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Introduction

▶ the binding energies of light nuclei are much smaller than the
temperature of the environment (”snowballs in hell”)

▶ how fast do they form and how broad are they?

▶ a quantum mechanical description of creation and decay of bound
states (the nuclei) in an open thermal system (fireball) is needed

▶ use the framework of Kadanoff-Baym equations to analyse the
time evolution of occupation numbers and spectral functions

▶ These are obtained via non-equilibrium Green’s functions
→ Schwinger-Keldysh Contour

▶ Open bosonic systems from Lindblad equation



Schwinger-Keldysh Contour

▶ The one-particle Green’s function is defined as a corrolation
function i.e. an expectation value of two (Heisenberg) operators

G(1,1′) =−i
〈
Tc
[
ψ̂(r , t)ψ̂(r ′, t ′)†]〉

▶ Where Tc is the time ordering operator:

Tc =

{
ψ̂(r , t)ψ̂(r ′, t ′)† if t > t ′

±ψ̂(r ′, t ′)†ψ̂(r , t) if t ≤ t ′

▶ the ± corresponds to bosons/fermions. The operators are
defined as:

ψ̂(r , t) = eiĤt
∑
k

φk(r)ĉk︸ ︷︷ ︸
=ψ̂(r)

e−iĤt



Schwinger-Keldysh Contour
▶ To ”see” the contour, we switch to the interaction representation:

ψ̂(r , t) = ÛI(−∞, t)ψ̂I(r , t)ÛI(t,−∞)

▶ Where ÛI(t, t1) is the time evolution operator in this
representation:

ÛI(t, t1) = Tc
[
exp(−i

∫ t

t1
dt ′Ĥint(t

′))
]

▶ substituting these expressions in the definition of the Green’s
function and assume t > t ′

G>(1,1′) =
−i
Z

Tr
{

ÛI(−∞,∞)e−β ĤÛI(∞, t)ψ̂I(r , t)

ÛI(t, t
′)ψ̂I(r

′, t ′)†ÛI(t
′,−∞)

}
=

−i
Z

Tr
{

e−β ĤTc
[
ÛCψ̂I(r , t)ψ̂I(r

′, t ′)†]}



Schwinger-Keldysh Contour
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Figure: The closed-time path C. Thanks to David Wagner

▶ in “real” simulations, one can not start at t0 =−∞ and switch on
the coupling adiabatically

▶ for a generall corrolated initial state, an imaginary time evolution
would be needed

▶ because we couple to a heatbath later, there is no need for this
and the temperature will be well defined



Kadanoff-Baym equations
= + −iΣ

G(1̄,1′) = G0(1̄,1
′)+

∫
C

d2
∫

C
d3G0(1̄,2)Σ(2,3)G(3,1′)

▶ by multiplying with the (free) inverse propagator and integrating
over 1̄

∫
C

d 1̄G−1
0 (1, 1̄)G(1̄,1′) =

∫
C

d 1̄G−1
0 (1, 1̄)G0(1̄,1

′)︸ ︷︷ ︸
δc(1,1′)=δc(t−t ′)δ(x1−x1′ )

+
∫

C
d 1̄

∫
C

d2
∫

C
d3G−1

0 (1, 1̄)G0(1̄,2)Σ(2,3)G(3,1′)

▶ Where G−1
0 (1, 1̄) is:

G−1
0 (1, 1̄) =

(
i

∂

∂ t1
+

∆1

2mf
−V (r1)

)
δc(1, 1̄)



Kadanoff-Baym equations

▶ the equation for t ′ can be obtained similarly:

G(1,1′)
(
−i

∂

∂ t ′1
+

∆1′

2mf
−V (r ′1)

)
= δc(1,1

′)+
∫

C
d3G(1,3)Σ(3,1′)

▶ Σ denotes the self-energy, an 1PI part of the Green’s function,
which is introduced by variational principle

▶ the general form contains also singular (in time) contributions on
the contour: (P. Danielewicz, Ann. Phys. (N.Y.) 152, 239 (1984))

Σ(1,1′) = Σδ (1,1′)︸ ︷︷ ︸
∝δc(t1−t1′ )

+Θc(t1, t1′)Σ
>(1,1′)+Θc(t1′ , t1)Σ

<(1,1′)

