

Formation of bound states in the Lindblad approach

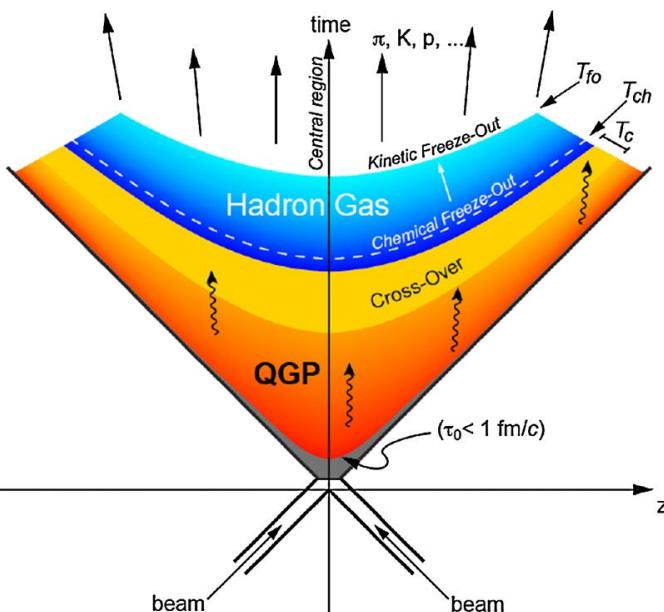
Transport-Meeting, 05 Feb. 2026

Jan Rais

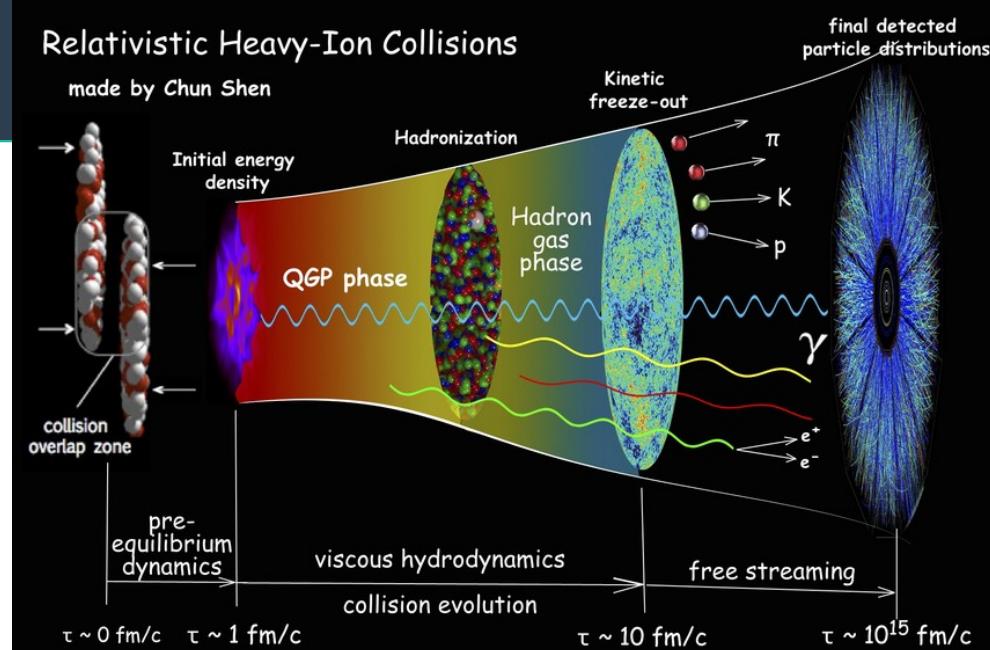
In collaboration with C. Greiner, H. van Hees, T. Neidig

Bound states in HICs

- Charmonia (J/ψ , Υ)
- Light Nuclei (deuterons, tritons, and helium nuclei)
- Exotic Bound States: (Hypernuclei)



Probe for QGP
(Color Debye Screening,
QGP Thermometer)



Low binding energy (deuteron ~ 2.3 MeV): "Ice in a Fire"

- Probe of the freeze-out phase (chemical and kinetic) at ~ 150 MeV
- Measuring collective flow (non-static fireball \rightarrow recombinations)
- Searching for the QCD Critical Point

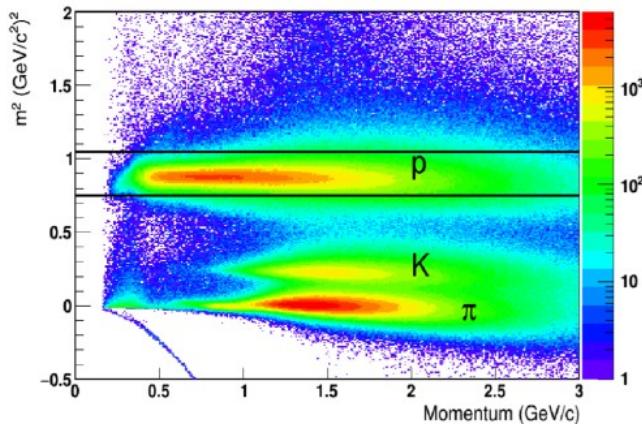
Measuring deuteron with TPC

(Time Projection Chamber)

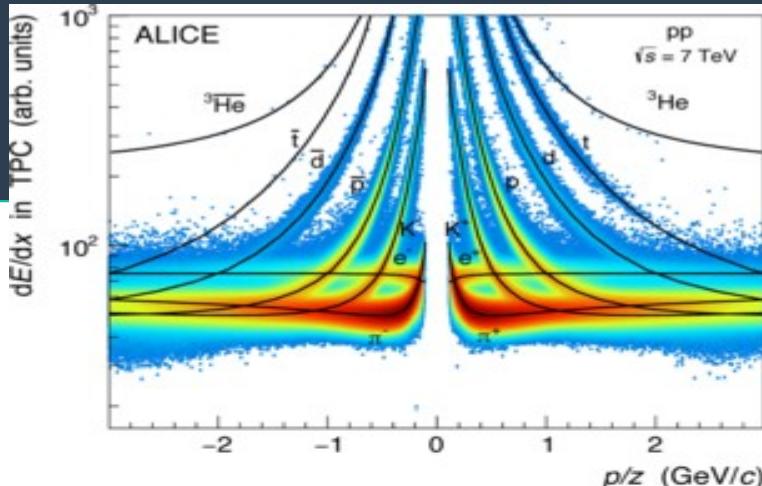
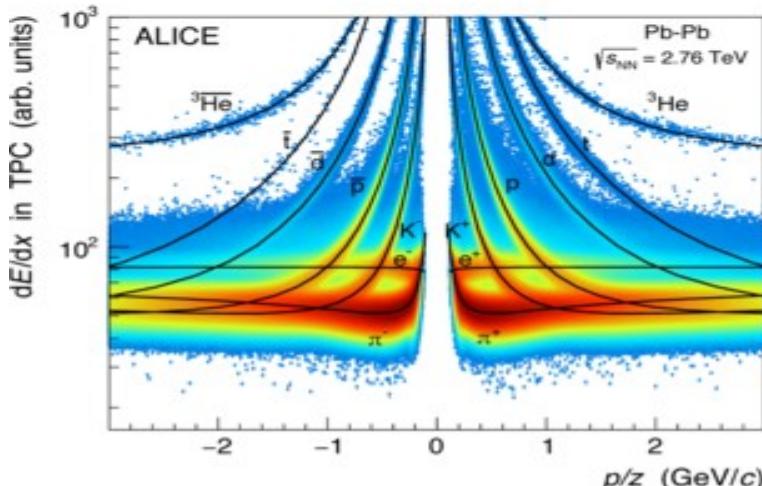
Calculation of dE/dx via Bethe-Bloch formula:

$$-\frac{dE}{dx} = K z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \left(\frac{2m_e c^2 \beta^2 \gamma^2 W_{\max}}{I^2} \right) - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$$

Measuring of the specific ionization and TOF

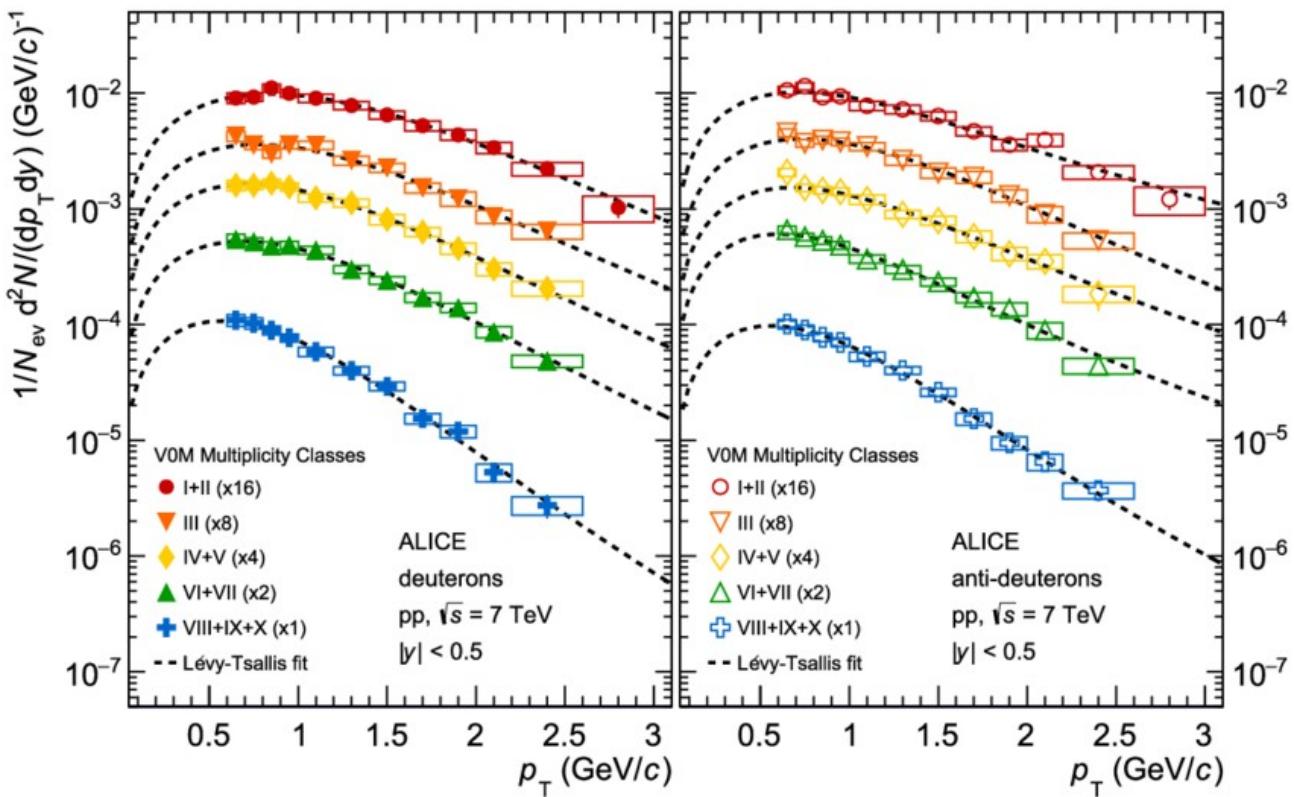


$$m = \frac{p}{\beta\gamma c} = \frac{p}{c} \sqrt{\frac{c^2 t^2}{L^2} - 1}$$



p_T -spectra for (anti-)deuteron

- spectrum broad and exp-like for high p_T
- can be explained via coalescence:
- protons and neutrons in the bulk medium: thermal distribution at high p_T as the system cools.
- steepness is influenced by the kin. freeze-out temperature
- spectrum flat for low p_T
 - radial flow
 - most (anti-)deuterons for low p_T

