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Cold atoms in optical lattices offer an exciting new laboratory where quantum
many-body phenomena can be realized in a highly controlled way. They can
even serve as quantum simulators for notoriously difficult problems like
high-temperature superconductivity. This review is focussed on the recent
developments and new results in multi-component systems. Fermionic atoms
with SU(N) symmetry have exotic superfluid and flavor-ordered ground states.
We discuss symmetry breaking, collective modes, and detection issues, e.g. in
Bragg scattering. On the other hand, bosonic multiflavor ensembles allow for
engineering of spin Hamiltonians which are interesting from a quantum
computation point of view. Finally, we address the role of disorder in optical
lattices. Fermionic atoms experience Anderson localization at sufficiently strong
disorder. Interactions among the atoms induce a competing tendency towards
delocalization. We present a complete phase diagram obtained within dynamical
mean-field theory and discuss experimental observability of the Mott and
Anderson phases.

1. Introduction and overview

The achievement of Bose–Einstein condensation (BEC) 10 years ago [1–3] has pio-
neered the new field of interacting quantum gases in the dilute limit. It has become
possible for the first time to observe quantum phenomena like Bose statistics on a
mesoscopic scale, involving a large number of atoms. More recently, also fermionic
gases have been cooled to the quantum degenerate regime, using sympathetic cooling
of two spin states or boson–fermion mixtures [4–7]. Although the resulting tempera-
tures T/TF� 0.1 are, relative to the Fermi temperature TF, much higher than in
solids, the Pauli principle has been clearly observed. In addition to quantum statis-
tics, tunable interactions are another important ingredient in the cold atom ‘tool-
box’. The interactions between atoms can be changed by an external magnetic field
as a result of Feshbach resonance [8, 9]. In particular, their scattering length can be
tuned to positive or negative values, corresponding to repulsive or attractive inter-
actions. This has opened the way to studies of solid-state related phenomena like

*Email: hofstett@physik.rwth-aachen.de

Philosophical Magazine

ISSN 1478–6435 print/ISSN 1478–6443 online # 2006 Taylor & Francis

http://www.tandf.co.uk/journals

DOI: 10.1080/14786430500228770



Cooper pairing and, BCS superfluidity of fermions [10, 11]. The resulting BEC–BCS

crossover has recently been the subject of intense experimental and theoretical

studies [12–14].
In an independent development, degenerate atomic clouds have been combined

with optical lattices, created by standing light waves which generate an effective

periodic potential for the atoms [15–17]. This way interactions can be tuned without

changing the atomic scattering length. This has been demonstrated in a pathbreaking

experiment [15] where interacting bosons were tuned through a quantum phase

transition from a superfluid (SF) to a Mott insulating state. Very recently, fermionic

K40 atoms have been loaded into 3d optical lattices as well [18]. In these new experi-

ments the lowest Bloch band was filled up successively, and the shape of the Fermi

surface monitored by time-of-flight measurements. Eventually, a completely filled

Brillouin zone corresponding to a band insulator was observed.
More generally, fermionic atoms in optical lattices allow for the realization of

solid-state type quantum phases like antiferromagnetism or high-temperature super-

conductivity [19]. Even the spatial dimensionality of the lattice can be tuned. As an

example, one-dimensional optical lattices have been realized where the hardcore or

Tonks-gas limit of interacting bosons has been observed [20, 21]. Recent progress in

numerical methods for simulating 1d quantum systems has lead to interesting

predictions about the dynamics of such systems [22, 23].
In the following we shall first give an overview of the basic models describing

cold atoms in optical lattices, together with a discussion of solid-state related

phenomena which can be observed. We will then address systems with multiple

flavors, i.e. hyperfine states, which allow realization of new exotic quantum states

not accessible in solids. Finally, we discuss the role of disorder in current and future

experiments involving cold atoms.