▶ To solve a system completely, we need to propagate G> and G<

for t and t ′



1+1 dim test model
▶ The Hamiltonian should describe a system of (heavier) fermions

scattering with free ”heat-bath” bosons

Ĥ(t) =
∫

dr ψ̂(r , t)†
(
− ∆

2mf
+V (r)︸ ︷︷ ︸

h0

)
ψ̂(r , t)

︸ ︷︷ ︸
Ĥ0(t)

+λ

∫
dr ψ̂(r , t)†

φ̂(r , t)†
ψ̂(r , t)φ̂(r , t)︸ ︷︷ ︸

Ĥint(t)

V (r)


−V0 if |r | ≤ a

2

0 if |r |> a
2

∞ if |r |> L
2 ,

▶ ”heat-bath” means, that the bosons are kept always in equilibrium



1+1 dim test model
▶ the fermionic Green’s functions are expanded in a set of

eigenfunctions of the free Hamiltonian

S>(1,1′) =−i
F

∑
n,m

⟨ĉn(t)ĉm(t
′)†⟩︸ ︷︷ ︸

c>n,m(t,t ′)

φn(r)φ
∗
m(r

′)

S<(1,1′) = i
F

∑
n,m

⟨ĉm(t
′)†ĉn(t)⟩︸ ︷︷ ︸

c<n,m(t,t ′)

φn(r)φ
∗
m(r

′)

▶ similar to the bosons

D>
0 (1,1

′) =−i
B

∑
n

e−iεn(t−t ′)(1+nB(εn))φ̃n(r)φ̃
∗
n (r

′)

D<
0 (1,1

′) =−i
B

∑
n

e−iεn(t−t ′)nB(εn)φ̃n(r)φ̃
∗
n (r

′)

▶ were kn =
πn

Lbath
, εn =

k2
n

2mb
−µ and nB(εn) =

1
exp(εn/Tbath)−1



1+1 dim test model
▶ Kadanoff-Baym equations:(

i
∂

∂ t
+

∆1

2mf
−Veff(1)

)
S≷(1,1′) = I≷coll1(t, t

′)(
−i

∂

∂ t ′
+

∆1′

2mf
−Veff(1

′)
)

S≷(1,1′) = I≷coll2(t, t
′)

▶ with shortcuts
Veff(1) = V (1)+ΣH(1),

I≷coll1(t, t
′) =

∫ t

t0
d 1̄

[
Σ>(1, 1̄)−Σ<(1, 1̄)

]
S≷(1̄,1′)

−
∫ t ′

t0
d 1̄Σ≷(1, 1̄)

[
S>(1̄,1′)−S<(1̄,1′)

]
I≷coll2(t, t

′) =
∫ t

t0
d 1̄

[
S>(1, 1̄)−S<(1, 1̄)

]
Σ≷(1̄,1′)

−
∫ t ′

t0
d 1̄S≷(1, 1̄)

[
Σ>(1̄,1′)−Σ<(1̄,1′)

]



1+1 dim test model
▶ The lowest-order contributions to the self energy are given by the

tadpole- and the sunset-diagram

−iΣ = →

2

▶ which will also be expanded in the same basis

Σ≷
b,a(t, t

′) = λ
2

F

∑
n,m

( B

∑
j,k

e∓i(εj−εk )(t−t ′) (1+nB(εj))nB(εk)∫
drφ

∗
b (r)φn(r)φ̃j(r)φ̃

∗
k (r)︸ ︷︷ ︸

Vb,n,j,k

c≷n,m(t, t
′)Vm,a,k ,j

)

ΣHb,a(t) = λ

B

∑
j

e−iεj(t−t+)nB(εj)Vb,a,j,j



Spectral properties

▶ the two-time propagation allows to extract not only statistical but
also spectral information of the system

▶ we introduce central time T̄ = t+t ′
2 and relative time ∆t = t − t ′

▶ the spectral function is defined as the fourier transform in relative
time of a

an,m(t, t
′) = c>n,m(t, t

′)+ c<n,m(t, t
′)

ãn,m(ω, T̄ ) =
∫

d∆t eiω∆tan,m(T̄ +
∆t
2
, T̄ −∆t

2
)

▶ for non-interacting systems, we see just a δ -peak at the ”on-shell”
frequency ω = εn



Spectral properties
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Figure: Spectral functions ã0,0(ω, T̄ = 52fm), ã10,10(ω, T̄ = 52fm) and
ã24,24(ω, T̄ = 52fm).