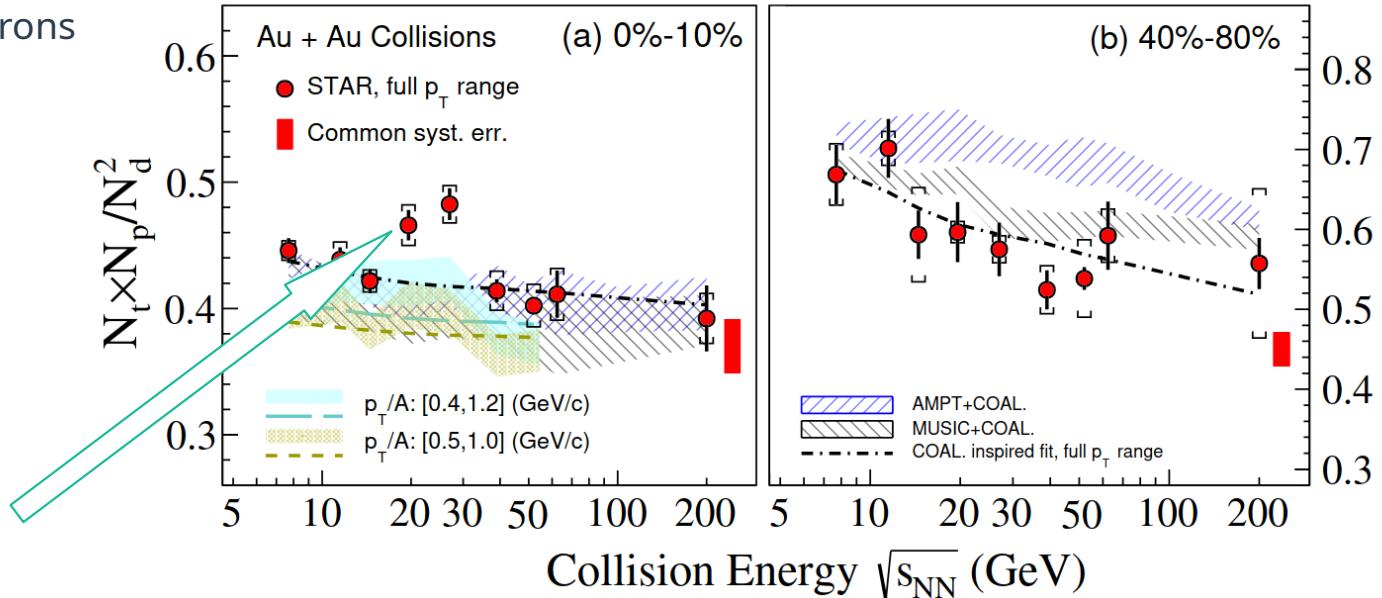


The deuteron also helps to understand phase diagram

Rate of tritons, protons and deuterons

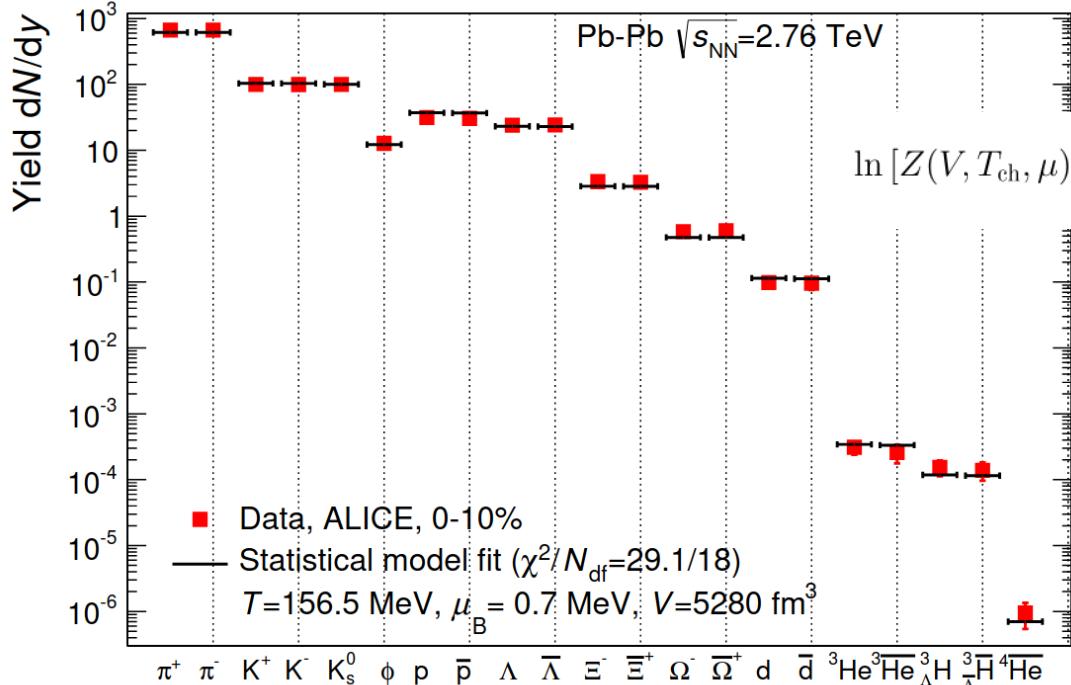
$$O_{tpd} = N_t N_p / N_d^2$$

Sensitivity to density fluctuations



Also helps to distinguish between thermal model and coalescence

Coalescence usually basis for theoretical description



Thermal model predicts particle yields
(at chem. freeze out) very well

$$\ln [Z(V, T_{\text{ch}}, \mu)] = \sum_i [\ln Z_i(V, T_{\text{ch}}, \mu)] = \sum_i \frac{g_i V}{2\pi^2} \int_0^\infty dp \left[\pm p^2 \ln \left(1 \pm \lambda_i e^{-\frac{E}{T_{\text{ch}}}} \right) \right]$$

$$N_i = T_{\text{ch}} \frac{\partial \ln Z_i(V, T_{\text{ch}}, \mu)}{\partial \mu_i} \approx \lambda_i \frac{q_i g_i V T_{\text{ch}}}{2\pi^2} m_i^2 K_2 \left(\frac{m_i}{T_{\text{ch}}} \right)$$

Can be used estimating the yields at a given temperature or T_{ch} for given yields.

no formation of the deuteron

The coalescence model

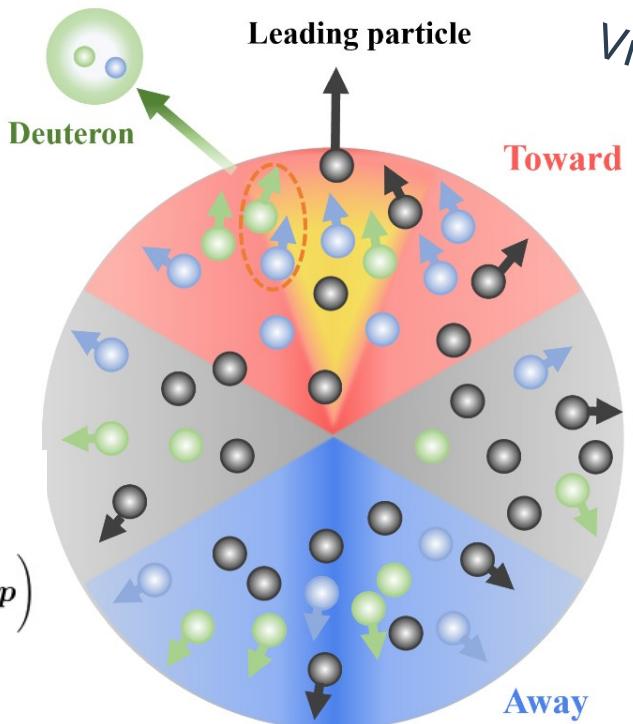
$$E_d \frac{d^3 N_d}{d\mathbf{p}_d^3} = B_2 \left(E_p \frac{d^3 N_p}{d\mathbf{p}_p^3} \right) \left(E_n \frac{d^3 N_n}{d\mathbf{p}_n^3} \right)$$

In Wigner-representation:

$$\frac{d^3 N_d}{d\mathbf{P}_d^3} = \frac{S_d}{(2\pi)^3} \int d^3 \mathbf{r}_d \int d^3 \mathbf{r} \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \mathcal{D}(\mathbf{r}, \mathbf{p}) \\ \times f_p^W \left(\mathbf{r}_d + \frac{\mathbf{r}}{2}, \frac{\mathbf{P}_d}{2} + \mathbf{p} \right) f_n^W \left(\mathbf{r}_d - \frac{\mathbf{r}}{2}, \frac{\mathbf{P}_d}{2} - \mathbf{p} \right)$$

with

$$\mathcal{D}(\mathbf{r}, \mathbf{p}) = \int d^3 \xi e^{-i\mathbf{q}\xi} \varphi_d \left(\mathbf{r} + \frac{\xi}{2} \right) \varphi_d^* \left(\mathbf{r} - \frac{\xi}{2} \right)$$