2. Optical lattices and strong correlations

2.1. Model and parameters

Atoms can be trapped in standing light waves created by interfering laser beams

detuned far from resonance [15–17]. Due to the AC Stark shift the atoms experience

a periodic potential of the form

VðxÞ ¼ V0

X
i¼1, 2, 3

cos2ðkxiÞ ð1Þ

where k is the wave vector of the laser. The natural energy scale for the potential

depth V0 is the recoil energy ER ¼ �hh2k2=2m. A schematic picture of such an optical

lattice is shown in figure 1. The translational eigenstates in the periodic lattice

potential are given by Bloch bands. An equivalent representation in terms of

Wannier orbitals leads to tight-binding Hamiltonian. Let us assume for the moment

that two different (hyperfine-) spin states are present, which in the following are

denoted as � ¼" , #. If temperature and filling are sufficiently low, the atoms will

be confined exclusively to the lowest Bloch band. In this case the system can be
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described by a Hubbard Hamiltonian [24–26]

H ¼ �t
X

<ij>, �

ðcyi�cj� þ cyj�ci�Þ þU
X
i

ni"ni# ð2Þ

where ci� is the fermionic annihilation operator for the Wannier state of spin � on

site i and ni� ¼ cyi�ci� is the corresponding number density. Let �ðx� xiÞ be a single

Wannier function localized at the ith lattice site. The parameters for hopping t and

onsite interaction U can then be expressed in terms of overlap integrals as

t ¼ �

ð
d 3x�ðx� xiÞ �

�hh2r2

2m
þ VlatticeðxÞ

 !
�ðx� xjÞ

U ¼
4p�hh2as

m

ð
d3xj�ðxÞj

4

ð3Þ

with the final result

t ¼ ERð2=
ffiffiffi
p

p
Þ�3 expð�2�2Þ

U ¼ ERask
ffiffiffiffiffiffiffiffi
8=p

p
�3

ð4Þ

where as is the atomic scattering length and � ¼ ðV0=EÞ
1=4 is a parameter character-

izing the strength of the lattice [16, 19]. From equation (4) it is obvious that by

tuning the optical lattice potential V0 one can achieve arbitrary ratios |U|/t without

changing as. Optical lattices thus give access to the strongly correlated regime without

using Feshbach resonances, which can entail problems of their own like enhanced

losses or instabilities.

2.2. Superfluid-insulator transition

These highly controllable interactions have been employed to study the transition

from a Bose condensate of Rb87 atoms with weak repulsive interactions to a Mott

insulator [15]. In this experiment only a single hyperfine state was used, i.e. the

appropriate theoretical description of the results involves a spinless bosonic

V0

t

|U|

Figure 1. Cold atoms in an optical lattice of strength V0, shown here with hopping t and
negative onsite interaction U. This situation corresponds to an attractive Hubbard model
where multiple occupancy of lattice sites is energetically favorable.
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Hubbard model. For weak interactions, where the kinetic energy dominates, the

atoms are delocalized across the entire lattice and the superfluid many-body ground

state can be written approximately as

j�SFi �
XN
i¼1

byi

 !N

j0i ð5Þ

where j0i is the empty lattice and N the number of lattice sites. Here all bosons have

condensed into the same Bloch state with lattice momentum k¼ 0. Note that in this

state the probability distribution for the local occupation ni is poissonian. If, on the

other hand, the onsite repulsion U dominates, fluctuations in the local occupation

number become energetically unfavorable. At commensurate filling of n atoms per

site the ground state can be written as a product of local Fock states:

j�Motti �
YN
i¼1

ðbyi Þ
n
j0i: ð6Þ

This Mott state is incompressible and unlike the superfluid cannot be described by a

macroscopic wave function. In the experiment by Greiner et al. [15] the system was

reversibly tuned between these two ground states by changing the strength V0 of the

optical lattice via the laser intensity. The momentum distribution of the atoms was

measured by a time-of-flight technique and clearly showed the loss of coherent

tunneling in the Mott insulator. In this experiment it has thus been demonstrated

that optical lattices are an ideal tool for analyzing quantum phase transitions.

