
quired by the Pauli exclusion principle. The exchange term in the HFA contains the Pauli
exclusion and the self interaction correction, i.e. it cancels a spurious self interaction con-
tained in the Hartree term. Both effects lower the energy which can be interpreted as the
interaction of each electron with a positive exchange hole surrounding it. The exchange
hole Δnx(

�
r, σ;

�
r�, σ�) is given by Δn(

�
r, σ;

�
r�, σ�) in the HFA, were Ψ is approximated by

the single determinant wave function φ; one finds

ΔnHFA(
�
r, σ;

�
r�, σ�) = Δnx(

�
r, σ;

�
r�, σ�) = − δσσ�

���
�

i,α

ϕσ
kα

∗(
�
r)ϕσ

kα(
�
r�)

���
2

(1.11)

It is immediately clear that the exchange hole involves only electrons of the same spin
and that the probability for finding two electrons of the same spin at the same point
�
r =

�
r� vanishes (see eq. (1.9)). There are stringent conditions for the exchange hole: 1) it
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can never be positive, Δnx(
�
r, σ;

�
r�, σ�) ≤ 0 (i.e. δx(

�
r, σ;

�
r�, σ�) ≤ 1) and 2) the integral of

the exchange hole density Δnx(
�
r, σ;

�
r�, σ�) over all

�
r� is exactly one missing electron per

electron at point
�
r (if one electron is at

�
r, then the same electron cannot be at

�
r�).

The exchange energy can be interpreted as the lowering of the energy due to each electron
interacting with its positive exchange hole,

Ex =
�
�Vint� − EHartree(n)

�
HFA

=
1

2

�

σ

�
d3r n(

�
r)

�
d3r�

Δnx(
�
r, σ;

�
r�, σ�)

|�r − �
r�| (1.12)

Correlation: The energy of a state of many electrons in the Hartree Fock approximation
is the best possible wave function made from a single determinant. Improvement of the
wave function to include correlation introduces extra degrees of freedom in the wave
function and therefore always lowers the energy for any state, ground or excited; this
lowering of the energy is called the correlation energy Ec. (This definition is not the
only possible as a different reference state could be chosen, but it is the one leading to
the smallest possible magnitude of Ec).

The effects of correlation can be cast in terms of the remaining part of the pair correlation
beyond exchange:

Δn(
�
r, σ;

�
r�, σ�) ≡ nxc(

�
r, σ;

�
r�, σ�) = nx(

�
r, σ;

�
r�, σ�) + nc(

�
r, σ;

�
r�, σ�) (1.13)

As the entire exchange-correlation hole obeys the sum rule that it integrates to 1, the
correlation hole nc(

�
r, σ;

�
r�, σ�) must integrate to zero, i.e. it merely redistributes the density

of the hole. In general, correlation is most important for electrons of opposite spin as
electrons of the same spin are automatically kept apart by the exclusion principle.
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Abbildung 1.1: Exchange hole
gx(

�
r) in the homogeneous elec-

tron gas.
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1.2 Foundations of density functional theory

Density functional theory has become the primary tool for calculation of electronic struc-
ture in condensed matter, and is increasingly importat for quantitative studies of molecules
and other finite systems. In a famous 1964 paper1, P. Hohenberg and W. Kohn showed
that a special role can be assigned to the density of particles in the ground state of a
quantum manybody system; the density can be considered as a basic variable, i.e. all
properties of the system can be considered to be unique functionals of the ground state
density. Hohenberg and Kohn formulated density funtional theory as an exact theory of
manybody systems of interacting particles in an external potential Vext(

�
r) including any

problem of electrons and fixed nuclei, where the Hamiltonian can be written

Ĥ = − �2

2m

�

α

∇2
α +

�

α

Vext(
�
rα) +

1

2

�

i�=j

e2

|�rα − �
rβ|

(1.14)

Density functional theory is based upon the following two theorems first proved by Ho-
henberg and Kohn:
Theorem 1: For any system of interacting particles in an external potential Vext(

�
r), the

potential Vext(
�
r) is determined uniquely, except for a constant, by the ground state par-

ticle density n0(
�
r).