Spectral properties

▶ non-vanishing self energies will lead to a shift of the peak (real
part of the retarded self energy) and a broadening of the
delta-type (imaginary part of the retarded self energy) of the
spectral function

Re(Σret
n,m(T̄ ,ω)) =

−i
2

∫
d∆t eiω∆t

[
sign(∆t)(

Σ>
n,m

(
T̄ +

∆t
2
, T̄ −∆t

2

)
+Σ<

n,m

(
T̄ +

∆t
2
, T̄ −∆t

2

))]
Γn,m(T̄ ,ω) =−2 Im(Σret

n,m(T̄ ,ω)) =
∫

d∆t eiω∆t[(
Σ>

n,m

(
T̄ +

∆t
2
, T̄ −∆t

2

)
+Σ<

n,m

(
T̄ +

∆t
2
, T̄ −∆t

2

))]
▶ the width can be understood as an inverse life time of the state



Spectral properties

▶ the peak is shifted to

Emedium −En = Re(Σret
n,n(T ,ω = Emedium))
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Figure: real part and imaginary part of the retarded self energy of the ground
state for T̄ = 52fm



Spectral properties

ã0,0(ω, T̄ ) =
Γ0,0(ω, T̄ )[

ω −E0 −Re(Σret
0,0(T̄ ,ω))

]2
+
[
Γ0,0(ω,T̄ )

2

]2
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Figure: Spectral functions compared for T̄ = 52fm.



Equilibration and Thermalization

▶ in the long-time limit the system should approach a thermal
equilibration fixed point at temperature Tbath

▶ the diagonal elements c<n,n(t, t) should approach the Fermi-Dirac
distribution

limt→∞c<n,n(t, t) =
∫

dω nF (Tsyst,µsyst,ω) ãn,n(ω,T )

▶ Tsyst and µsyst are extracted via a fit to all n under the constrains,
that the trace of c<n,m(t, t) is constant



Equilibration and Thermalization
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Figure: c<n,n(t, t) plotted for different times. The occupation number of the
final states (t = 100fm) was fitted to a Fermi-Dirac distribution yield
Tsystem ≈ 100.133MeV and µsystem ≈−298.125MeV.



Kubo-Martin-Schwinger boundary condition
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Figure: KMS - condition checked. For the derivation: ”Quantum Statistical
Mechanics” by L. Kadanoff and G. Baym.



Decoherence

▶ density matrix of a pure state

ρ̂ = |Ψ⟩⟨Ψ|

▶ density matrix of a mixed state

ρ̂ = ∑
i

pi · |ψi⟩⟨ψi | ; ∑
i

pi = Ntot(1)

▶ for an explicit example, we choose for the initial conditions

|Ψ⟩super =
1√
2
|10⟩+ 1√

2
|15⟩

→ ρ̂super = 0.5 · (|10⟩⟨10|+ |10⟩⟨15|+ |15⟩⟨10|+ |15⟩⟨15|)
ρ̂pure = 1.0 · |0⟩⟨0|



Decoherence
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Entropy
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Figure: Von Neumann entropy from the equal time Green’s function.



From Lindblad to Kadanoff-Baym in open bosonic systems
▶ The Lindblad equation is given as:

∂

∂ t
ρ(t) = L [ρ] =−i

[
H ′,ρ

]
+

1
2

∞

∑
i=1

([
Viρ,V

†
i

]
+
[
V †

i ,ρVi

])

▶ its formal solution can be written as

ρ(t) = e(t−t0)L ρ(t0)

▶ which is very similar to the time evolution operator in standard
QM, when switching L ↔ H

▶ the Keldysh partition function Z = trρ(t) kann now be written as
a path integral by Trotter decomposition and inserting unities of
coherent states

Z =
∫

D [φ+,φ
∗
+,φ−,φ ∗

−]e
iS ⟨φ+(t0)|ρ(t0) |φ−(t0)⟩

S =
∫

dt (φ ∗
+i∂tφ+−φ

∗
−i∂tφ−− iL (φ+,φ

∗
+,φ−,φ ∗

−))



An specific example: Bose-polymer
▶ The Lindblad equation is :

∂

∂ t
ρ̂(t) =−i[Ĥρ̂ − ρ̂Ĥ†]+λ

L

∑
i=1

[(Ni +1)âi ρ̂(t)âi
† +Ni âi

†
ρ̂(t)âi ]

▶ L bosonic modes in with energies ωi coupled to markovian
reservoirs at inverse temperature βi with occupation number
Ni =