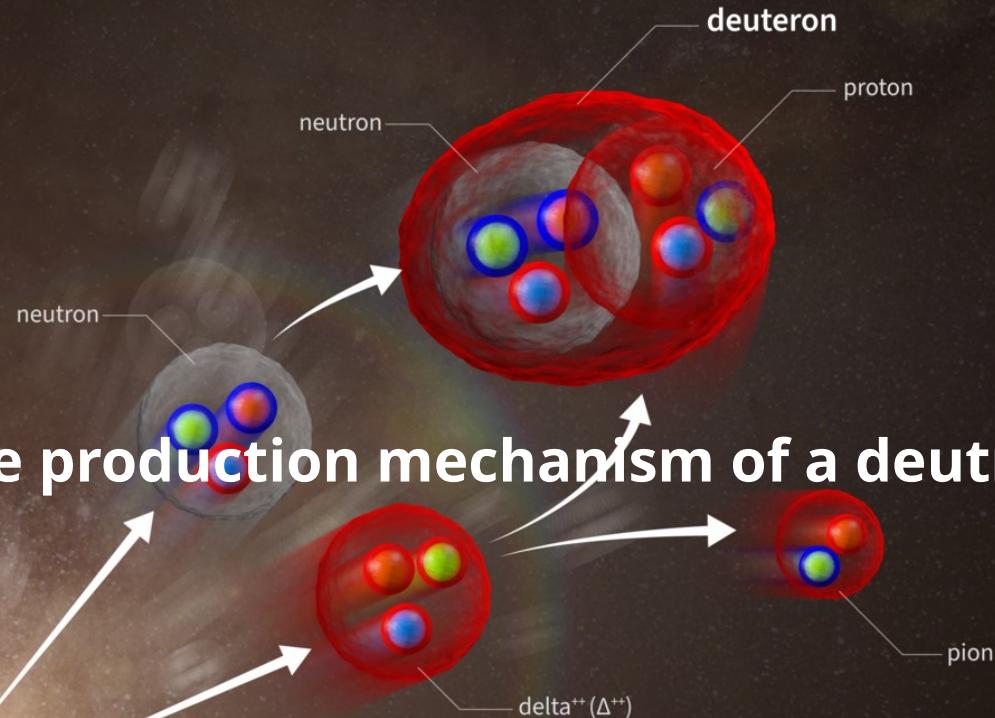
Violation of energy-conservation!

$$B_2 = \frac{3\pi^{3/2} \langle C_d \rangle}{2m_T R^3}$$

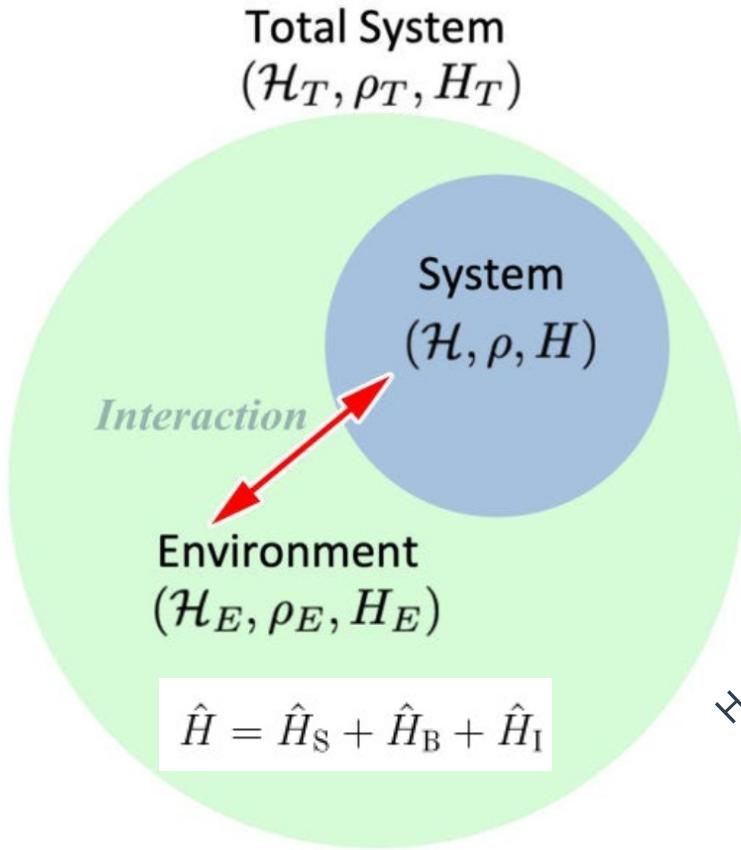
$$B_2 \approx \frac{3}{4} (2\pi)^3 \int d^3 \mathbf{r}_1 d^3 \mathbf{r}_2 \mathcal{D}(\mathbf{r}_1) \mathcal{D}(\mathbf{r}_2) |\psi_d(\mathbf{r}_1, \mathbf{r}_2)|^2$$

$$B_2(p_T) = \frac{\text{Yield}_d(p_T)}{\left[\text{Yield}_p(p_T/2) \right]^2}$$

So: What is the production mechanism of a deuteron?



Open quantum system approach



Find dynamics of the reduced density matrix $\rho = \text{Tr}_E \rho_T$

Use Caldeira-Leggett Modell for the full system:

$$H_T = \frac{1}{2m} P^2 + \frac{1}{2} M \Omega^2 X^2 + \sum_n \left(\frac{1}{2m_n} p_n^2 + \frac{1}{2} m_n \omega_n^2 x_n^2 \right) - \cancel{\sum_n c_n x_n} + X^2 \sum_n \frac{c_n^2}{2m_n \omega_n^2}$$

Diagram illustrating the Caldeira-Leggett model components:

- H of the Bath**: Represented by a wavy green line.
- H of the system**: Represented by a straight green line.
- Linear coupling to the bath**: Represented by a green arrow pointing from the system to the bath.
- Counter term including the bath spectrum**: Represented by a green arrow pointing from the bath back to the system.

Caldeira-Leggett Master Equation

$$\begin{aligned}
 \rho(x, y, t) &= \int dx_0 \int dy_0 K(x, y, t; x_0, y_0, 0) \rho(x_0, y_0, 0) \\
 &= \int dx_0 \int dy_0 \int_{x_0}^x \mathcal{D}x_+ \int_{y_0}^y \mathcal{D}y_- \\
 &\quad \exp \left(i \int_0^t dt' \left\{ \frac{M}{2} [\dot{x}^2(t') - \dot{y}^2(t')] - [V_{\text{ren}}(x(t')) - V_{\text{ren}}(y(t'))] \right\} \right) \\
 &\quad \times \exp \left[i \frac{M\gamma}{2} \int_0^t dt' (\dot{x}\dot{y} + x\ddot{y} - \dot{y}\dot{x} - y\ddot{x})(t') \right] \\
 &\quad \times \exp \left[-2M\gamma T \int_0^t dt' (x - y)^2(t') \right] \rho(x_0, y_0, 0),
 \end{aligned}$$

But: not norm preserving
and
necessarily positive

$$\dot{\rho} = -i [\hat{H}, \hat{\rho}] - i \frac{\gamma}{2} [\{\hat{p}, \hat{x}\}, \hat{\rho}] - 2m\gamma T [\hat{x}, [\hat{x}, \hat{\rho}]] - i\gamma ([\hat{x}, \hat{\rho}\hat{p}] - [\hat{p}, \hat{\rho}\hat{x}])$$

- inserting Trotter formula
- motivate stationary state from statistical distribution

Approximations:

- Markovian System -- kills one time integral
- Ohmic heat bath:
- linear source term (coupling)
- high temperatures

Dissipative dynamics of system

Lindblad dynamics

$$\frac{d}{dt}\hat{\rho} = -i[\hat{H}, \hat{\rho}] - \frac{1}{2}(\{\hat{L}^\dagger \hat{L}, \hat{\rho}\} - 2\hat{L}\hat{\rho}\hat{L}^\dagger) = -i[\hat{H}, \hat{\rho}] + \mathcal{D}$$

Norm-conserving
and positive!

$$\hat{L} = \mu\hat{x} + i\nu\hat{p}$$

Linear combination of x and p?
What are the coefficients?

Obtain coefficients from Wigner transform

For the harmonic oscillator,
coefficients
can be evaluated analytically: $\mu^2 = 2\gamma mT$,
 $2\mu\nu = \gamma$,
 $\nu^2 = \frac{\gamma}{8mT}$,

But: no general mechanism to
derive Lindblad operators

Coefficients time dependent?

„Diffusion“-coefficients connected to
widths in xx, px, and pp of p

for example: $\frac{\langle p^2 \rangle}{2m} = T$

Lindblad equation as diffusion-advection equation

$$\partial_t \vec{u} + \partial_x \vec{f}^x[\vec{x}, \vec{u}] + \partial_y \vec{f}^y[\vec{x}, \vec{u}] = \partial_x \vec{Q}^x[\partial_x \vec{u}, \partial_y \vec{u}] + \partial_y \vec{Q}^y[\partial_x \vec{u}, \partial_y \vec{u}] + \vec{S}[t, \vec{x}, \vec{u}]$$

$$\vec{f}^x[\vec{x}, \vec{u}] = \begin{pmatrix} -2D_{px}(x-y)\rho_R + \gamma(x-y)\rho_I \\ +2D_{px}(x-y)\rho_I + \gamma(x-y)\rho_R \end{pmatrix},$$

$$\vec{f}^y[\vec{x}, \vec{u}] = \begin{pmatrix} -2D_{px}(x-y)\rho_R - \gamma(x-y)\rho_I \\ +2D_{px}(x-y)\rho_I - \gamma(x-y)\rho_R \end{pmatrix},$$

$$\vec{Q}^x[\partial_x \vec{u}, \partial_y \vec{u}] = \begin{pmatrix} \frac{\partial}{\partial x} \left(\frac{1}{2m} \rho_R + D_{xx} \rho_I \right) + D_{xx} \frac{\partial}{\partial y} \rho_I \\ \frac{\partial}{\partial x} \left(-\frac{1}{2m} \rho_I + D_{xx} \rho_R \right) + D_{xx} \frac{\partial}{\partial y} \rho_R \end{pmatrix},$$

$$\vec{Q}^y[\partial_x \vec{u}, \partial_y \vec{u}] = \begin{pmatrix} \frac{\partial}{\partial y} \left(-\frac{1}{2m} \rho_R + D_{xx} \rho_I \right) + D_{xx} \frac{\partial}{\partial x} \rho_I \\ \frac{\partial}{\partial y} \left(\frac{1}{2m} \rho_I + D_{xx} \rho_R \right) + D_{xx} \frac{\partial}{\partial x} \rho_R \end{pmatrix},$$

$$\vec{S}[t, \vec{x}, \vec{u}] = \begin{pmatrix} [V(y) - V(x)] \rho_R + [2\gamma - D_{pp}(x-y)^2] \rho_I \\ [V(x) - V(y)] \rho_I + [2\gamma - D_{pp}(x-y)^2] \rho_R \end{pmatrix},$$

$$\vec{u} = \vec{u}(\vec{x}, t) = (\rho_I(x, y, t), \rho_R(x, y, t))^T$$

Terms can be interpreted clearly:

$$\begin{aligned} \partial_t \tilde{\vec{u}} = & \left[\begin{pmatrix} D_{xx} & 0 \\ 0 & D_{xx} \end{pmatrix} \partial_q^2 + \begin{pmatrix} \gamma & 0 \\ 0 & \gamma \end{pmatrix} \partial_r - 4 \begin{pmatrix} D_{pp} & 0 \\ 0 & D_{pp} \end{pmatrix} r^2 \right] \tilde{\vec{u}} + \left[\begin{pmatrix} 0 & \frac{1}{2m} \\ -\frac{1}{2m} & 0 \end{pmatrix} \partial_q \partial_r \right. \\ & \left. + 4 \begin{pmatrix} 0 & D_{px} \\ -D_{px} & 0 \end{pmatrix} r \partial_q + \begin{pmatrix} 0 & V(r-q) - V(r+q) \\ V(r+q) - V(r-q) & 0 \end{pmatrix} \right] \tilde{\vec{u}}. \end{aligned}$$

