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Early stages of non-central heavy-ion collisions: large orbital angular
momentum and strong magnetic �elds.

Chiral magnetic e�ect (CME), chiral vortical e�ect (CVE): charge currents
induced by magnetic and vortical �elds.

Similar e�ects for massive particles?

Description tool: semiclassical kinetic theory.

Question: how to derive kinetic theory and hydrodynamics from quantum
�eld theory?

For massive spin-0 particles, second-order dissipative
magnetohydrodynamics has already been studied.
G. Denicol, X-G Huang, E. Molnar, H. Niemi, J. Noronha, and D. H. Rischke,

PRD98 (2018), 076009
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For massless particles, much work has been done already.
J-Y. Chen, D. T. Son, and M. Stephanov, PRL 115 (2015), 021601;

Y. Hidaka, S. Pu, D-L. Yang, PRD95 (2017), 091901;

A. Huang, S. Shi, Y. Jiang, J. Liao, and P. Zhuang, arXiv:1801.03640 [hep-th]

For massive particles, situation is more complicated: spin vector is
additional degree of freedom, related to axial vector current.

Covariant, next-to-leading order kinetic theory for massive spin-1/2
particles in inhomogeneous electromagnetic �elds is still missing.

Plan: use Wigner functions to derive kinetic theory.

Similar studies have been made in equal time approach.
Z. Wang, P. Zhuang et al., in preparation
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Outline
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Understand spin of relativistic massive particles.

Understand classical limit.

Understand massless limit.

Transition of microscopic theory to macroscopic observables
→ Wigner functions.

Analytically determine general Wigner function components.
→ Semi-classical expansion.
→ Comparison to massless case.
Find generalized Boltzmann equation!

Specify distribution function in global equilibrium.

Determine hydrodynamic equations.
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Introduction I: spin of massive particles
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Classical spin tensor Σµν de�ned as intrinsic angular momentum about
center of mass.

Problem: center of mass of spinning particle is observer-dependent.
→ gauge freedom on Σµν .

Let uµ be four-velocity of an arbitrary frame. Then:

uνΣµν = 0 ⇔ Σµν is intrinsic angular momentum about

center of mass seen from frame with uν = (1, 0)

De�ne spin tensor as intrinsic angular momentum tensor in the particle
rest frame.

pνΣµν = 0
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Introduction I: spin of massive particles

Change of reference points
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Intrinsic angular momentum tensors about centers of mass xA and xB are
connected:

Mµν
A + xµA p

ν − xνAp
µ = Mµν

B + xµB p
ν − xνBp

µ

Conservation of total angular momentum.

Pauli-Lubansky tensor: intrinsic angular momentum in lab frame
M. Stone, V. Dwivedi, and T. Zhou, PRD91 (2015), 025004

Mµν
L = Σµν − Σµ0

pν

E
− Σ0ν p

µ

E
,

M i0
L = 0 by de�nition.
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Introduction I: spin of massive particles

Spin in relativistic quantum theory I
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De�ne spin tensor

Σµνrs ≡
1

m
ū(p, r)σµνu(p, s),

with spin operator σµν = i
4

[γµ, γν ].

From Dirac equation and adjoint:

pµΣµνrs = 0.

Semi-classically: gauge-�xed by Dirac equation.

Spin vector:

nµrs =
1

2m
ū(p, r)γµγ5u(p, s)
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Introduction I: spin of massive particles

Spin in relativistic quantum theory II
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Choose spin quantization direction along polarization in local rest frame:
nµrs = snµδrs = s(0, ~s)δrs with polarization ~s.

Then Σµνrs = sΣµνδrs with

Σµν = − 1

m
εµναβpαnβ .

and in rest frame:

Σij = εijknk = εijksk ,

Σi0 = 0.

Non-relativistic rotational properties hold in local rest frame!

For massive particles: possible to Lorentz transform to di�erent frame
while keeping properties such as conservation of total angular momentum.
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The massless spin tensor
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Massless particles are di�erent!
State vectors transform under Lorentz transformations with additional
phase.

Remember: Σµν = − 1

m
εµναβpαnβ .

For massless particles, spin vector is parallel to momentum.
→ pµΣµν = 0 naturally satis�ed, not a gauge condition.

No local rest frame! No frame preferred.

De�ne spin tensor in arbitrary frame uµ

J-Y. Chen, D. T. Son, and M. Stephanov, PRL 115 (2015), 021601

Σµνu = − 1

p · u ε
µναβuαpβ .

