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Bound states in HICs

Relativistic HQGVY-IO n Collisions particle distributions

Probe for QGP made by Chun Shen fr'::::co e
(Color Debye Sreening,
QGP Thermometer)

Hadronization
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- Charmonia (J/¢, Y)
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- Exotic Bound States: (Hypernuclei)
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Central region

/Low binding energy (deuteron ~ 2.3 MeV): "Icein a Fire"\
- Probe of the freeze-out phase (chemical and kinetic) at ~ 150 MeV

- Measuring collective flow (non-static fireball = recombinations )

&Searching for the QCD Critical Point
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Measuring deuteron with TPC

(Time Projection Chamber)

Calculation of dE/dx via Bethe-Bloch formula:

dE . ,Z1[1 2moc? B2 W nax 2 0(BY)

Measuring of the specific ionization and TOF

m? (GeV/c??

dE/dx in TP

dE/dx in TPC (arb. units)
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pr-spectra for (anti-)deuteron
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The deuteron also helps to understand phase diagram
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Also helps to distinguish between thermal model and coalescence
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Coalescence usually basis for theoretical description

Thermal model predicts particle yields

3 o :Eh'"'* - Pb-Pb \s,=2.76 TeV 3 (at chem. freeze out) very well
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The coalescence model

Leading particle

Vio/-,.
X Olati, N of
Deuteron i €n Qr,
b Toward ay-

In Wigner-representation:
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Open guantum system approach

Total System Find dynamics of the reduced density matrix p = Trg pr

(Hr, pr, Hr)
Use Caldeira-Leggett Modell for the full system:
1 |
System H=——P*+ -MQ*X?
H 2m 2
(H,p, H) 1 y 5 ’
/ ¥ Z (Qlfinpn N Emﬂ&ﬂ'rﬂ 2 Xzﬂ: Falig et Z 2muw
Environment N H of the systen
(HE, pe, HE) o2
&
" " 5 P QR0 Linear coupling to the bath
H = Hg + Hg + H;

Counter term including the bath spectrum
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Caldeira-Leggett Master Equation

,O(l',y,t) :/dIO fdyo K(I1 y|t Ty, yﬂ‘U}p(IU‘ yU'G}
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it
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X exp [i

But: not norm preserving

- inserting Trotter formula
- motivate stationary state from
statistical distribution

Approximations:

- Markovian System -- kills one time integral
- Ohmic heat bath:

- linear source term (coupling)

- high temperatures

Dissipative dynamics of system
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Lindblad dynamics

Norm-conserving

d . ST, ]. N R, oS = . o
Ef = —I [H?p} —3 ({L'L?p} — ZL;,}LT) = —1 [H? p} + D and positive!
For the harmonic oscillator,
< coefficients 5
L= u+ivp Oﬁ*aﬂdp can be evaluated analytically: #~ = 2ymT’,
. Com\oecoe“‘ But: no general mechanism to i = T
(e ,&a@““ derive Lindblad operators |
W2

,Diffusion”-coefficients connected to

Obtain coefficients from Wigner transform @ widths in xx, px, and pp of p

2
Coefficients time dependent? for example: £°) —

2m m



Lindblad equation as diffusion-advection equation

v[0,1, 8,0 ] + S[t, T, ]
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Frl= o 2Dps (x —y) pr+ 7 (T — Y) pi
folE ] = ( i ; = i(—LPRvLD'-' PI) + Do 5 o1
’ +2Dpe (x —y)pr +7(x —y) pr) v[0,d, O] = | Py \ 2m PR = = oc P
" Q [ ' ! L] ()_(; (ﬁ pr + Do::r ,'OR) + Dm'r, (;_L PR
FY[E, @) = (—QDM (z—y)pr—7(x—y) PI)
| +2Dp, (2 —y)pr —v (& —Y)pr/) S [V(y) = V(@)] pr+ 27 — Dpp (= — v)?]
[V(z) = V)] pr+ (27 — Do (= — v)?| o,

a

a
@“‘"[6’ i, 0 1]’] — ( (Q'm PR+ Dag K)I) +D7”r dy P1 )
S e\~ D +D ’
dr( 2m PI T mPR) . dy PR

U= ‘E‘:(f, t) = (pf(x: Y. t)* pR(.’E: Y, t))T

Terms can be interpreted clearly:

- exponential suppression with

& e B v 0 o) 0 5 5 L Dpp - decoherence
atu — [( 0 DI;C) 83 =+ (0 ) 8:-' T 4 ( {_‘;’p D ) 7:.2] U + [( 1 261’?-) 8q8r - potentlal as source

2m

0 V(r—q) V(?”r@))]

- D pure spatial diffusion
- Dpx ~ velocity field towards diagonal




Decoherence

System gets less coherent during the process of thermalization
(deconstruction of quantum superposition)

AT 2
Dominant term in Lindblad-equation: dips(z,2',t) = '}ﬂ{(x )\,:3) } ps(z, 2’ t)

with
Wigner transform of CLME shows phase in phase space: \ (k) <:> 1 v\ 2
- DAz?\ T M (kp)T "D :7( Y )
Wint = — (T) Wint <:> I;V'.mt ~ COS (%p) %
d 2M~kgT 2
Study decoherence via purity of the system: ETPPQ D ((12} — (z) )

Relaxation time is not directly connected with decoherence time!

Bath in Lindblad approach is Markovian! -- No backflow from bath to system Hiy = Z Cnln
T

But!!l: decoherence is bath dependent, and different for different baths (no momentum dependence) m



A quantum bound state with deuteron parameters
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Initial conditions - final distribution - bound state
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Initial conditions - final distribution - 16thstate

He(p[xyt C-fmf Al Re(p(x,y, 1=0.25 fm/c)) He{p(xyt-I fm/c))




Decoherence
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p(x,X,t) for initial n=0 and n=16
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...valid to assume free particle

ﬂ



Distribution of p,,for stationary system
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Does the system really thermalize?
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Bound state and Entropy - different therm. times
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All (initially differerent) states reach the same result, but in different times!
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Conception of a system with three bound states
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Do Lindblad dynamics

thermalize for all

Pnn(t)
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Lowest bound state stays above
the analytic result

Entropy shows, that system is
thermalized
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So what about other potentials? J/{?

o tklz| - Vap < 0
— 1 | ¥is
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To conclude...

-Thermalization is reached for systems, where the impact of the potential is weak
- ... this results form the choice of the parameters (motivated from h.o.)

- diffusion coefficients are motivated from ,right” equilibrium

- goal to find a more general method to motivate diffusion coefficients

- ... diffusion coefficients are connected to the Lindblad operators

- ... to describe the formation of more strongly bound states, as of the J/{

ﬂ






Derivation of a master equation of the CLM

. . . . fd 1 t M
Starting point is the path intergral: (zp t] Tato) = Hj;gpqif * Dy cxp{—if dt [—:5;2 - V(m)”
5 o I—-[E 21 to 2

‘ i
ifodt ) [%(%2 + Qg2 - N t’.ﬁ'.jfﬁ(ﬁ}.’fi(t):| }

ty :

¢ ¢ M
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1

Solve at keldysh-contour {
X exp § —

Dissipation
Sl

; Ct,t) = =i [~ S ppaa(e) sinfe! (t 1))

; € .o J—oo 2T
pBaa(w') = 21 3 (W — ()

Fluctations

Wy

AEt) =d"¢ ul - coth (9}; T) cos(w;(t — t'))
[A(t,t') + C(t,t)] = G(t, 1) 0 = ( & ) cos(w/(t — ')

S 1, .
o PBad(w') coth T

Fal

b | =
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