- exponential suppression with D_{pp} - decoherence
- potential as source
- D_{xx} pure spatial diffusion
- $D_{px} \sim$ velocity field towards diagonal

Decoherence

System gets less coherent during the process of thermalization
(deconstruction of quantum superposition)

Dominant term in Lindblad-equation: $\partial_t \rho_S(x, x', t) = -\gamma \left\{ \frac{(x - x')^2}{\lambda_T} \right\}^2 \rho_S(x, x', t)$

with

$$\lambda_T = \frac{(\hbar)}{\sqrt{2M(k_B)T}} \quad \text{and} \quad \tau_D^{-1} = \gamma \left(\frac{x - x'}{\lambda_T} \right)^2$$

Wigner transform of CLME shows phase in phase space:

$$\dot{W}_{\text{int}} \approx - \left(\frac{D\Delta x^2}{\hbar^2} \right) W_{\text{int}} \quad \text{and} \quad W_{\text{int}} \sim \cos \left(\frac{\Delta x}{\hbar} p \right)$$

Study decoherence via purity of the system:

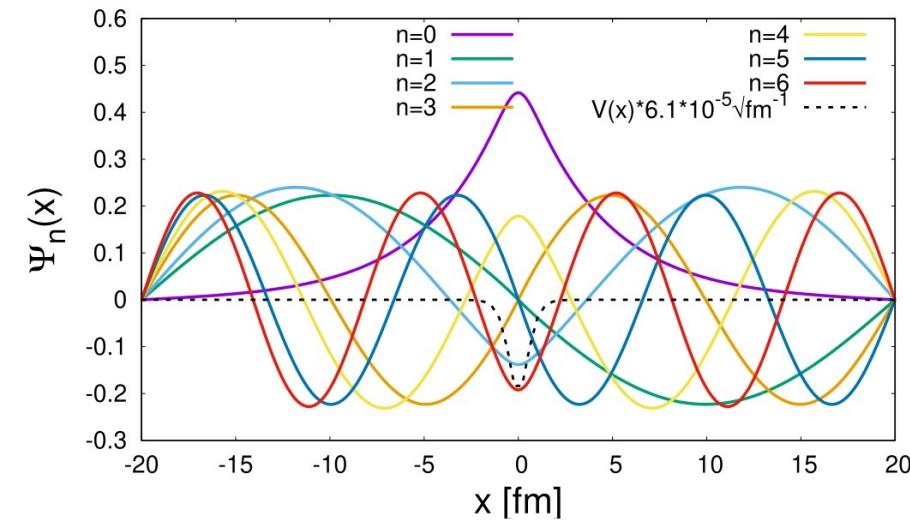
$$\frac{d}{dt} \text{Tr} \rho^2 = - \frac{2M\gamma k_B T}{\hbar} \left(\langle x^2 \rangle - \langle x \rangle^2 \right)$$

Relaxation time is not directly connected with decoherence time!

Bath in Lindblad approach is Markovian! -- No backflow from bath to system $\hat{H}_{\text{int}} = x \sum_n c_n q_n$

But!!: decoherence is bath dependent, and different for different baths (no momentum dependence)

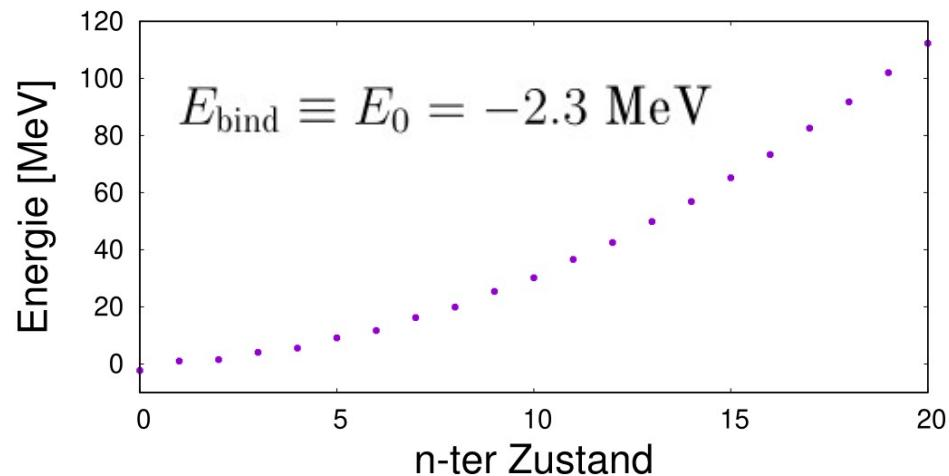
A quantum bound state with deuteron parameters



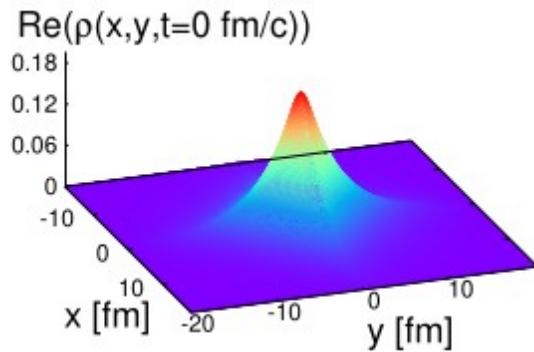
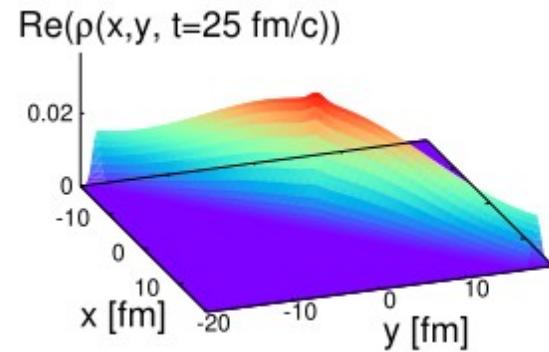
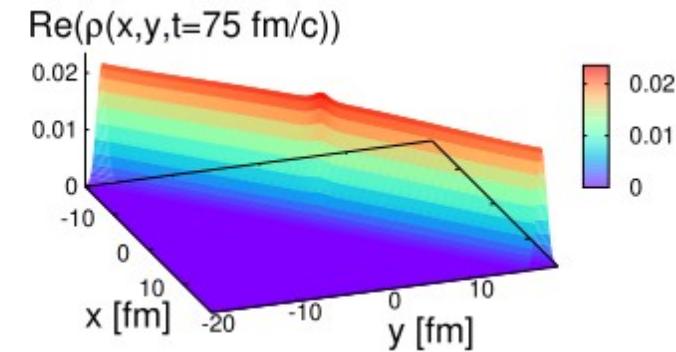
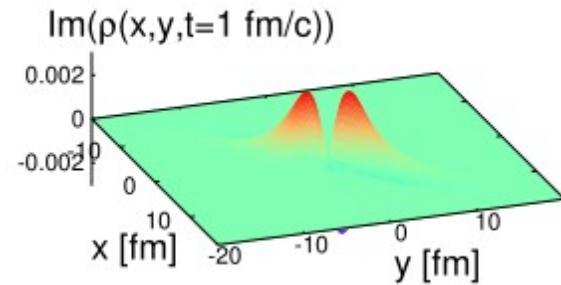
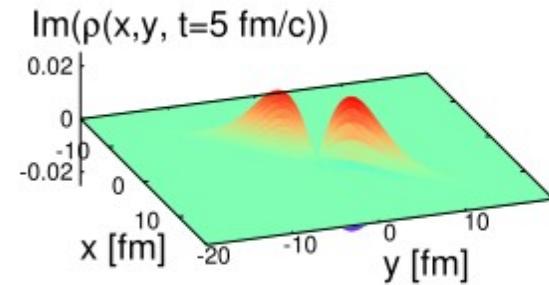
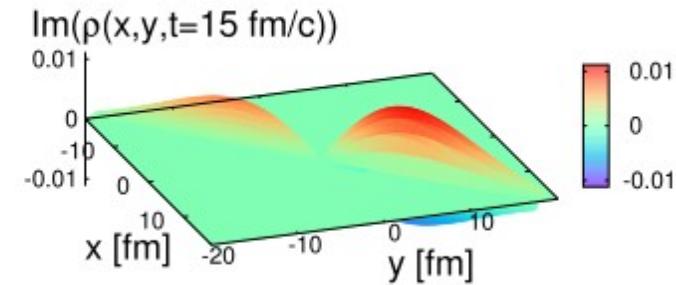
Compute ψ with shooting method
and use it for initial condition:

$$\rho(x, y, 0) = \sum_{m,n=0}^N c_{mn} \langle x | \psi_m \rangle \langle \psi_n | y \rangle$$