Position has to be de�ned in same frame to conserve angular momentum.
(A gauge-dependent position?)
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Introduction II: massless limit

Pauli-Lubansky tensor
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Consider transformation between two frames in frame with uµ = (1, 0)

Σµνu = Σµνu′ + Σν0u′
pµ

p0
− Σµ0u′

pν

p0
≡ ML,u′ .

For any choice of u′ in spin tensor, corresponding Pauli-Lubansky tensor
will by identical and equal to spin tensor in lab frame.

Captures physical part of spin tensor!

Need to de�ne spin and position in observer's frame.

Lorentz transformation of observer will change gauge.
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Introduction II: massless limit

Side-jump e�ect I
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J-Y. Chen, D. T. Son, and M. Stephanov, PRL 115 (2015), 021601;

M. Stone, V. Dwivedi, and T. Zhou PRL 114 (2015), 210402

Collision of two right-handed massless particles, p1, p2 → p3, p4.

Center-of-mass frame: Ingoing and outgoing spins cancel (since momenta
are parallel).

Same situation as for spinless particles → "no-jump frame".

Lorentz-boost observer to di�erent frame A.

Use Pauli-Lubansky tensor for conservation law in new frame, total ingoing
angular momentum:

LµνA,in =
∑
i=1,2

(xµAip
ν
i − xνAip

µ
i + Mµν

Ai ).

All quantities de�ned in frame A.
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Scattering amplitude depends on total angular momentum, this has to be
observer-independent.

LµνA,in = LµνCM,in = 0.

From transformation between spin tensors in di�erent frames, �nd shift
between position as seen from CM and our observer:

xµAi = xµCMi +
1

p0i (pi · uCM)
εµνα0piαuCMν .

Same holds for outgoing angular momentum with p3, p4.

In collision: momentum changes. → Position changes.
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xµAi = xµCMi +
1

p0i (pi · uCM)
εµνα0piαuCMν .

Center of mass: all worldlines pass through single collision point.

Boosted parallel to momentum: after collision worldlines are shifted away
from each other.

Boosted perpendicular to momentum: already before collision worldlines
are shifted away. Particles miss each other.

M. Stone, V. Dwivedi, and T. Zhou PRL 114 (2015), 210402
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Quantum analogue of classical distribution function.

Contains information about quantum state of system.

O�-equilibrium: two-point function depends not only on relative
coordinate s, but also on central coordinate X .

Wigner transformation of two-point function
H.-Th. Elze, M. Gyulassy, and D. Vasak, AP 173 (1987)

W (X , p) =

∫
d4 s

(2π)4
e−

i
~ p·s 〈: Ψ̄(X +

s

2
)U(X +

s

2
,X )U(X ,X −

s

2
)Ψ(X −

s

2
) :〉

with gauge link

U(b, a) ≡ P exp

(
−

i

~

∫ b

a
dzµ Aµ(z)

)
to ensure gauge invariance.
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From Dirac equation: transport equation for Wigner function:
H.-Th. Elze, M. Gyulassy, and D. Vasak, AP 173 (1987)

(γµK
µ −m)W (X , p) = 0

with

Kµ ≡ pW +
1

2
i~∇µ,

∇µ ≡ ∂µx − j0(∆)Fµν∂pν ,

pW ≡ pµ − ~1
2
j1(∆)Fµν∂pν ,

∆ = 1

2
~∂p · ∂x with ∂x only acting on Fµν and j0(x) = sin(x)/x ,

j1(x) = [sin(x)− x cos(x)]/x2 spherical Bessel functions.

Exact quantum kinetic equation for Wigner function for massive spin
1/2-particles and inhomogeneous �elds!

Only assumption: vanishing collision kernel, external classical gauge �elds.
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Decompose W into generators of Cli�ord algebra.

W =
1

4

(
F + iγ5P + γµVµ + γ5γµAµ +

1

2
σµνSµν

)
.

Insert into transport equation.

Get system of 32 coupled (di�erential) equations.

Equations for F (scalar, �distribution function�) and Aµ (axial-vector,
�polarization�) decouple from rest.

Solve by expanding in powers of ~, assuming that Wigner function
gradients, em �eld strengths and em �eld gradients are su�ciently small.