1
exp(ωiβi)−1 and system Hamiltonian Ĥ given as

Ĥ =
L

∑
i,j=1

δi,j(ωi − iλ (Ni +0.5))+(1−δi,j)J]︸ ︷︷ ︸
hi,j

âi
†âj

Figure: taken from 10.21468/SciPostPhysCore.5.2.030



An specific example: Bose-polymer
▶ the corresponding Keldysh - action reads

S =
L

∑
i,j=1

∫
dt (φ ∗

i,+,φ
∗
i,−)

(
G−1++

i,j,0 G−1+−
i,j,0

G−1−+
i,j,0 G−1−−

i,j,0

)
︸ ︷︷ ︸

Ĝ−1
i,j,0

(φj,+,φj,−)T

▶ with expressions:

G−1++
i,j,0 = i∂t −hi,j

G−1−−
i,j,0 =−(i∂t −h∗i,j)

G−1−+
i,j,0 =−iλ (Ni +1)δi,j

G−1+−
i,j,0 =−iλ (Ni)δi,j

▶ there are no higher interaction terms, so the Kadanoff-Baym equ.
do not contain any selfenergies. In Keldysh space the KBE(

G−1++
i,j,0 G−1+−

i,j,0

G−1−+
i,j,0 G−1−−

i,j,0

)(
G++

i,j G+−
i,j

G−+
i,j G−−

i,j

)
=

(
1 0
0 1

)



An specific example: Bose-polymer

▶ the important equations are the off-diagonal ones, after inserting
the explicit expressions

(i∂t −hi,j)G
+−
i,j − iλ (Ni)δi,jG

−−
i,j = 0

−(i∂t −h∗i,j)G
−+
i,j − iλ (Ni +1)δi,jG

++
i,j = 0

▶ these equation and their complex conjugate are needed for the
evolution in the two-time plane

▶ as a last step we want to translate it back to the usual
”greater/lesser” and (anti)-timeordered

G+−
i,j = G<

i,j

G−+
i,j = G>

i,j

G++
i,j = GT

i,j =Θc(t − t ′)G<
i,j +Θc(t

′− t)G<
i,j

G−−
i,j = GT̃

i,j =Θc(t
′− t)G<

i,j +Θc(t − t ′)G<
i,j



An specific example: Bose-polymer
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Figure: Left: Occupation number of the states for L = 3. For parameters:
λ = 1, J = π/4, ωi = 500 · i[MeV], N0 = 1,N1 = 0.1, N2 = 0.5



An specific example: Bose-polymer

▶ in the usual Lindblad equation the norm is conserved by
construction (using the cyclicity of the trace)

tr
( ∂

∂ t
ρ̂(t)

)
= 0

▶ for the KBE, the trace of the time diagonal is relevant (in this
example for J = 0, because it would cancel anyway)

∂

∂ t
G<

i,i(t, t) =−i[δi,j(ωi − iλ (Ni +0.5))G<
j,i(t, t)−G<

i,j(t, t)

δj,i(ωi + iλ (Ni +0.5))]+λNi(G
<
i,i(t, t)+G>

i,i(t, t)︸ ︷︷ ︸
1+G<

i,i(t,t)

)

=−i[−2iλ (Ni +0.5)G<
i,i(t, t)]+λNi(2G<

i,i(t, t)+1)

= λ (Ni −G<
i,i(t, t))



An specific example: Bose-polymer
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Figure: Left: Spectralfunctions of the three states for fixed T = 25 fm and
right: Fourier transform of the spectralfunctions.



Conclusions and Outlook

Conclusion:

▶ short introduction to non-relativistic, non-equilibrium Green’s
functions

▶ presentation of the used method to solve the coupled
integro-differential equations for a simple testbox

▶ results for spectral properties, thermalisation and decoherence

▶ Lindblad to KBE - a quick introduction

Outlook:

▶ extend it to 3+1 dimensions is done

▶ spectral function of a Bose-Einstein condensate



Back up: Two-time plane

Figure: Stan et al,Time propagation of the Kadanoff-Baym equations for
inhomogeneous systems, The Journal of Chemical Physics, 2009

▶ only 3 instead of 4 equations need to be solved because of
symmetry relations: −S

>
<(1,1′)† = S

>
<(1′,1)

▶ on the time diagonal only S< is propagated and the equal-time
commutation relation is used to obtain S>
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