2.3. High-temperature fermionic superfluidity

In this section we discuss a proposal for achieving superfluidity of fermionic spin 1/2

atoms in an optical lattice. Let us first focus on the situation with attractive inter-

actions U<0, where we expect s-wave pairing and condensation of Cooper pairs

below a critical temperature Tc. According to BCS theory, for weakly confining atom

traps the transition temperature scales exponentially with interaction strength

kBT
free
c � 0:3E free

F exp½�p=ð2kFjasjÞ� where E
free
F is the Fermi energy in the harmonic

trap. This critical temperature is exceedingly low, unless the characteristic parameter

kF|as| is increased to values of order unity by a Feshbach resonance. This has indeed

been achieved in a remarkable series of recent experiments [12–14]. However,

interpretation of the resulting BEC–BCS crossover is somewhat complicated due

to mixing of multiple scattering channels at resonance.
In [19] we have suggested an alternative approach, which makes use of the

tunable atomic interactions in an optical lattice, as sketched in figure 2. In the

weak-tunneling limit t� |U| of the negative U Hubbard model (2) one recovers

the standard BCS picture with the exponentially small gap. However, increasing

the optical lattice depth leads to both reduced tunneling t and enhanced interaction

|U |. The result is a dramatically increased transition temperature Tc which can be

pushed to a value of the order t2/U, see figure 2. It is maximal in the crossover regime

where interaction and kinetic energy are comparable [27].
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We have additionally taken into account an adiabatic cooling effect for fermions
in an optical lattice: if the atoms are filled into a weak lattice, which is then adia-
batically switched on, the Bloch momentum will be approximately conserved, while
the dispersion changes. As a result, the effective temperature of the fermions is
lowered (see figure 2). Taking the cooling into account leads to a universal transition
temperature T free

c � 0:1E free
F which has to be achieved before the gas is loaded into

the lattice. Note that T free
c is independent of the atom type and well within reach of

today’s experiments.
An even more intriguing possibility opens up for repulsive interactions U>0

resulting from a positive scattering length as>0. At half filling ni¼ 1 this gives rise
to staggered antiferromagnetic order. At lower filling fractions, on the other hand,
cold fermions in a lattice could be used to experimentally probe d-wave pairing (see
figure 3) in the 2d Hubbard model, which is currently beyond the limits of classical
computing. The resulting superfluid order can be detected via Bragg scattering,
which is by now a well-established technique, to measure the dynamical density
response S(q,!) in interacting quantum gases [28, 29].

Such quantum simulations along the lines of Feynman [30] could provide
a powerful tool to gain insight into the many-body Hamiltonians relevant for
solid-state physics.

3. Multi-component systems

3.1. Two-component bosons with spin order

All of the alkali atoms available for trapping and cooling have 2� (2Iþ 1) low-lying
hyperfine states, where I is the nuclear spin. The three common bosonic isotopes Li7,
Na23 and Rb87 all have the same value I¼ 3/2. Several of these states can be trapped
at the same time: in magnetic traps one is limited by the condition that the states
have to be low-field seekers, but optical dipole traps, created with a focussed
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Figure 2. Left: Fermions with attractive interaction forming Cooper pairs in an optical
lattice. Right: Critical temperature for the SF transition of Li6 atoms as a function of the
optical lattice depth in a 3d CO2 lattice. Inset: analogous plot for K

40 atoms in a Nd :YAG
lattice. The dashed curves show the effect of an adiabatic cooling if the atoms are loaded into a
weak lattice at point C which is then decoupled from the reservoir. Figures taken from [19].
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red-detuned laser beam, allow confinement of basically any combination of spin
states [31], as long as no instability due to three-body collision occurs.

This is also true for optical lattices which, like optical traps, are based on the AC
Stark effect. Loading a lattice with two hyperfine states of Rb87 has been demon-
strated experimentally in [32] where also a spin-dependent periodic potential has
been implemented. In the following we discuss a proposal, first published in [33],
how these techniques can be used to engineer quantum spin Hamiltonians which in
turn could be relevant for quantum information processing.