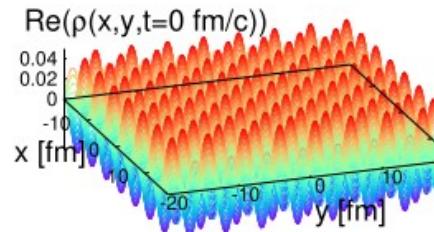
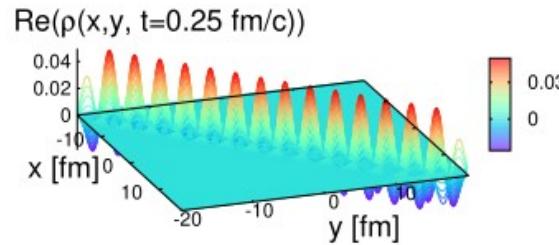
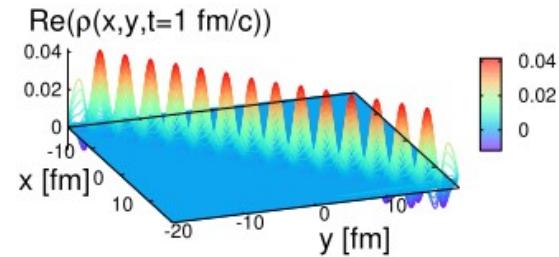
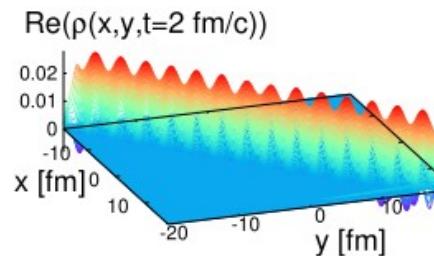
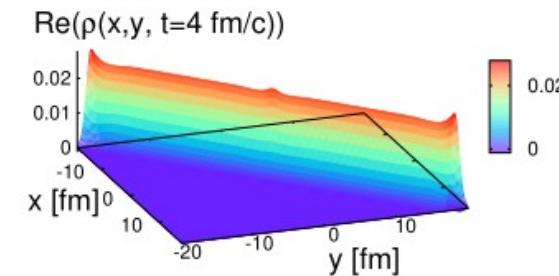
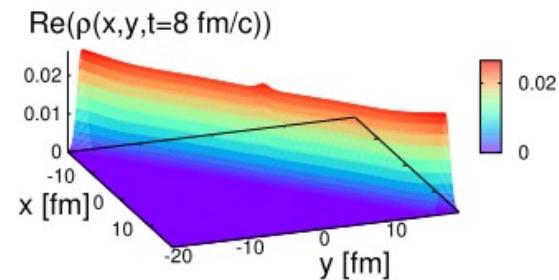
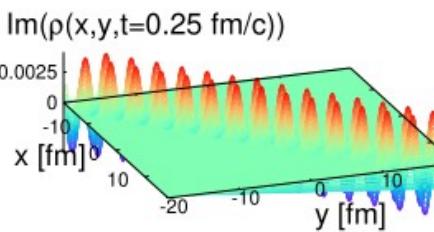
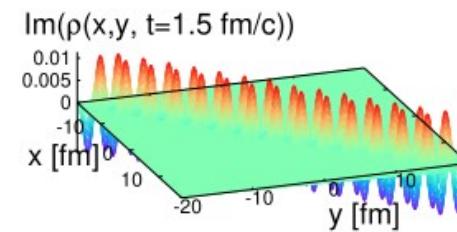
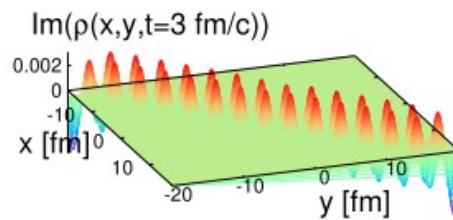
$$V(x) = \begin{cases} -V_0 \frac{1}{\cosh^2(\alpha x)}, & \text{für } |x| \leq 20 \text{ fm} \\ \infty, & \text{für } |x| > 20 \text{ fm} \end{cases}$$



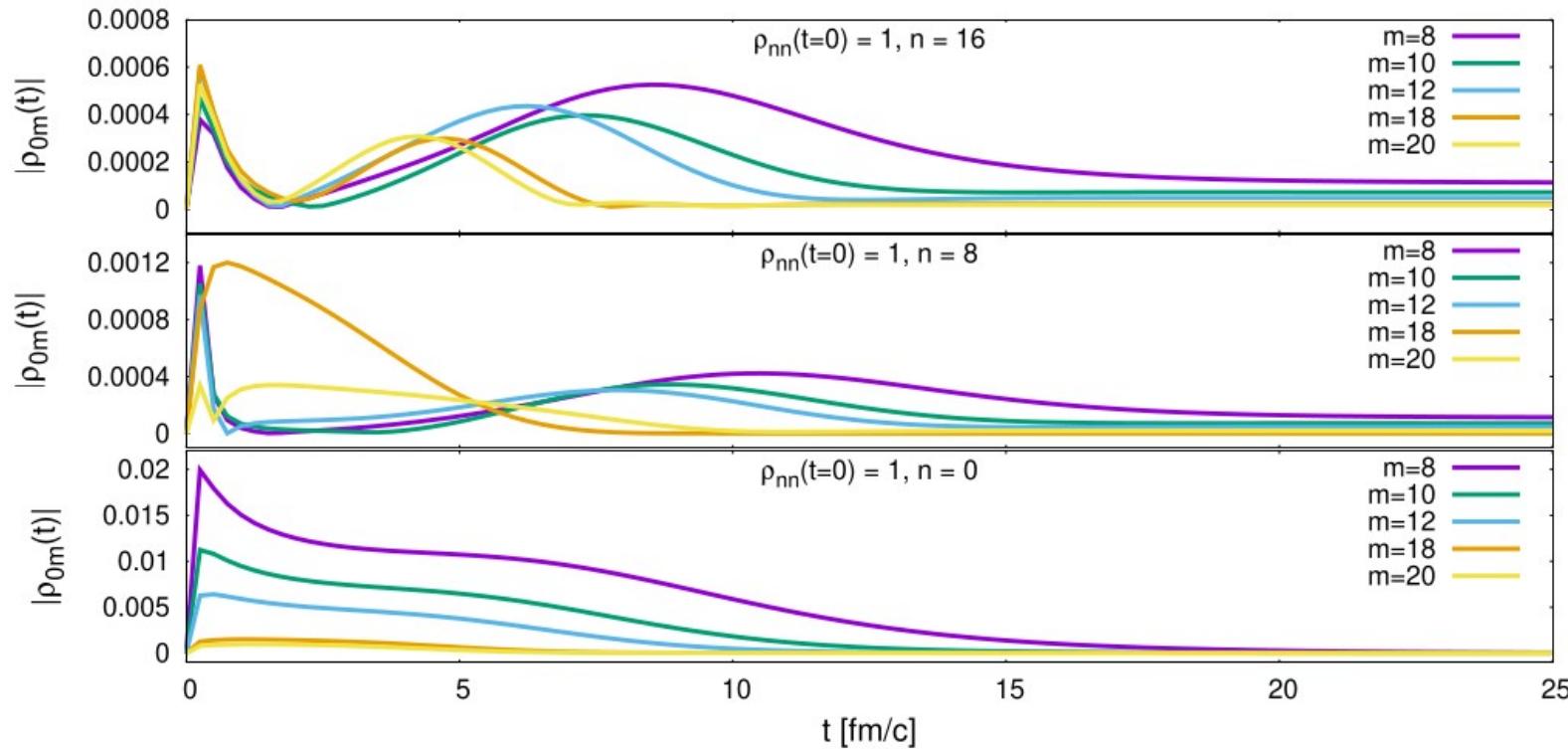
Initial conditions – final distribution – bound state



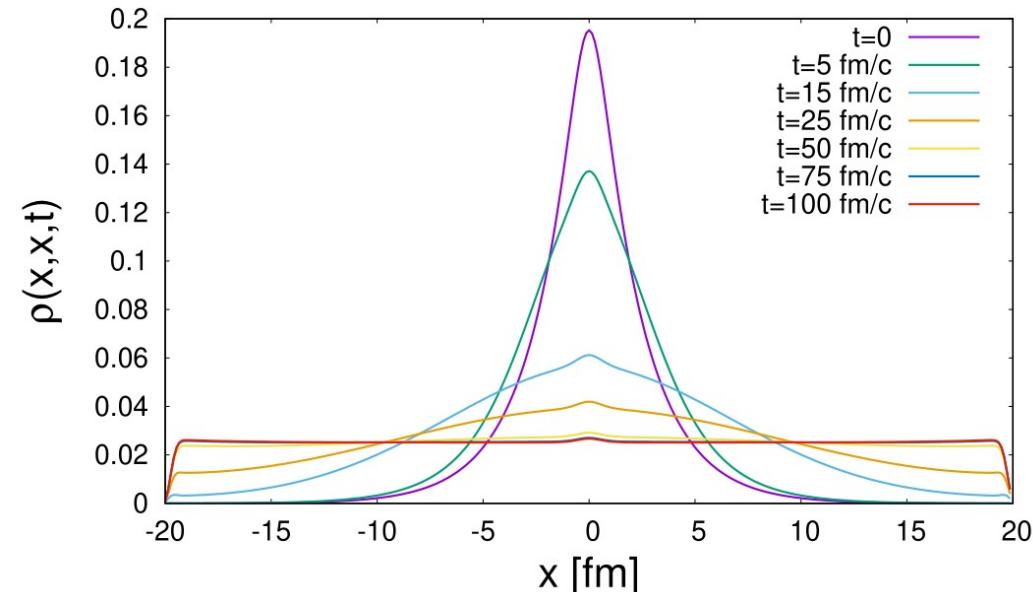
Initial conditions – final distribution – 16th state