Determine Vµ (�vector current�), P, Sµν from Aµ,F .
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Zeroth-order Wigner function
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To zeroth order:
(pµγ

µ −m)W (X , p) = 0.

Wigner function is on-shell!

Result directly calculated from de�nition is physical.

Gauge link can be ignored in classical limit (no uncertainty).

Choose spin quantization direction along polarization such that
distribution function frs becomes diagonal in r , s.

To simplify notation: only write positive-energy part.
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Direct calculation yields

F (0) = mδ(p2 −m2)V

A(0)
µ = mnµδ(p2 −m2)A

P(0) = 0

V(0)
µ = pµδ(p2 −m2)V

S(0)
µν = mΣµνδ(p2 −m2)A,

with

V ≡ 2

(2π)3

∑
s

fs(x , p)

A ≡ 2

(2π)3

∑
s

sfs(x , p)

Solution ful�lls zeroth-order transport equation.
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Wigner function and transport equation

Next-to-leading order
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To �rst order, Wigner function is no longer on-shell!

Momentum variable of directly calculated Wigner function is not equal to
physical momentum of particle → useless!

Use transport equation!

Insert zeroth-order solution into �rst-order equations.

Find solution with correct massless limit.
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Wigner function and transport equation

Determine F and Aµ up to order ~
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Generalized Boltzmann equation:

p · ∇F = ~1
2
∂λx F

νρ(∂pλSνρ + ∂pρSνλ).

Generalized spin transport equation:

p · ∇Aρ = F ρνAν + ~1
6
εµνλρ[(∂αx Fµλ)∂pαVν + (∂xλFµσ)∂σp Vν ].

Generalized on-shell conditions:

(p2 −m2)F =
1

2
~FµνSµν ,

(p2 −m2)Aµ = −~F̃µσVσ.
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Wigner function and transport equation

Determine Vµ, P, and Sµν up to order ~
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Only couple to F and Aµ:

Vµ =
1

m
(pµF − 1

2
~∇νSνµ),

Sµν = − 1

m
εµναβpαAβ + ~ 1

2m
(∇µVν −∇νVµ),

P = − 1

2m
~∇µAµ.

Obviously only valid for m 6= 0!

Can we still obtain massless limit?
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Equations decouple for m = 0!

1

2
(∇µJ±ν −∇νJ±µ ) = ±εµναβpαJβ±

for right- and left-handed currents J±µ ≡ 1

2
(Vµ ±Aµ).

Solution:
Y. Hidaka, S. Pu, D-L. Yang, PRD95 (2017), 091901;

A. Huang, S. Shi, Y. Jiang, J. Liao, and P. Zhuang, arXiv:1801.03640 [hep-th]

J±µ =

[
pµδ(p2)± 1

2
~εµναβpνFαβδ′(p2)± 1

2
εµναβ

pαuβ

p · u δ(p2)∇ν
]
f±.

uβ : four-velocity of an arbitrary frame.
Remember expression for massless spin tensor!
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Find solutions for massive case:
Replace massless by massive spin tensor in Aµ.

F (1) = mδ(p2 −m2)V +
~
2
εµναβpµnνFαβδ

′(p2 −m2)A

Aµ(1) = mnµδ(p2 −m2)A + ~F̃µνpνδ′(p2 −m2)V

+~εµναβ n
αpβ

2m
δ(p2 −m2)∇νV .

Ful�ll constraint equations!

Found solution of transport equation with correct massless limit.
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Vector current
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Vµ(1) = pµδ(p2 −m2)V + m~F̃µνnνδ′(p2 −m2)A

+~εµναβ nαpβ
2m

δ(p2 −m2)∇νA +
1

2m
~δ(p2 −m2)Aενµαβpα∇νnβ .

Convective part.

O�-shell part ↔ CME.

Polarization part ↔ CVE.

Current is not parallel to momentum to �rst order!

Parts orthogonal to momentum present for imbalance between spin-up and
spin-down particles.
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Taylor expansion:

δ(p2 −m2 − ~ s
2
FµνΣµν) = δ(p2 −m2)− ~ s

2
FµνΣµνδ

′(p2 −m2) + O(~2),

After some calculation:∑
s

δ(p2 −m2 −
s

2
~FαβΣαβ)

{
pµ∂xµfs + ∂pµ

[
Fµνpν + ~

1

4
sΣνρ(∂µFνρ)

]
fs

}
= 0.