Let us consider a system of two bosonic hyperfine states in a lattice, described
by the following Bose–Hubbard Hamiltonian:

H ¼ �ta
X
h ij i

ðayi aj þHcÞ � tb
X
h ij i

ðbyi bj þ h:c:Þ þU
X
i

nai �
1

2

� �
nbi �

1

2

� �

þ
1

2

X
i, �¼a, b

V�n�iðn�i � 1Þ �
X
i, �

��n�i: ð7Þ

Here ai, bi denote the annihilation operators for two different bosonic pseudospin
states, and the number operators are defined as nai ¼ ayi ai, nbi ¼ byi bi, with the
corresponding chemical potentials �a(b). In reality, experiments are performed at a
fixed number of particles (i.e. fixed magnetization), which in the grand canonical
description can be achieved by tuning the chemical potential. The onsite interaction
between equal spin states is given by Va(b), and the one between different spins by U.
We also assume a spin-dependent tunable hopping ta(b) which has already been
experimentally realized [32].

We now focus on the case of integer filling naþ nb¼ 1, following [33]. We are
mainly interested in the nature of the Mott–superfluid (SF) transition in this system,
and the possibility of spin order in the insulating phase. To address the second issue,
it is instructive to consider parameters ta,b�U,Va,b deep inside the Mott phase.
States with double occupancy per site are then very unfavorable and can be projected
out by a Schrieffer–Wolff transformation. This leads to an effective spin Hamiltonian
in the subspace of single occupation [34]

Heff ¼ Jz
X
h ij i

Sz
i S

z
j � J?

X
h ij i

ðSx
i S

x
j þ S

y
i S

y
j Þ � h

X
i

S z
i ð8Þ

where spin labels " ð#Þ denote sites occupied by a(b) atoms. The effective parameters
are given by

Jz ¼ 2
t 2b þ t2a

U
�
4t2a
Va

�
4t 2b
Vb

J? ¼
4tatb
U

h ¼
2t2a
Va

�
2t 2b
Vb

þ hext:

ð9Þ

We assume that the induced ordering field h can be cancelled by an external field hext.
The physics of this XXZ model is well understood and includes an x–y ferromagnetic
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phase for J? > Jz > 0 as well as an antiferromagnetic z-Neel ordered state for

Jz > J? > 0.
The disadvantage of this deep Mott regime is that the critical temperature for

magnetic ordering is very low Tc � maxðt2aðbÞ=U, t2aðbÞ=VaðbÞÞ and therefore experimen-

tally hardly accessible. In order to enhance Tc and study the region close to the

Mott–SF transition it is necessary to make at least one of the interaction parameters

comparable to the hopping. Here we choose taðbÞ � U � VaðbÞ, which means that

double occupancy with two different spins is now possible. The main question is

whether the spin order discussed above is still visible close to the superfluid. In order

to map out the Mott–SF phase boundary, we have used a mean-field approach first

proposed by Sheshadri et al. [35] where the kinetic energy is decoupled:

HMF ¼ U
X
i

nai �
1

2

� �
nbi �

1

2

� �
þ
1

2

X
i;�¼a, b

V�n�iðn�i � 1Þ

�
X
h ij i

ta ayi haji þHc
� �

� tb
X
h ij i

byi hbji þ h:c:
� �

þ constant ð10Þ

In the paramagnetic phase, this decoupling leads to a sum of identical single-site