Corollary 1: Since the Hamiltonian is thus fully determined except for a constant shift of
the energy, it follows that the manybody wave functions for all stated (ground and ex-
cited) are determined. Therefore, all properties of the system are completely determined
given only the ground state density n0(

�
r).

Theorem 2: A universal functional for the energy E[n] in terms of the density n(
�
r) can

be defined, valid for any external potential Vext(
�
r). For any particular Vext(

�
r), the exact

ground state energy of the system is the global minimum value for this functional, and the
density n(

�
r) that minimizes the functional is the exact ground state state density n0(

�
r).

Corollary 2: The functional E[n] alone is sufficient to determine the exact ground state
energy and density. In general, excited states of the electrons must be determined by other
means.
Schematic representation of the Hohenberg-Kohn theorem:

Vext(
�
r)

HK⇐= n0(
�
r)

⇓ ⇑
Ψi(

�
r) ⇒ Ψ0(

�
r) (1.15)

Small arrows indicate the usual solution of the Schödinger equation where the potential
Vext(

�
r) determines all states of the system Ψi(

�
r) including the ground state Ψ0(

�
r) and

ground state density n0(
�
r). The large arrow indicates the Hohenberg-Kohn theorem which

completes the circle.

Proof of theorem 1: density as a basic variable

We use the expressions:

n(
�
r) =

�Ψ|n(�r)|Ψ�
�Ψ|Ψ� = N

�
d3r2 · · · d3rN

�
σ|Ψ(

�
r,

�
r2,

�
r3, . . . ,

�
rN)|2�

d3r1d3r2 · · · d3rN |Ψ(
�
r1,

�
r2,

�
r3, . . . ,

�
rN)|2

(1.16)

1P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136, B 864 (1964).
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for the density of particles, with the density operator

�
n(

�
r) =

N�

α=1

δ(
�
r − �

rα) (1.17)

and

E =
�Ψ|Ĥ|Ψ�
�Ψ|Ψ� = �Ĥ� = �T̂ �+ �V̂int�+

�
d3r Vext(

�
r)n(

�
r) + EII (1.18)

for the total energy, where expectation value of the external potential has been written
explicitly as a simple integral over the density function. EII is the electrostatic nucleus-
nucleus interaction. Now we prove theorem 1 by reductio ad absurdum. Suppose that
there were two different external potentials V

(1)
ext (

�
r) and V

(2)
ext (

�
r) which differ by more

than a constant and which lead to the same ground state density n(
�
r). The two external

potentials lead to two different Hamiltonians Ĥ(1) and Ĥ(2) which have different ground
state wave functions Ψ(1) and Ψ(2) which are hypothesized to have the same ground state
density n0(

�
r). Since Ψ(2) is not the ground state of Ĥ(1), it follows that

E(1) = �Ψ(1)|Ĥ(1)|Ψ(1)� < �Ψ(2)|Ĥ(1)|Ψ(2)� (1.19)

Here a nondegenerate ground state is assumed which simplifies the proof but is not es-
sential. The last term can be written as

�Ψ(2)|Ĥ(1)|Ψ(2)� = �Ψ(2)|Ĥ(2)|Ψ(2)�+ �Ψ(2)|Ĥ(1) − Ĥ(2)|Ψ(2)�

= E(2) +

�
d3r

�
V

(1)
ext (

�
r)− V

(2)
ext (

�
r)
�
n0(

�
r) , (1.20)

so that

E(1) < E(2) +

�
d3r

�
V

(1)
ext (

�
r)− V

(2)
ext (

�
r)
�
n0(

�
r) . (1.21)

On the other hand, if we consider E(2) in exactly the same way, we find the same equation
with superscripts 1 and 2 interchanged:

E(2) < E(1) +

�
d3r

�
V

(2)
ext (

�
r)− V

(1)
ext (

�
r)
�
n0(

�
r) (1.22)