Modi�ed on-shell condition!

Recover �rst Mathisson-Papapetrou-Dixon equation!
W. Israel, General Relativity and Gravitation, vol. 9, no. 5 (1978), 451-468
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From kinetic equation for polarization to zeroth order:

m
d

dτ
nµ = Fµνnν ,

where τ is a worldline parameter with d
dτ

= ˙xµ ∂
∂xµ

+ ṗµ ∂
∂pµ

, where

ẋ ≡ ∂x
∂τ

.

Recover BMT equation!
V. Bargmann, L. Michel, and V. L. Telegdi, PRL 2 (1959)

After some calculation:

m
d

dτ
Σµν = ΣλνFµλ − ΣλµF νλ.

Recover second Mathisson-Papapetrou-Dixon equation!
W. Israel, General Relativity and Gravitation, vol. 9, no. 5 (1978), 451-468
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Up to now: completely generic distribution function.
Now specify in simplest case: global equilibrium.

Equilibrium distribution function:

f eqs = (egs + 1)−1

with g linear combination of conserved quantities charge, momentum, and
angular momentum:

gs = βπ · U + βµs −
~
2
sΣµν∂µ(βUν).

Here, πµ ≡ pµ + Aµ is canonical momentum, U is �uid velocity, β ≡ 1

T
is

inverse temperature, and µs is chemical potential.

To zeroth order
f (0)
s = (eg0 + 1)−1

with
gs0 = β(π · U − µs).
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�Homogeneous� part of the Boltzmann equation ful�lled if:

µs = const,

∂νβµ + ∂µβν = 0,

LβFµν = 0.

�Inhomogeneous� part of Boltzmann equation:
additional conditions to make global equilibrium possible.

By Taylor expansion of distribution function:

V (1)µ =
2

(2π)3

∑
s

[
δ(p2 −m2)(pµ + ~m

2
sω̃µνnν∂βπ·U)

+ ~sF̃µνnνδ′(p2 −m2) + s
1

2m
~δ(p2 −m2)ενµαβpα∇νnβ

]
f (0)
s .

Thermal vorticity tensor: ωµν ≡ ∂µβν − ∂νβµ.
Dual thermal vorticity tensor: ω̃µν ≡ 1

2
εµναβω

αβ .
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From Dirac Lagrangian in electro-magnetic �eld

L = Ψ̄

[
1

2
i~γµ(Dµ − D†µ)−m

]
Ψ

we obtain:

Number current:

Jµ(x) ≡ 〈: Ψ̄(x)γµΨ(x) :〉

=

∫
d4p V µ(x , p).

Canonical energy-momentum tensor (gauge-invariant form):

Tµν =

〈
:

∂L
∂(DµΨ)

DνΨ + DνΨ†
∂L

∂(DµΨ†)
− gµνL :

〉
=

∫
d4p pνV µ.
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Spin current tensor:

Sλ,µν(x) ≡ 1

4

∫
d4p tr({σµν , γλ}W (x , p))

= −1

2
εµνλρ

∫
d4p Aρ(x , p).

Total angular momentum tensor:

Jλ,µν = xµTλν − xνTλµ + ~Sλ,µν .
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Conservation laws to �rst order:

∇µVµ = 0,

1

2
~εµναβ∇αAβ = pνWVµ − pµWV

ν ,

=⇒
∂µJ

µ = 0,

∂µT
µν = F νµJµ,

~∂λSλ,µν = T νµ − Tµν ,

∂λJ
λ,µν = xµFλνJλ − xνFλµJλ.

Expected form of conservation laws!

Energy-momentum tensor is conserved in combination with Maxwell part.

Spin is not conserved separately.

For zero electromagnetic �elds, energy and total angular momentum are
conserved.



Kinetic theory of massive spin-1/2 particles from the Wigner-function formalism

Conclusions and Outlook

Conclusions
 

 

CRC -  TR 

Found transport equation for distribution function and polarization for
massive spin-1/2 particles in inhomogeneous electromagnetic �elds.

Recovered classical equations of motion.

Found a way of obtaining massless limit.

Showed agreement of our solution to previously known massless solution in
this limit.

Gave explicit expressions for current in global equilibrium.
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Generalized Boltzmann equation still has to be solved.

Collisions have to be included.
→ Boltzmann equation without assumption of local equilibrium.

Derive equations of motion for dissipative quantities.
→ Method of moments.
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