Hamiltonians. We have solved the resulting self-consistency problem numerically,

allowing for up to M¼ 9 bosons per spin and sites. The phase diagram obtained in

this way is shown in figure 4 (left). Note that as Va(b) decreases, the Mott domain

shrinks.
Within the mean-field approach, different spin ordered states in the insulator

cannot be resolved. In order to remove this degeneracy, it is necessary to take

into account quantum fluctuations on top of the variational mean-field state and
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Figure 3. Probing d-wave pairing in the repulsive 2d Hubbard model via Bragg scattering.
Left: schematic diagram of the Fermi surface in 2d (solid line) and the momentum dependence
of the gap (dashed line). Right: onset frequency of the quasiparticle continuum in the dyna-
mical structure factor S(q,!), plotted as a function of momentum q. At the special
wave vectors connecting the nodal points in the left figure, the density response is gapless.
Figures taken from [19].
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compare the resulting ground state energies. Details of this calculation can be found
in [33]. The resulting phase diagram including fluctuations is given in figure 4 (right).
Spin ordering persists right up to the SF phase boundary and can, furthermore, be
tuned from xy-ferromagnetic to z-Neel antiferromagnetic by the ratio ta/tb. We find
hysteresis between the z-Neel state and the superfluid, while the transition between
the xy-state and the SF is continuous. These should be a clear signature for an
experimental detection of spin ordered states, using for example Rb87 atoms. The
spin order can be directly observed using spin-dependent Bragg scattering or via
density fluctuation in time-of-flight measurements [36].

3.2. Beyond solid-state: SU(N) fermions

As discussed in section 2.3, fermionic atoms in optical lattices can be used to perform
quantum simulations of complex solid-state systems like the cuprate superconduc-
tors. Now we show that with the degrees of freedom offered by ultracold atoms, it is
also possible to create new states of matter that have no equivalent in condensed
matter at all. The obvious constraint in solid-state physics is that electrons have only
two spin states. Atoms, on the other hand, have large hyperfine multiplets out of
which several states can be trapped simultaneously. For fermionic atom this has been
demonstrated with the three states jF ¼ 9=2,mF ¼ �5=2, � 7=2, � 9=2i of K40 in an
optical trap [37]. Alternatively, one could use the three spin polarized ms¼ 1/2 states
of Li6 which, in a sufficiently large field, have a pairwise equal and anomalously large
triplet scattering length as¼� 2160a0 [38].

These systems can be used to realize fermionic Hubbard models with N>2
flavors and approximate SU(N) flavor symmetry. In the following we discuss the
rich physics of these models for finite N, following the work by Honerkamp and
Hofstetter [39, 40]. The Hamiltonian is given by

H ¼ �t
X
m, h ij i

cyi,mcj,m þ cyj,mci,m

h i
þ
U

2

X
i

n2i ð11Þ
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Figure 4. Left: Phase diagram of the 2-component bosonic Hubbard model obtained
via decoupling mean-field theory. Note that as Va(b) decreases, the Mott domain shrinks.
Right: Phase diagram including quantum fluctuations. Figures taken from [33].
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where cyim creates a fermion of flavor m¼ 1, . . .N on site i and ni ¼ �mni,m is the total

number of atoms on site i. Note that the interaction term has local SU(N) invariance

while the hopping reduces this to a global one. The values of t and U can be derived

from atomic parameters along the lines of section 2.1.
While the large-N limit of this model has been well studied in the context

of high-Tc superconductivity [41], few results have been previously obtained for

finite N. Consider first the case of repulsive interactions U>0. We have performed

a systematic analysis of weak-coupling instabilities using a perturbative functional

renormalization group (RG) approach [42]. In this technique, the 2-body interaction

is parametrized by a coupling function V(k1, k2, k3), the flow of which is monitored

as a function of some cutoff parameter like the temperature T. In this way one can

identify singular response e.g. in the charge channel or in the SU(N) channel.

Although the RG eventually breaks down at strong coupling, it allows to identify

the leading instability towards an ordered phase. The analysis performed by

Honerkamp and Hofstetter [39] focuses on d¼ 2 dimensions.
In figure 5 the three relevant types of order at half filling hnii ¼ N=2 are shown.

In the spin 1/2 case the system displays staggered antiferromagnetic order, as is well

known. For intermediate N<6 the RG yields an instability towards flavor density

wave states with ordering wavevector Q¼ (p, p) like in the antiferromagnetic case.