If we add Eqs. (1.21) and (1.22), we arrive at the contradictory inequality E(1) + E(2) <
E(1)+E(2). Thus, there cannot be two different external potentials differing by more than
a constant which give rise to the same nondegenerate ground state density; the density
uniquely determines the external potential to within a constant.
The corollary 1 follows since the Hamiltonian is uniquely determined (except for a con-
stant) by the ground state density. Then, in principle, the wave function of any state is
determined by solving the Schödinger equation with this Hamiltonian. Among all soluti-
ons consistent with the given density, the unique ground state wave function is the one
that has the lowest energy. Of course, no prescription has yet been given to solve the
problem. Still, the manybody problem in the presence of Vext(

�
r) needs to be solved. For

example, for electrons in materials where the external potential is the Coulomb potential
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due to the nuclei, the theorem only requires that the electron density uniquely determines
the positions and types of nuclei.

Proof of theorem 2

The proof of theorem 2 requires proper definition of the meaning of a functional of the den-
sity and restricting the space of densities. We restrict to densities that are V-representable,
i.e. densities n(

�
r) that are ground state densities of the electron Hamiltonian with some

external potential Vext. Within this space of densities, we construct functionals of the
density. Since all properties such as the kinetic energy, etc. are uniquely determined if
n(

�
r) is specified, each such property can be viewed as a functional of n(

�
r), including the

total energy functional

EHK[n] = T [n] + Eint[n] +

�
d3r Vext(

�
r)n(

�
r) + EII

= FHK[n] +

�
d3r Vext(

�
r)n(

�
r) + EII (1.23)

where EII is the interaction energy of the nuclei. The functional FHK[n] thus defined
includes all internal energies, kinetic and potential of the interacting electron system

FHK[n] = T [n] + Eint[n] (1.24)

which must be universal by construction since the kinetic energy and interaction energy
of the particles are functionals only of the density. Now consider a system with a ground
state density n(1)(

�
r) corresponding to the external potential V

(1)
ext (

�
r). the Hohenberg-Kohn

functional is equal to the expectation value of the Hamiltonian in the unique ground state
which has the wavefunction Ψ(1)

E(1) = EHK[n
(1)] = �Ψ(1)|Ĥ(1)|Ψ(1)� (1.25)

Now consider a different density n(2)(
�
r) which necessarily corresponds to a different wave

function Ψ(2). It follows immediately that the energy E(2) of this state is greater than E(1)

since

E(1) = �Ψ(1)|Ĥ(1)|Ψ(1)� < �Ψ(2)|Ĥ(1)|Ψ(2)� = E(2) (1.26)

Thus the energy given by (1.23) in terms of the Hohenberg-Kohn functional evaluated for
the correct ground state density n0(

�
r) is indeed lower than the value of this expression

for any other density n(
�
r). This means that if the functional FHK[n] were known, then by

minimizing the total energy of the system (1.23) with respect to variations in the density
n(

�
r) one would find the exact ground state density and energy. This establishes corollary

2.

1.3 The Kohn-Sham ansatz

The Kohn-Sham approach is to replace the difficult interacting manybody system with a
different auxiliary system that can be solved more easily - it is an ansatz because there is
no unique prescription of how to choose the simpler auxiliary system. The ansatz assumes
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that the ground state density of the original interacting system is equal to that of some
chosen non-interacting system. This leads to independent particle equations for the non-
interacting system that can be considered exactly solvable with all the difficult manybody
terms incorporated into an exchange-correlation functional of the density. By solving the
equations one finds the ground state density and energy of the original interacting sys-
tem with the accuracy limited only by the approximations in the exchange-correlation
functional. These approximations, the most important of which are the local density ap-
proximation (LDA) and generalized gradient approximation (GGA) functionals will be
discussed below. The Kohn-Sham ansatz for the ground state rests on two assumptions:
1) The exact ground state density can be represented by the ground state density of the au-
xiliary system of noninteracting particles. This is called non-interacting-V-representability
(see scheme below)
2) The auxiliary Hamiltonian is chosen to have the usual kinetic energy operator and an
effective local potential V σ

eff (
�
r) acting on an electron of spin σ at point

�
r.