Decoherence

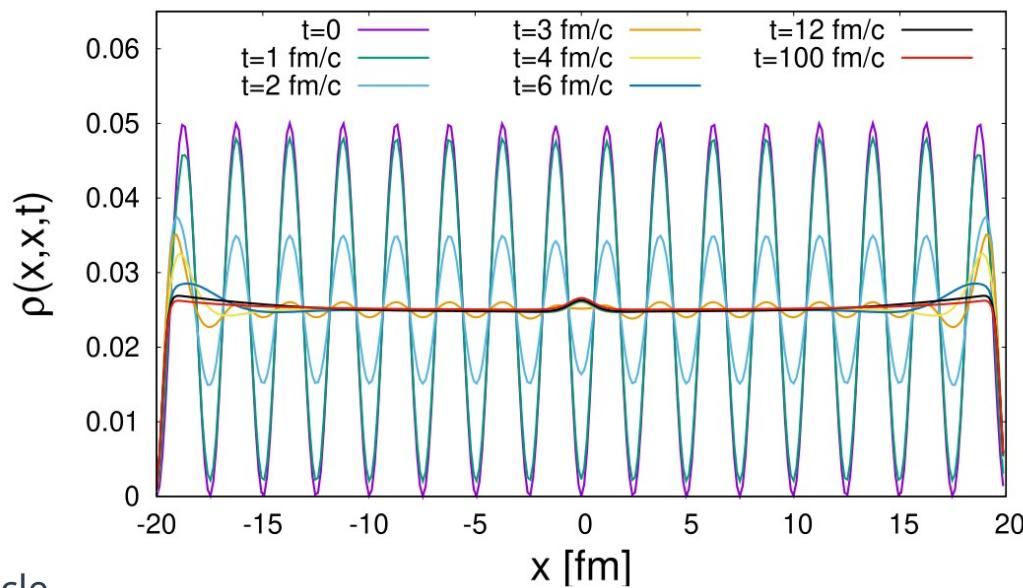


$\rho(x, x, t)$ for initial $n=0$ and $n=16$

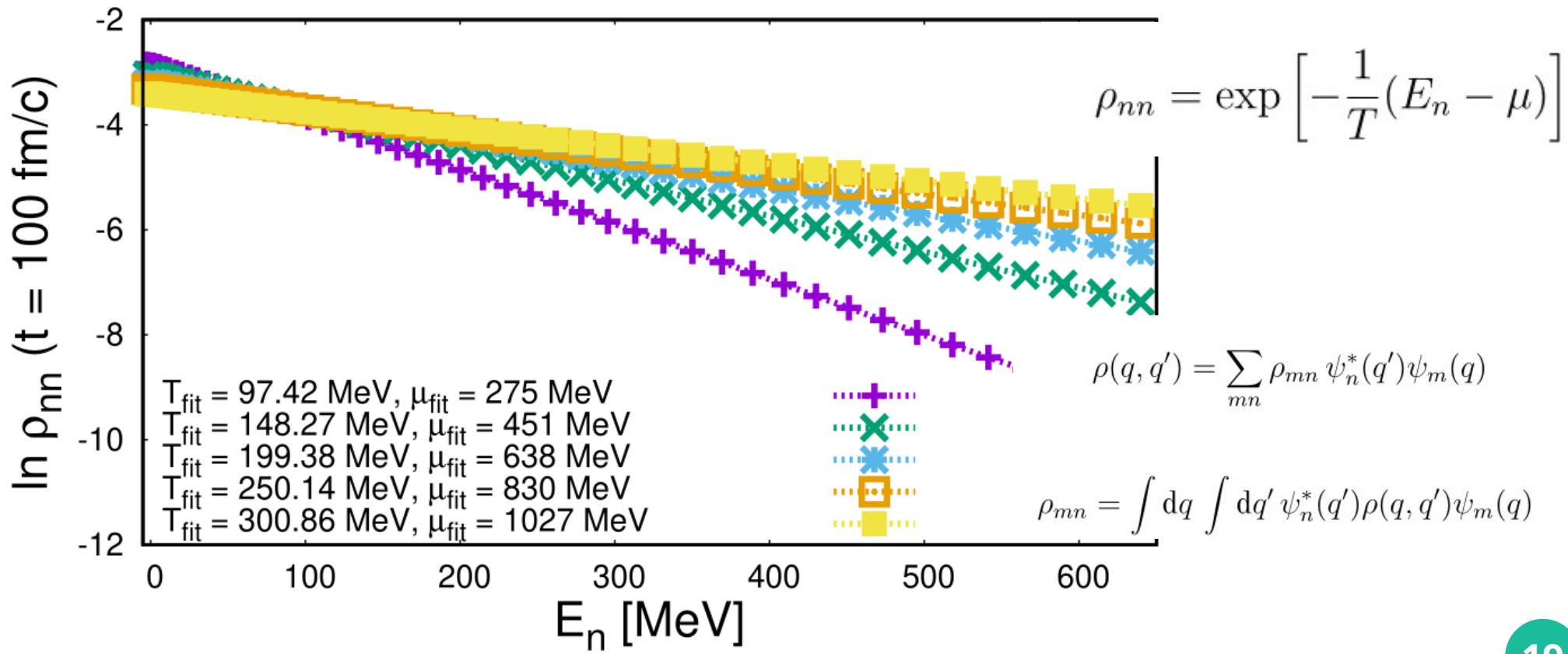


$$\rho_{\text{free}}(x, y, t \rightarrow \infty) = \frac{1}{L} e^{-\frac{mT}{2}(x-y)^2}$$

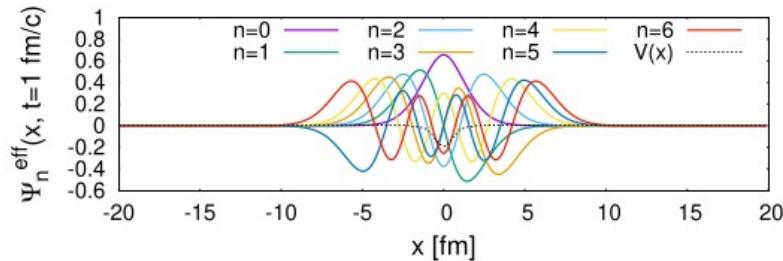
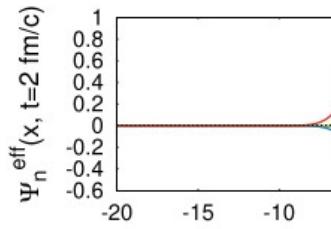
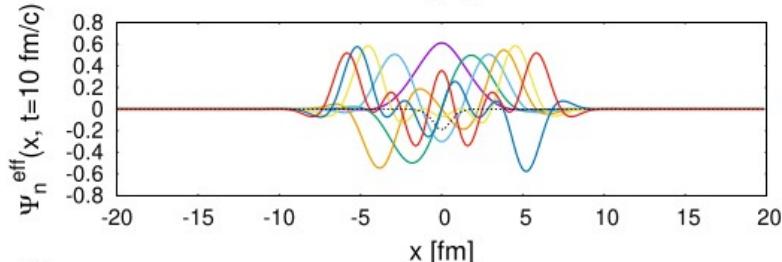
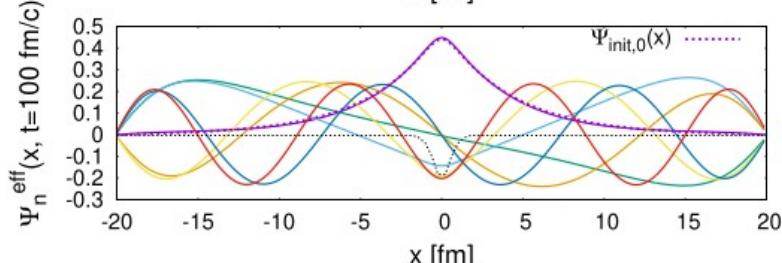
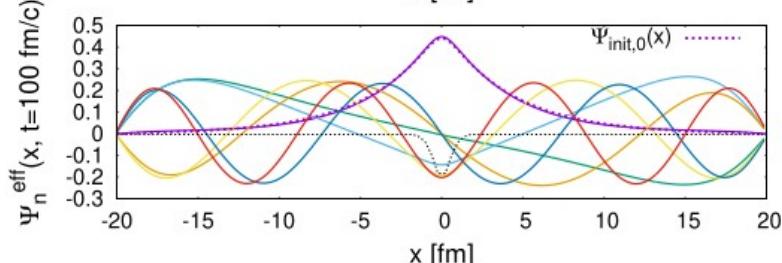
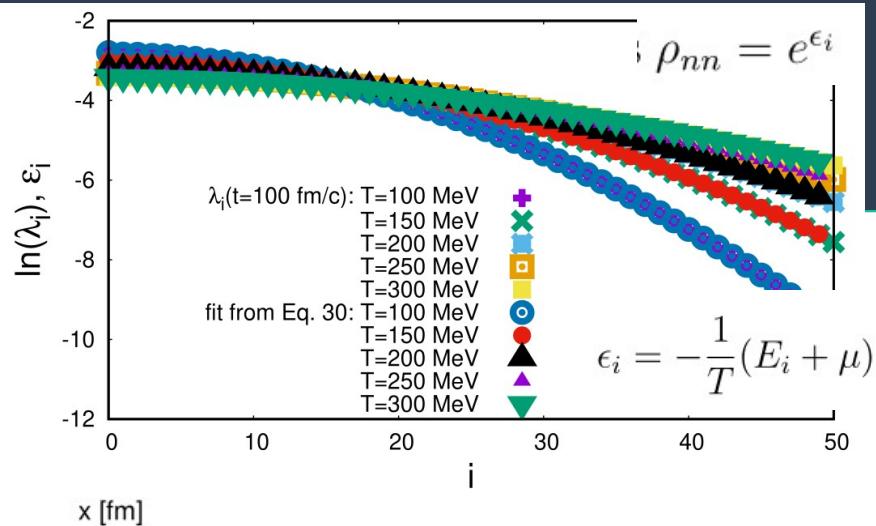
...valid to assume free particle



Distribution of ρ_{nn} for stationary system



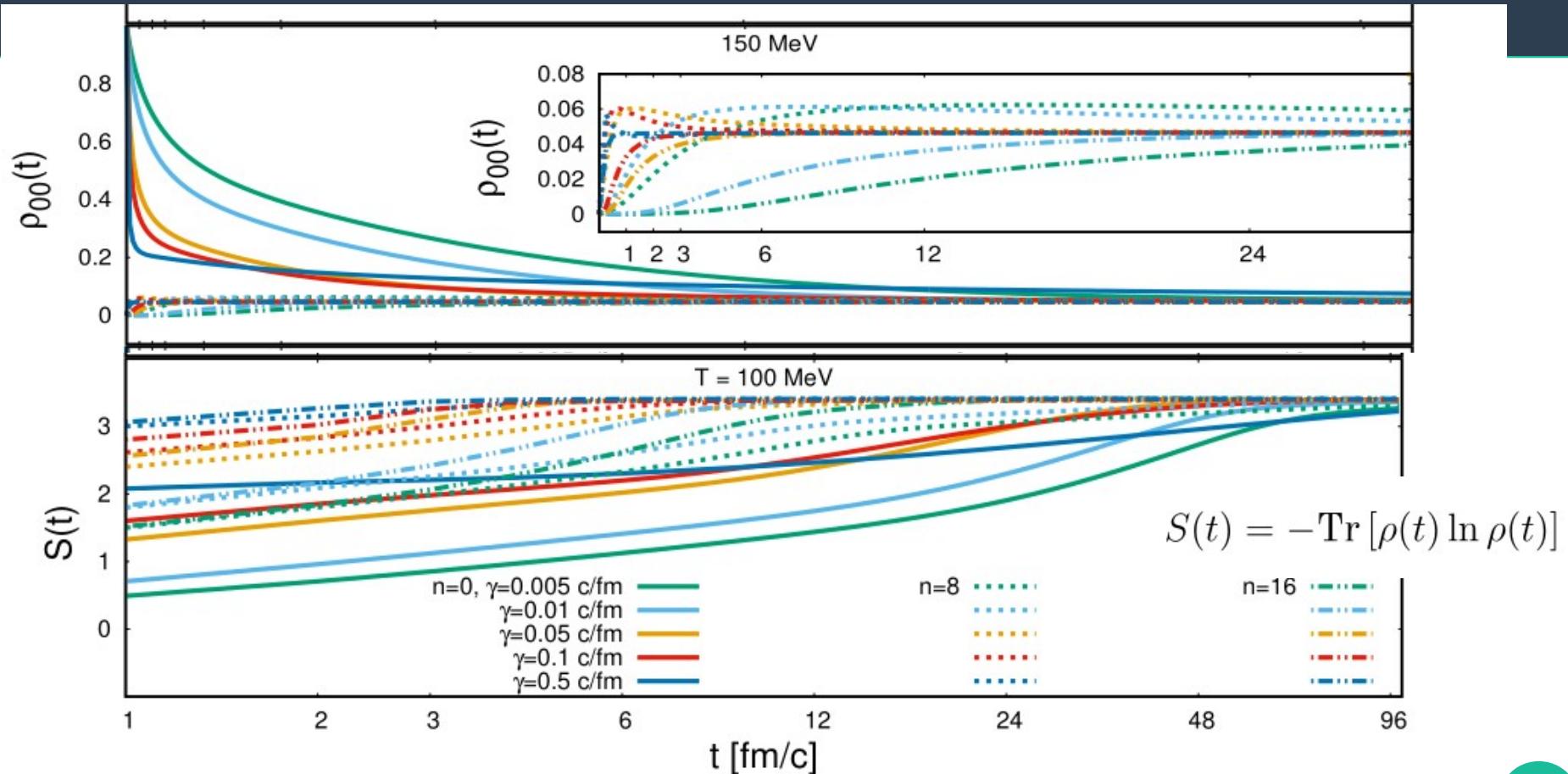
Does the system really thermalize?



