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Introduction

» the binding energies of light nuclei are much smaller than the
temperature of the environment ("snowballs in hell”)

» how fast do they form and how broad are they?

» a quantum mechanical description of creation and decay of bound
states (the nuclei) in an open thermal system (fireball) is needed

» use the framework of Kadanoff-Baym equations to analyse the
time evolution of occupation numbers and spectral functions

> These are obtained via non-equilibrium Green’s functions
— Schwinger-Keldysh Contour

» Open bosonic systems from Lindblad equation



Schwinger-Keldysh Contour

» The one-particle Green’s function is defined as a corrolation
function i.e. an expectation value of two (Heisenberg) operators

G(1,1") = —i( T [¥(r,)0(r,¥)])

> Where T, is the time ordering operator:
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P the £ corresponds to bosons/fermions. The operators are
defined as:
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Schwinger-Keldysh Contour

> To "see” the contour, we switch to the interaction representation:

l[A/(I', t) = Z\JI(_C’<’> t)lf/,(r, t)Ul(ta _°°)

> Where U(t,t) is the time evolution operator in this
representation:

U/(t, t)=Te [eXP(—"/,tdt//://nt(t/))}

» substituting these expressions in the definition of the Green’s
function and assume t >t/
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Schwinger-Keldysh Contour
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Figure: The closed-time path C. Thanks to David Wagner

P in “real” simulations, one can not start at fy = —o and switch on
the coupling adiabatically

» for a generall corrolated initial state, an imaginary time evolution
would be needed

> because we couple to a heatbath later, there is no need for this
and the temperature will be well defined



Kadanoff-Baym equations

- + 5 ——

G(1,1) = Go(T,1’)+/Cd2/cd360(772)z(2v3)6(3’1/)

» by multiplying with the (free) inverse propagator and integrating
over 1

[ 765 (1. 1)6(1.1) = [ a76; (1, T)au(i. 1)
c c
8c(1,1)=08c(t—t")8 (x1 —xy1)
+/d7/d2/d3GE1(1,T)Go(T,2)Z(2,3)G(3,1’)
C C C

> Where G, '(1,7) is:
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Kadanoff-Baym equations

» the equation for t' can be obtained similarly:

G(1,1’)(—ii+ﬂ— V(r;)) - 60(1,1’)~|—/Cd3G(1,3)Z(3,1’)

Bt{ 2my
» 3 denotes the self-energy, an 1PI part of the Green’s function,
which is introduced by variational principle

» the general form contains also singular (in time) contributions on
the contour: (P. Danielewicz, Ann. Phys. (N.Y.) 152, 239 (1984))

T(1,1) = Z2(1,1") +04(t1, 1) X7 (1,1') + Ot 1) £=(1,1)
(h=t)
<8, h—ty

» To solve a system completely, we need to propagate G~ and G~
for tand ¥



1+1 dim test model

» The Hamiltonian should describe a system of (heavier) fermions
scattering with free "heat-bath” bosons

/drl// 1) ,A+ V() ) 9 (r. 1
\W_z

ho
F&t)
42 [ 8. 8(r0) D06
":Iim(t)
—Vo if[r] <2
V(r)y 0 if[r|[>2
) if |r’ > %,

» “heat-bath” means, that the bosons are kept always in equilibrium



1+1 dim test model

> the fermionic Green'’s functions are expanded in a set of
eigenfunctions of the free Hamiltonian

§7(1,1) = =i} ({&a(t)em(t)") dn(r)9n(r’)

cam(tt')
F
S=(1,1) Z On(r)om(r)

crm(tt')

» similar to the bosons

Dy (1,1) /Ze D1+ ng(en)) G r) G (1)

D (1,1) /Ze =D ng(en)n(r) G (1)

k2
> were k, = 2L g, = 2 — M and ng(&n) =

1
Lpath’ GXP(Sn /Tbath)*l



1+1 dim test model

» Kadanoff-Baym equations:

J A
(i5-+ ot = Ven(1)) S2(1.1) = 5, (1.1)

at  2my
. a A1’ / > / > /
(—igp+ o, ~ Vel ))S2(1,1) = [, (8:1)

» with shortcuts
Veff(1) — V(1)+ZH(1)7
por
/folh(t,t’): di|xz>(1,1 —z<(1,7)] S(1,1
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1+1 dim test model

» The lowest-order contributions to the self energy are given by the
tadpole- and the sunset-diagram

» which will also be expanded in the same basis

F B
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Spectral properties

» the two-time propagation allows to extract not only statistical but
also spectral information of the system
=+t
2
» the spectral function is defined as the fourier transform in relative
time of a

» we introduce central time T = and relative time At =t—t'

anm(t,t') = ¢y m(t, )+ crm(t 1)
At - At

(@, T) = / Aty (T + 0 T -5

)

» for non-interacting systems, we see just a 6-peak at the “on-shell”
frequency @ = &,



Spectral properties

o
o
e

&o,0[MeV~1]

°
o
ol

e
o
N

o
o
purt

410,10 [MeV1]

°
o
ol

o
o
N

°
o
_

824,24 [MeV~1]

o
o
S

-600 —400 -200 0 200 400 600 800 1000
w [MeV]

Figure: Spectral functions a0,0(, T = 52fm), a10,10( 0, T = 52fm) and
524724((1), T= 52fm).



Spectral properties

» non-vanishing self energies will lead to a shift of the peak (real
part of the retarded self energy) and a broadening of the
delta-type (imaginary part of the retarded self energy) of the
spectral function

Re(X; (T, ) / dAte""A’[SIgn(At)
(a1 7-8) o 1274

rn,m(T, w)=-2 /m(zgetm(ia))) — /dAteiwAt
(Zn(T+ 50 T-5) 5T+ 527-5)))]

» the width can be understood as an inverse life time of the state



Spectral properties

» the peak is shifted to
Emedium - En - RC(Z;SL(T7 o= Emedium))
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Figure: real part and imaginary part of the retarded self energy of the ground
state for T = 52fm
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Spectral properties
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Figure: Spectral functions compared for T = 52fm.



Equilibration and Thermalization

» in the long-time limit the system should approach a thermal
equilibration fixed point at temperature Ty

> the diagonal elements c;; (¢, t) should approach the Fermi-Dirac
distribution

limHooc,f,,(t, t) = /da) NF( Toysts Msysts @) @nn(@, T)

> Teyst and sy are extracted via a fit to all n under the constrains,
that the trace of ¢, ,(t, 1) is constant



Equilibration and Thermalization
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Figure: c; o(t,t) plotted for different times. The occupation number of the
final states (f = 100fm) was fitted to a Fermi-Dirac distribution yield
Tsystem ~ 100.133MeV and Lgygem &~ —298.125MeV.



Kubo-Martin-Schwinger boundary condition
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Figure: KMS - condition checked. For the derivation: "Quantum Statistical
Mechanics” by L. Kadanoff and G. Baym.



Decoherence
P density matrix of a pure state
p = W) (V|
P density matrix of a mixed state
ﬁ:ZPi'|‘l/i><‘l/i| ZP/ Nior (1
i

» for an explicit example, we choose for the initial conditions

1 1
v =—|[10)4+—= |15
‘ >super \/é‘ >+\/§‘ >
— Psuper = 0.5-(|10) (10| +[10) (15| +[15) (10| +[15) (15])
lapure =1.0-0) (0|



Decoherence
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Figure: Top: The initial superimposed and Bottom: the initial pure state.



Entropy
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Figure: Von Neumann entropy from the equal time Green’s function.