Schematic representation of the Kohn-Sham ansatz:

Vext(
�
r)

HK⇐= n0(
�
r)

KS⇐⇒ n0(
�
r)

HK0=⇒ VKS(
�
r)

⇓ ⇑ ⇑ ⇓
Ψi(

�
r) ⇒ Ψ0(

�
r) ψi=1,··· ,Ne(

�
r) ⇐ ψi(

�
r) (1.27)

HK0 means Hohenberg-Kohn theorem applied to the noninteracting problem. The KS
arrow indicates connection in both directions between the manybody and independent
particle systems.
The actual calculations are performed on the auxiliary independent particle system defined
by the auxiliary Hamiltonian

Hσ
aux = − 1

2
∇2 + V σ(

�
r) (1.28)

V σ(
�
r) will be specified later. For independent electrons, the ground state has one electron

in each of the Nσ(σ =↑, ↓) orbitals ψσ
i (

�
r) with the lowest eigenvalues εσi of the Hamiltonian

(1.28). The density of the auxiliary system is given by

n(
�
r) =

�

σ

n(
�
r, σ) =

�

σ

Nσ�

i=1

��ψσ
i (

�
r)
��2 , (1.29)

the independent particle kinetic energy Ts is given by

Ts = − 1

2

�

σ

Nσ�

i=1

�ψσ
i |∇2|ψσ

i � =
1

2

�

σ

Nσ�

i=1

�
d3r

��∇ψσ
i (

�
r)
��2 (1.30)

and we define the classical Coulomb interaction energy of the electron density n(
�
r) inter-

acting with itself as

EHartree[n] =
1

2

�
d3r d3r�

n(
�
r)n(

�
r�)

|�r − �
r�| (1.31)

The Kohn-Sham approach to the full interacting manybody problem is to rewrite the
Hohenberg-Kohn expression for the ground state energy functional (1.23) as

EKS = Ts[n] +

�
d3r Vext(

�
r)n(

�
r) + EHartree[n] + EII + Exc[n] (1.32)

9



Here Vext(
�
r) is the external potential due to the nuclei and any other external fields

(assumed to be independent of spin). All manybody effects of exchange and correlation
are grouped into the exchange-correlation energy Exc. Comparing the Hohenberg-Kohn
(1.23) and the Kohn-Sham (1.32) expressions for the total energy shows that Exc can be
written as

Exc[n] = FHK[n]− (Ts[n] + EHartree[n]) (1.33)

or

Exc[n] = �T̂ � − Ts[n] + �V̂int� − EHartree[n] (1.34)

This shows that Exc[n] is just the difference of the kinetic and internal interaction ener-
gies of the interacting manybody system from those of the fictitious independent-particle
system with electron-electron interactions replaced by the Hartree energy. As the uni-
versal functional Exc[n] of (1.32) is unknown, approximate forms for Exc[n] make the
Kohn-Sham method a valuable approach for the ground state properties of the manybo-
dy electron system.

The Kohn-Sham variational equations

The solution of the Kohn-Sham auxiliary system for the ground state can be viewed
as a problem of minimization with respect to either the density n(

�
r, σ) or the effective

potential V σ
eff (

�
r). As Ts is expressed as a functional of the orbitals but all other terms are

considered to be functionals of the density, one can vary the wave functions and use the
chain rule to derive the variational equation

δEKS

δψσ
i
∗(

�
r)

=
δTs

δψσ
i
∗(

�
r)

+

�
δEext

δn(
�
r, σ)

+
δEHartree

δn(
�
r, σ)

+
δExc

δn(
�
r, σ)

�
δn(

�
r, σ)

δψσ
i
∗(

�
r)

= 0 (1.35)

subject to normalization conditions

�ψσ
i |ψσ�

j � = δijδσσ� (1.36)

We use the expressions (1.29) and (1.30) for nσ(
�
r) and Ts which give

δTs

δψσ
i
∗(

�
r)

= − 1

2
∇2ψσ

i (
�
r) ;

δnσ(
�
r)

δψσ
i
∗(

�
r)

= ψσ
i (

�
r) (1.37)

and the method of Lagrange multipliers to handle the constraints:

δ

δψσ
i
∗

�
EKS −

�

σ

Nσ�

j=1

εσj

��
d3r

��ψσ
i (

�
r)
��2 − 1

��
= 0 (1.38)

This variation leads to the Schrödinger-like Kohn-Sham equations

�
Hσ

KS − εσi
�
ψσ
i (

�
r) = 0 (1.39)

where εσi are eigenvalues and HKS is the effective Hamiltonian (in Hartree atomics units)

Hσ
KS(

�
r) = − 1

2
∇2 + V σ

KS(
�
r) (1.40)
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with

V σ
KS(

�
r) = Vext(

�
r) +

δEHartree

δn(
�
r, σ)

+
δExc

δn(
�
r, σ)

= Vext(
�
r) + VHartree(

�
r) + V σ

xc(
�
r) (1.41)

These are the well-known Kohn-Sham equations2; they have the form of independent
particle equations with a potential that must be found selfconsistently with the resulting
density. The equations are independent of any approximation to the functional Exc[n],
and would lead to the exact ground state density and energy for the interacting system
if the exact functional Exc[n] were known. Furthermore, the Hohenberg-Kohn theorems
guarantee that the ground state density uniquely determines the potential at the mini-
mum, so that there is a unique Kohn-Sham potential V σ

eff (
�
r)|min ≡ V σ

KS(
�
r) associated with

any given interacting electron system.

Exc, Vxc and the exchange-correlation hole

The genius of the Kohn-Sham approach is that by explicitly separating out the independent-
particle kinetic energy and the long-range Hartree terms, the remaining exchange-correlation
functional Exc[n] can reasonably be approximated as a local or nearly local functional of
the density. This means that the energy Exc can be expressed in the form

Exc[n] =

�
d3r n(

�
r)εxc([n],

�
r) (1.42)

where εxc([n],
�
r) is an energy per electron at point

�
r that depends only on the density

n(
�
r, σ) in some neighborhood of point

�
r. The exchange and correlation energy density can

be related to the exchange correlation hole using the coupling constant integration. In
general, the derivative of the energy with respect to any parameter λ in the Hamiltonian
can be calculated using the variational property of the wave function:

∂E

∂λ
= �Ψλ|

∂Ĥ

∂λ
|Ψλ� (1.43)

and from this, an integral expression can be obtained for calculating energy differences
between any two states connected by a continuous variation of the Hamiltonian:

ΔE =

� λ2

λ1

dλ
∂E

∂λ
=

� λ2

λ1

dλ�Ψλ|
∂Ĥ

∂λ
|Ψλ� (1.44)

Here, we are interested in varying the Hamiltonian continuously between the non-interacting
and the fully interacting limits. For this we can use the parameter e2 in the interaction
energy, scale it by e2 → e2λ where λ is varied from 0 to 1. This we do only to the electron-
electron interaction term (nuclear term is treated separately as external potential), and
we find for the change in energy

ΔE =

� 1

0

dλ�Ψλ|
dVint

dλ
|Ψλ� (1.45)

2W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys.
Rev. 140, A 1133 (1965).
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If we do this with the added constraints that the density must be kept constant during
this variation, all other terms remain constant and the exchange correlation energy is
given by

Exc[n] =

� e2

0

dλ�Ψλ|
dVint

dλ
|Ψλ� − EHartree[n] =

1

2

�
d3r n(

�
r)

�
d3r�

n̄xc(
�
r,

�
r�)

|�r − �
r�| (1.46)

where n̄xc(
�
r,

�
r�) is the coupling constant averaged hole

n̄xc(
�
r,

�
r�) =

� 1

0

dλnλ
xc(

�
r,

�
r�) (1.47)

nxc(
�
r,

�
r�) is the exchange correlation hole summed over parallel (σ = σ�) and antiparallel

(σ �= σ�) spins. Thus, the exchange correlation density εxc([n],
�
r) can be written as

εxc([n],
�
r) =

1

2

�
d3r�

n̄xc(
�
r,

�
r�)

|�r − �
r�| (1.48)