This corresponds to a breaking of the SU(N) symmetry, leading to a degenerate

ground state manifold. As N increases, breaking of SU(N) becomes less favorable

because the number of Goldstone modes increases. For N>6 the RG indicates a

dominant instability of the staggered flux type with alternating particle currents

around the plaquettes of the 2d lattice (see figure 5c). This state breaks only transla-

tional and time-reversal invariance and has a finite expectation value of the d-wave

density component �SF ¼ � ~kk,m
ðcos kx � cos kyÞhc

y

~kk,m
c ~kkþ ~QQ,m

i, again with ordering

wavevector Q¼ (p, p).
Let us briefly discuss the temperature scales Tc below which the respective

long-range orders set in. The critical temperature for flavor density wave order at

strong coupling scales like t2/U and can thus be tuned to relatively large values: for

N¼ 3 the RG predicts a maximum Tc of �0.1 t. On the other hand, staggered flux

a) b) c)

21

3

1 2 3

21

3

3

1 2

21

Figure 5. Types of order in the U>0 fermionic SU(3) Hubbard model. (a) AF spin-density
wave for N¼ 2. (b) Flavor-density wave state for N¼ 3. Flavor 1 and 2 prefer one sublattice,
flavor 3 the other. (c) Staggered flux state for N>6: particle currents are indicated by arrows.
Figures taken from [39].
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order, like d-wave superconductivity away from half filling, requires significantly
lower temperatures, with a typical RG estimate given by Tc� 0.01 t for N¼ 7.
This is about an order of magnitude below the current experimental limit and will
require improved cooling techniques.

Next, we focus on the situation with attractive interactions U<0 and N¼ 3
flavors which is relevant for Li6. Recently a large experimental effort has been
devoted to the BEC–BCS crossover in spin-1/2 superfluid fermions [12–15, 43].
A common feature of these experiments with K40 and Li6 is the use of a Feshbach
resonance to generate large attractive interaction and thus achieve Cooper pairing.
These resonances generally occur only between two hyperfine spin states and thus
cannot be used to realize an SU(3) symmetric model. However, as pointed out above,
Li6 has a remarkably large and negative background scattering length which in a
finite magnetic field, is approximately equal for the three spin states with ms¼ 1/2.
In combination with an optical lattice one can therefore realize the SU(N) Hubbard
model (11) with U<0 and N¼ 3. The possibility of a three-flavor paired state in Li6,
without consideration of the SU(3) symmetry, had already been pointed out by
Modawi and Leggett [44].

Following the analysis in [40] we now discuss how the spin-1/2 BCS state
is generalized to three flavors. We assume weak-to-intermediate interactions so
that a treatment within BCS theory is qualitatively valid. We introduce a pairing
mean-field and Hamiltonian

��� ¼ �
U

N

X
k

hck�c�k�i HMF ¼ �
1

2

X
~kk, �,�

cy
~kk�
cy
� ~kk�

��� þ h:c:, ð12Þ

where �, �¼ 1, . . . , 3 are the flavor indices and N is the number of lattice sites. We
focus on s-wave pairing which is favorable because of strong onsite attraction.
The Pauli principle then requires antisymmetry ���¼���� in the flavor index.
From a group-theoretical point of view, the flavors (ck1, ck2, ck3) transform under
a 3-dimensional (3D) irreducible representation of SU(3), and a Cooper pair ���

therefore transforms under 3� 3 ¼ �33� 6. Here �33, which describes the even-parity
sector, denotes the complex conjugate representation of 3. The representation 6 is
relevant for odd parity pairing (e.g. p-wave) which is not considered here. The order
parameter can therefore be written as a triplet