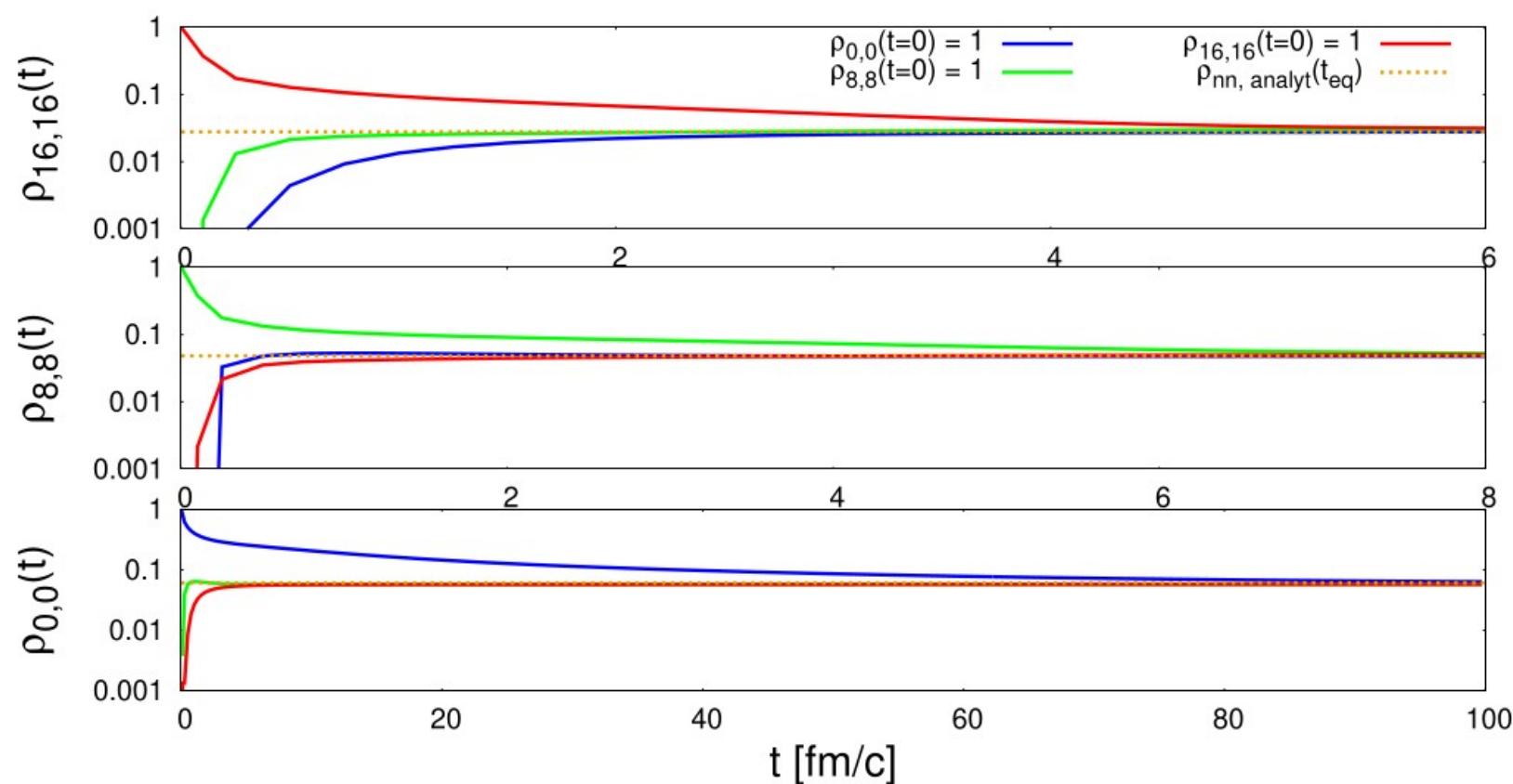
$$\epsilon_i = -\frac{1}{T}(E_i + \mu)$$

$$\ln(\lambda_i^\rho) = -\frac{\tilde{E}_i}{T}$$

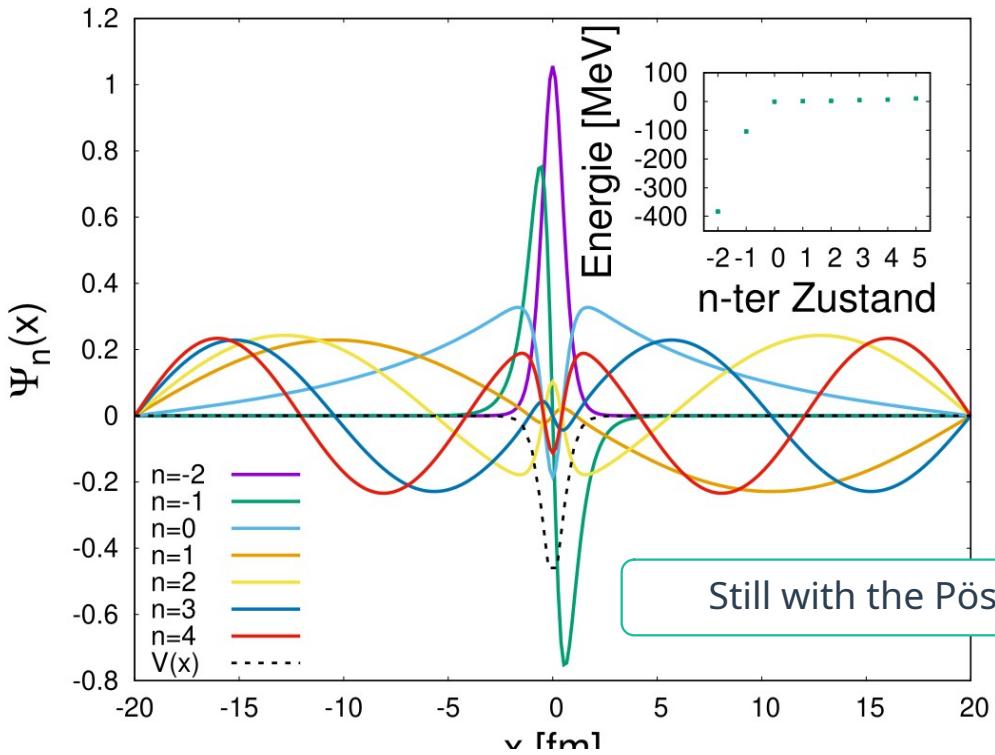
Bound state and Entropy – different therm. times



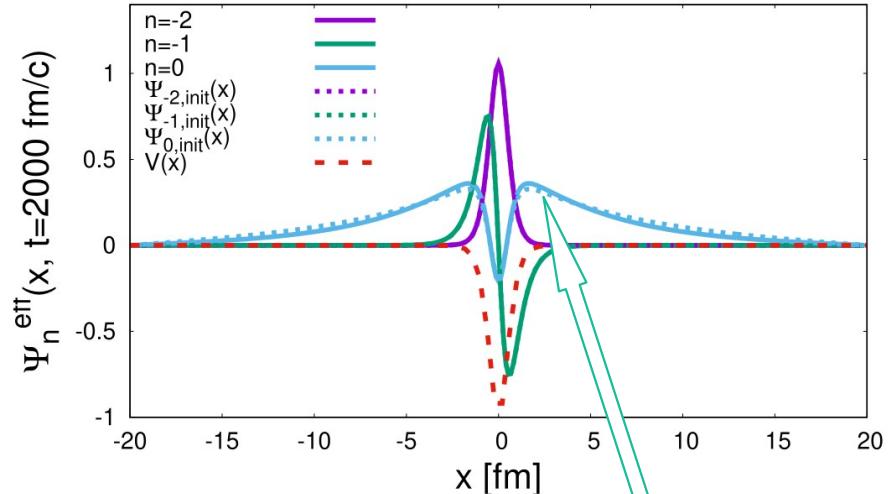
All (initially different) states reach the same result, but in different times!