From Lindblad to Kadanoff-Baym in open bosonic systems
» The Lindblad equation is given as:

aatp(t)zg[p]:i[H/ap]jL;i([ViP»Vi]+{V,-T,p\/,}>

i=1

» its formal solution can be written as

p(t) = el p(t)

» which is very similar to the time evolution operator in standard
QM, when switching .& <+ H

» the Keldysh partition function Z = trp(t) kann now be written as
a path integral by Trotter decomposition and inserting unities of
coherent states

Z= [ 719:.07.9-.0"16° (9+ ()] p(1) |9 (6)
S= [ at@1iang. — 9% ia0- —i2(9+.01.9-,07))



An specific example: Bose-polymer
» The Lindblad equation is :

d . PA A L A Al A At AL A
5P (1) = —ilHp —pH] + 2 ‘Z[(’Vﬂr1)31:'13(1‘)51/'T +N:&'p(1)a]

i=1

» [ bosonic modes in with energies ®; coupled to markovian
reservoirs at inverse temperature f3; with occupation number
N; = exp(w:w and system Hamiltonian H given as
R L
A=Y &(w—iA(Ni+0.5))+(1-5;)J]4"4
ij=1

h/.j

B1 é@ J @J—A>52

Figure: taken from 10.21468/SciPostPhysCore.5.2.030




An specific example: Bose-polymer
» the corresponding Keldysh - action reads

L Gt Gl .
s= ¥ [artor o) (g0, G0 )00)
Ij:1 ivjvo i7j70

Gijlo
P with expressions:

G\t =id—hij

ij,0
G~ (a1
G,-jjjOiJr = —i?L(N,' +1 )5,‘7/'
G lo™ = —iA(N)6i;

» there are no higher interaction terms, so the Kadanoff-Baym equ.
do not contain any selfenergies. In Keldysh space the KBE

(S S (€ 6 (1
Gijo " Gijo G, G 0 1



An specific example: Bose-polymer
» the important equations are the off-diagonal ones, after inserting
the explicit expressions
(ids — hij) G~ — iA(N))i,G;~ =0
—(idy— h )G ;F —iA(Ni+1)8,;G T =0

» these equation and their complex conjugate are needed for the
evolution in the two-time plane

P> as a last step we want to translate it back to the usual
"greater/lesser” and (anti)-timeordered

G =Gy
6" =a
Gt =G =0.(t—1)Gjj+ 0.1 —1)Gj;
G =Gl =0~ 1)G+0.(t—1)G5



An specific example: Bose-polymer
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Figure: Left: Occupation number of the states for L = 3. For parameters:
A=1,J=mn/4, ® =500-i[MeV], No =1,N; =0.1, N, =0.5



An specific example: Bose-polymer

» in the usual Lindblad equation the norm is conserved by
construction (using the cyclicity of the trace)

tr(aatﬁ(t)) =0

» for the KBE, the trace of the time diagonal is relevant (in this
example for J = 0, because it would cancel anyway)

aatG,-f,(t, t) = —i[6j(o; — ik(N,-+0.5))Gﬁ,-(t, t)— G,-j-(t, t)
8 i(w;+iA(N;+0.5))] + AN(G5(t, t) + Gii(t, 1))
bl bl
1+G5(t,t)
= —i[—2iA(N;+0.5)G5(t, )] + AN;(2G}(t, 1) + 1)
= A(N;i— G55(t,1))



An specific example: Bose-polymer
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Figure: Left: Spectralfunctions of the three states for fixed T = 25fm and
right: Fourier transform of the spectralfunctions.



Conclusions and Outlook

Conclusion:

» short introduction to non-relativistic, non-equilibrium Green’s
functions

P> presentation of the used method to solve the coupled
integro-differential equations for a simple testbox

P results for spectral properties, thermalisation and decoherence
» Lindblad to KBE - a quick introduction
Outlook:
» extend it to 3+1 dimensions is done
» spectral function of a Bose-Einstein condensate



Back up: Two-time plane
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Figure: Stan et al, Time propagation of the Kadanoff-Baym equations for
inhomogeneous systems, The Journal of Chemical Physics, 2009

» only 3 instead of 4 equations need to be solved because of
symmetry relations: —S<(1,1')" = $<(1/,1)

> on the time diagonal only S< is propagated and the equal-time
commutation relation is used to obtain S~
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