�� ¼
1

2
����hc�c�i ¼

�23

��13

�12

0
@

1
A: ð13Þ

From mean-field theory we obtain that all ground states consistent with
��j��j

2
¼ �2

0 are degenerate. This 5D ground-state manifold is consistent with
the number of collective modes obtained via Goldstones theorem, which is obvious
in the gauge �12¼�0 and �13¼�23¼ 0. The original symmetry group of the
problem is SU(3)�U(1) – with the extra U(1) from total particle number
conservation – and has nine generators. This gets broken down to an SU(2)
symmetry in flavor 1 and 2, leaving �12 invariant, and an additional U(1) that
acts on the phase of the unpaired flavor 3. This leaves 5 generators broken, yielding
the correct number of Goldstone modes.
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The remarkable feature of this triplet s-wave state is that superfluid Cooper
pairs coexist with a normal Fermi surface (see figure 6), i.e. the single-particle
spectrum is only partially gapped. This has consequences for the collective mode
spectrum which we have analyzed within a generalized RPA scheme [40]. They are
partially visible in the dynamical structure factor S(q,!), which is accessible via
Bragg scattering [28]. An example of the calculated density response spectrum
Im�	 (q,!), which is equivalent to S(q,!) via the fluctuation–dissipation theorem,
is shown in figure 7. The Anderson–Bogoliubov mode, the signature of superfluid-
ity, is clearly visible, as well as an additional flavor mode indicating the 3-flavor
degeneracy.

From BCS mean-field theory in two dimensions we find a transition temperature
of Tc¼ 0.17t for typical parameters n¼ 3/8 and U¼� 4t. This amounts to roughly
0.05TF and is within reach of present cooling techniques. Multi-component Fermi
systems like Li6 can thus provide exotic new many-body physics and may even allow
quantum simulations of simplified QCD models where only the color degree of
freedom is taken into account.

4. Disorder and interaction

So far in this review we have focussed on pure, translationally invariant quantum
lattice models. It is indeed needed, one of the main advantages of optical lattices that
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∆
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Figure 6. BCS pairing of 3-flavor fermions with SU(3) symmetry: Note that one flavor
remains unpaired, with a normal Fermi surface. Figures taken from [40].
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perfectly disorder-free systems can be realized. On the other hand, effects of impu-

rities and defects are of central importance in solids, where they often compete with

the electron–electron interaction [45, 46]. It is therefore of great interest to realize in

a controlled way disordered cold atom systems where localization effects can be

studied.
Experimentally, disordered potentials can be created either by using speckle

lasers [47] or via quasiperiodic optical lattices [48]. Either way, due to the AC

stark effect, the atoms experience a spatially fluctuating random potential which is

stationary in time. Recently, localization effects have been observed in a BEC subject

to a speckle laser field [49].
Here we focus on fermionic atoms with two spin states in a 3D optical

lattice with an additional random potential. A complete presentation of

the results discussed here can be found in [50]. The system is modelled by the

Anderson–Hubbard Hamiltonian

HAH ¼ �t
X
h ij i�

cyi�cj� þ
X
i�

�ini� þU
X
i

ni"ni# � �
X
i�

ni� , ð14Þ

where �i is a random onsite potential which we assume to be uniformly distributed in

the interval ½��=2,�=2�. The parameter � is a measure of the disorder strength. We

focus on the case of half filling n¼ 1 where on average there is one particle per site.

The Hamiltonian (14) describes both an interaction-induced Mott transition into

a correlated insulator [51] as well as the Anderson localization transition due to

coherent backscattering from random impurities [52].
Analyzing model (14) is a challenging problem. Note that even the pure fermio-

nic Hubbard model with �¼ 0 has only been exactly solved in one dimension, while

there are many open questions about the physics in two and three dimensions. Here

we present results obtained within the Dynamical Mean-Field Theory (DMFT),

a nonperturbative technique where local quantum fluctuations are treated exactly

[53, 54]. The DMFT has been applied with great success in d¼ 3 spatial dimen-

sions to explain the magnetic-ordering phenomena and the Mott transition.