This result shows that the exact exchange correlation energy can be understood in terms
of the potential energy due to the exchange-correlation hole averaged over the interaction
from e2 = 0 to e2 = 1. For e2 = 0 the wave function is just the independent-particle Kohn-
Sham wave function so that n0

xc(
�
r, σ;

�
r�, σ�) = nx(

�
r, σ;

�
r�, σ�) where the exchange hole is

known from Eq. (1.11). Since the density everywhere is required to remain constant as
λ is varied, εxc([n],

�
r) is implicitly a functional of the density in all space. Thus Exc[n]

can be considered as an interpolation between the exchange-only and the full correlated
energies at the given density n(

�
r, σ). Analysis of the averaged hole n̄xc(

�
r,

�
r�) is one of the

primary approaches for developing improved approximations for Exc[n].

Exchange-correlation potential Vxc

The exchange-correlation potential V σ
xc(

�
r) is the functional derivative of Exc and can be

written as

V σ
xc(

�
r) = εxc([n],

�
r) + n(

�
r)
∂εxc([n],

�
r)

∂n(
�
r, σ)

(1.49)

where εxc([n],
�
r) is defined in (1.42) and is a functional of the density n(

�
r�, σ�). Vxc is not a

potential that can be identified with interactions between particles and it behaves in ways
that seem paradoxical. The second term in (1.49), sometimes called response potential,
is due to the change in the exchange correlation hole with density. In an insulator, this
derivative is discontinuous at a band gap where the nature of the state changes disconti-
nuously as a function of n. This leads to a derivative discontinuity where the Kohn-Sham
potential for all the electrons in a crystal changes by a constant amount when a single
electron is added. This can be understood by examining the kinetic energy. The great
advance of the Kohn-Sham approach over the Thomas-Fermi approximation is the incor-
poration of orbitals to define the kinetic energy. In terms of orbitals, it is easy to see that
the kinetic energy Ts for independent particles changes discontinuously in going from an
occupied to an empty band since the ψσ

i (
�
r) are different for different bands. In terms of

the density, this means that the formal density functional Ts[n] has discontinuous deriva-
ties at densities that correspond to filled bands. This is a direct consequence of quantum
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mechanics and is difficult to incorporate into an explicit density functional; also the true
exchange-correlation potential must change discontinuously. These properties are not in-
corporated into any of the simple explicit functionals of the density, such as local density
or generalized gradient approximations, but they occur naturally in orbital dependent
formulations like the optimized effective potential (OEP).

Meaning of the Kohn-Sham eigenvalues

The Kohn-Sham eigenvalues, introduced as Lagrange multipliers, have no direct physical
meaning, at least not that of the energies to add or substract electrons from the interacting
manybody system (in analogy to Koopmas theorem for Hartree Fock). The exception is
the highest eigenvalue in a finite system which is minus the ionization energy. Nevertheless,
the eigenvalues have a well defined meaning within the theory and can be used to construct
physically meaningful quantities. For example, they can be used to develop perturbation
expressions for excitation energies, either in the form of a functional or in the form of
explicit manybody calculations that use the Kohn-Sham eigenfunctions and eigenvalues
as an input.
Within the Kohn-Sham formalism, the meaning of the eigenvalues, known as Janak theo-
rem, is that the eigenvalue is the derivative of the total energy with respect to occupation
of a state:

εi =
dEtotal

dni

=

�
d3r

dEtotal

dn(
�
r)

dn(
�
r)

dni

. (1.50)

1.4 Functionals for exchange and correlation

Even though the exact functional Exc[n] must be very complex, the great success of DFT
is due to remarkably simple approximations.

The local spin density approximation (LSDA)

This approximation is based on the observation that solids can often be considered close
to the limit of the homogeneous electron gas. In that limit, the effects of exchange and
correlation are local in character. Thus, the local density approximation (LDA), which
was already proposed by Kohn and Sham, takes the exchange-correlation energy as an
integral over all space, with the exchange-correlation energy density at each point assumed
to be the same as in a homogeneous electron gas with that density:

ELSDA
xc [n↑, n↓] =

�
d3r n(

�
r)εhomxc (n↑(

�
r), n↓(

�
r)) (1.51)