Conception of a system with three bound states

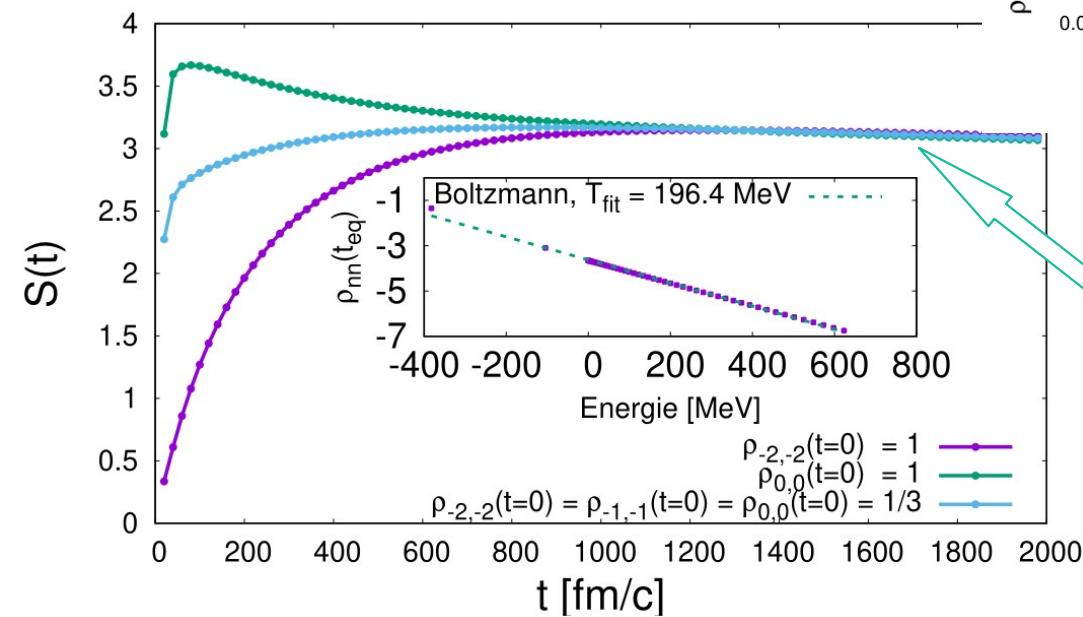
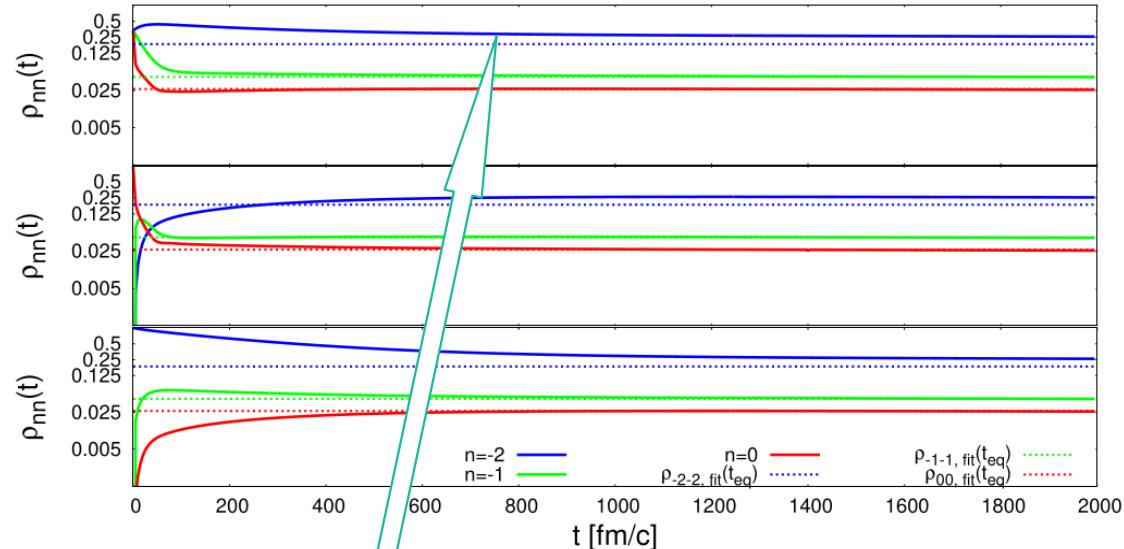


Still with the Pöschl-Teller Potential



Small difference between the diagonalized „thermal“ eigenstates and the initial wave functions

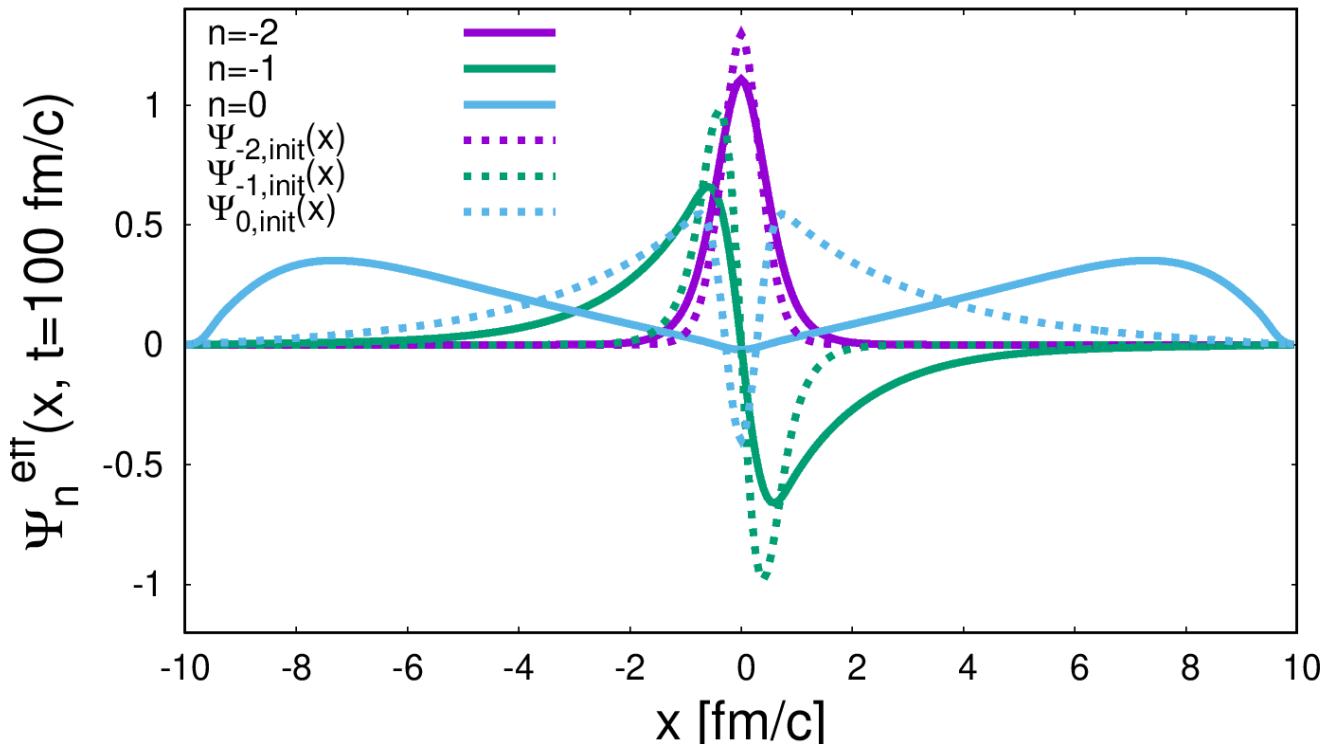
Do Lindblad dynamics thermalize for all systems?



Lowest bound state stays above the analytic result

Entropy shows, that system is thermalized

So what about other potentials? J/ψ?



$$V = \begin{cases} \frac{1}{2}k|x| - V_{SB} & \text{if } \frac{1}{2}k|x| - V_{SB} < 0 \\ 0 & \text{otherwise} \end{cases}$$

$$k = 1.724 \text{ GeV}$$

$$V_{SB} = 0.7652 \text{ GeV}$$

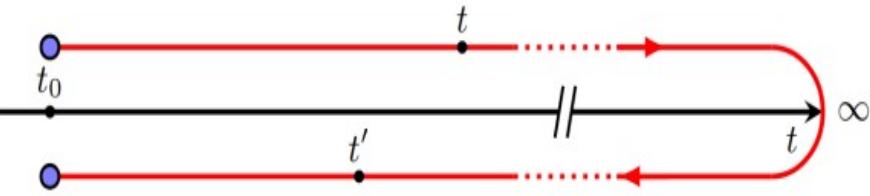
To conclude...

- Thermalization is reached for systems, where the impact of the potential is weak
 - ... this results from the choice of the parameters (motivated from h.o.)
 - diffusion coefficients are motivated from „right“ equilibrium
 - goal to find a more general method to motivate diffusion coefficients
 - ... diffusion coefficients are connected to the Lindblad operators
 - ... to describe the formation of more strongly bound states, as of the J/ψ

Derivation of a master equation of the CLM

Starting point is the path integral:

Solve at keldysh-contour



$$\begin{aligned}
 \langle x_b(t) | x_a(t_0) \rangle &= \prod_i \oint \mathcal{D}q_i \int_{x_a}^{x_b} \mathcal{D}x \frac{1}{\prod_i Z_i} \exp \left\{ -i \int_{t_0}^t dt \left[\frac{M}{2} \dot{x}^2 - V(x) \right] \right\} \\
 &\quad \times \exp \left\{ -i \int_{t_0}^t dt \sum_i \left[\frac{m_i}{2} (\dot{q}_i^2 + \Omega_i^2 q_i^2) - \sum_i c_i q_i(t) x(t) \right] \right\} \\
 &= \int_{x_a}^{x_b} \mathcal{D}x \exp \left\{ -i \int_{t_0}^t dt \left[\frac{M}{2} \dot{x}^2 - V(x) \right] \right\} \\
 &\quad \times \prod_i \oint \mathcal{D}q_i \frac{1}{\prod_i Z_i} \exp \left\{ -i \int_{t_0}^t dt \sum_i \left[\frac{m_i}{2} (\dot{q}_i^2 + \Omega_i^2 q_i^2) - \sum_i c_i q_i(t) x(t) \right] \right\}
 \end{aligned}$$

Dissipation

$$C(t, t') = -i \int_{-\infty}^{\infty} \frac{d\omega'}{2\pi} \rho_{\text{Bad}}(\omega') \sin(\omega'(t - t'))$$

Fluctuations

$$\begin{aligned}
 \rho_{\text{Bad}}(\omega') &= 2\pi \sum_i \frac{c_i^2}{2M_i\Omega_i} \delta(\omega' - \Omega_i) \\
 \frac{1}{2} [A(t, t') + C(t, t')] &= G(t, t')
 \end{aligned}$$

$$\begin{aligned}
 A(t, t') &= \sum_i c_i^2 \frac{1}{M_i \omega_i} \coth \left(\frac{\omega_i}{2k_B T} \right) \cos(\omega_i(t - t')) \\
 &= \int_{-\infty}^{\infty} \frac{d\omega'}{2\pi} \rho_{\text{Bad}}(\omega') \coth \left(\frac{\omega'}{2k_B T} \right) \cos(\omega'(t - t'))
 \end{aligned}$$