Figure 7. Density response spectrum �	(q,!) of the 2d fermionic SU(3) Hubbard model at
T¼ 0.01t, U¼� 4t and filling n� 0.55. Figure taken from [40].
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In the calculation presented here [50] we use a recently developed variant, the

stochastic DMFT, which is able to describe Anderson localization as well [55, 56].
Within DMFT, the correlated lattice model is mapped onto a self-consistent

Anderson impurity Hamiltonian

HSIAM ¼
X
�

ð�� �Þcy�c� þUn"n#

þ
X
k�

Vkc
y
�ak� þ V	

ka
y

k�c� þ
X
k�

�ka
y

k�ak� ð15Þ

where a single correlated lattice site now constitutes the impurity with a random

onsite energy �, and the fermions ak� represent a fictitious conduction band with

parameters Vk and �k which have to be determined self-consistently. The chemical

potential �¼�U/2 ensures half filling. This effective single-impurity model is solved

using Wilson’s numerical renormalization group [57–60]. Within the stochastic

DMFT [56] the self-consistency loop involves a geometric disorder average of the

local density of states

	geomð!Þ ¼ exp½hln 	ið!Þi� ð16Þ

which then determines the hybridization function 
ð!Þ ¼ �kjVkj
2=ð!� �kÞ for the

next iteration. For more details see [50].
The resulting zero-temperature phase diagram as a function of disorder � and

interaction U is shown in figure 8. For weak interaction and disorder and atoms are

in a Fermi liquid state (‘metal’). There are two different metal insulator transitions: a

Mott–Hubbard transition takes place for increasing interaction U, and an Anderson

localization transition occurs as a function of �. Our results indicate that the two

insulating phases are adiabatically connected. Note, however, that in our DMFT

calculation we have so far considered only the paramagnetic insulating phase. For

non-frustrated lattices (e.g. simple cubic), it is known that an antiferromagnetic

instability occurs in the pure Mott state. We are currently analyzing how far this

Figure 8. DMFT ground-state phase diagram of the disordered Hubbard model in the
nonmagnetic phase at half filling. Figure taken from [50].
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antiferromagnetic phase extends into the disordered Mott–Anderson insulator [61].
Let us briefly comment on the detection of these different phases. Itinerant versus
insulating behaviour can be identified by a time-flight measurement as in [18]. In the
Fermi liquid state, delocalization of fermions across the lattice leads to an interfer-
ence pattern which vanishes once the atoms become localized. In order to distinguish
the antiferromagnetic Mott insulator from the paramagnetic Anderson insulator one
could apply spin-resolved Bragg scattering.

Optical lattices are a promising tool to simulate the above phase diagram
experimentally since, in contrast to solids, both parameters U and � can be tuned
arbitrarily. In particular, measurements could be done both in two and three spatial
dimensions, thus possibly detecting qualitatively new physics in d¼ 2 where DMFT
is no longer expected to be a good approximation.

5. Summary and outlook

In this review we have presented some theoretical aspects of strongly correlated
atoms in optical lattices. We have shown that these systems can be used to create
analogues of well established solid-state quantum phases, like a BCS superconduc-
tor, but with much higher tunability of the model parameters. More generally, ultra-
cold atoms can be used to perform quantum simulations of model Hamiltonians, like
the 2d Hubbard model, which have not been fully understood theoretically, but may
be relevant for fundamental phenomena like high-temperature superconductivity. As
another example for such a simulation we have discussed interacting fermions with
disorder. Within a DMFT calculation we observe remarkable re-entrance into the
itinerant phase due to competing Mott- and Anderson-localization. We expect our
results to be qualitatively accurate in 3d, but to which degree the physics carries over
to 2d has to be checked experimentally. Finally, we have demonstrated that it is
possible to use the highly degenerate internal states of cold atoms to create new
exotic quantum states which have no analogue in condensed matter physics.
Bosons with multiple spin states can be used to create tunable spin Hamiltonians.
Most prominently, we have discussed a new fermionic SU(3) triplet superfluid state
which could be relevant for QCD toy models at weak to intermediate interactions.
Experimental realization of these quantum phases is within reach and could signifi-
cantly increase our understanding of the many-body model systems involved.
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[22] C. Kollath, U. Schollwöck, J. von Delft, et al., PRA 69 031601(R) (2004a).
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