The axis of quantization of the spin is assumed to be the same at all points in space, but
this can be generalized to a non-collinear spin case. The LSDA can be formulated either
in the two spin densities n↑(

�
r) and n↓(

�
r), or in the total density n(

�
r) and the fractional

spin polarization

ζ(
�
r) =

n↑(
�
r)− n↓(

�
r)

n(
�
r)

. (1.52)

Solving the Hartree-Fock equations for the homogeneous electron gas can be done analy-
tically; one finds a dispersion (in atomic units)

εk =
k2

2
+

kF
π
f(x) with x =

k

kF
(1.53)

13



and

f(x) = −
�
1 +

1− x2

2x
ln
���1 + x

1− x

���
�

(1.54)

where the second term is the matrix element for the exchange operator.
For a polarized system, exchange has the form

εx(n, ζ) = εx(n, 0) +
�
εx(n, 1)− εx(n, 0)

�
fx(ζ) (1.55)

with

fx(ζ) =
1

2

(1 + ζ)4/3 + (1− ζ)4/3 − 2

21/3 − 1
(1.56)

For unpolarized systems, the LDA is found by setting n↑(
�
r) = n↓(

�
r) = n(

�
r)/2. The corre-

lation energy of the inhomogeneous electron gas cannot be calculated analytically; it is
calculated with manybody methods (RPA) or numerically with Quantum Monte Carlo. It
has been parameterized using analytic forms, for example one that is the same as (1.55),
as proposed by Perdew and Zunger.

Generalized gradient approximations (GGAs)

The first step beyond the local approximation is a functional of the gradient of the density
|∇nσ| as well as its value n at each point. But a straightforward expansion can run
into problems due to the violation of sum rules. The problem is that gradients in real
materials are so large that the expansion breaks down. The term generalized gradient
approximation denotes a variety of ways proposed for functions that modify the behavior
at large gradients in such a way as to preserve the desired properties. The functional can
be defined as a generalized form of (1.51)

EGGA
xc [n↑, n↓] =

�
d3r n(

�
r)εxc(n

↑, n↓, |∇n↑|, |∇n↓|, · · · )

≡
�

d3r n(
�
r)εhomxc (n)Fxc(n

↑, n↓, |∇n↑|, |∇n↓|, · · · ) (1.57)

where Fxc is dimensionless and εhomxc (n) is the exchange energy of the unpolarized gas. For
exchange, there is a spin scaling relation

Ex

�
n↑, n↓� = 1

2

�
Ex

�
2n↑�+ Ex

�
2n↓�� (1.58)

where Ex[n] is the exchange energy for an unpolarized system. Thus, for exchange we
need to consider only the spin-unpolarized Fx(n, |∇n|). It is natural to work in terms of
dimensionless reduced density gradients of mth order that can be defined by

sm =
|∇mn|
(2kF )mn

=
∇mn

2m(3π2)m/3n(1+m/3)
(1.59)

Since kF = 3(2π
3
)1/3 1

rs
, sm is proportional to the mth order fractional variation in density

normalized to the average distance between electrons rs, for example

s1 ≡ s =
|∇n|
(2kF )n

=
|∇rs|

2(2π
3
)1/3rs

(1.60)
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The lowest order terms for Fx have been calculated analytically

Fx = 1 +
10

81
s21 +

146

2025
s22 + · · · (1.61)

Numerous forms Fx(n, s) have been proposed; these can be illustrated (see Fig. 1.2) by
the widely used forms of Becke (B88)3, Perdew and Wang (PW99)4 and Perdew, Burke
and Ernzerhof (PBE)5. In the region that is most relevant for physical applications, s < 3,
the three forms have similar shapes and lead to similar results. For the large s region,
relatively little is known.

Abbildung 1.2: Exchange en-
hancement factor Fx(n, s) as
function of dimensionless den-
sity gradient s. From R. M.
Martin, Electronic Structure,
Cambridge University Press.

3A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior,
Phys. Rev. A 38, 3098 (1988).

4J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation
energy, Phys. Rev. A 45, 13244 (1992).

5J. P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple, Phys.
Rev. Lett. 77, 3865 (1996).
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