Mass Correction to CKT

Chiral Phase Transition in an Expanding System

Ziyue Wang Xingyu Guo, Shuzhe Shi Pengfei Zhuang, Dirk Rischke

2018.12.13

Mass Correction to CKT

Chiral Phase Transition in Expanding System

BACKGROUND

QCD topology & magnetic field Chiral Magnetic Effect Quantum Transport

Mysterious QCD

Confinement, Chiral symmetry breaking, Hadronization Topologically nontrivial gluon field configurations θ -vacuum , non-perturbative UA(1) anomaly, Strong CP problem

Magnetic field in heavy ion collision

- Graphene, Dirac (Weyl) semimental 10⁵ Gauss Compact stars 10¹⁰~ 10¹⁶ Gauss Heavy ion collision 10¹⁸~ 10¹⁹ Gauss (eB ~ $6m_{\pi}^2$)
- Particle production
 Phase structure (MC, IMC)
 Transport property (CME, CMW, CSE...)
 Actress and stage, what performance?

Chiral Magnetic Effect

Chiral Magnetic Effect (CME)

$$\vec{J}_{\rm CME} = \frac{e^2}{2\pi^2} \mu_A \vec{B}$$

Electric current along B

Chiral charge density

T-even: non-dissipative, topological protected

Realize in systems with chiral fermion and B field

Condensed mater system $\vec{E} \cdot \vec{B}$

Heavy Ion Collision $QCD \times QED$

 $\mu_5 \neq 0$

 $\mu_5 \neq 0$

Perfect actress and stage, perfect performance... But?

Quantum Transportation

• CME in heavy ion collision

$$\mu_A = \partial_t \theta$$

non-equilibrium nature

Non-equilibrium

local equilibrium — relativistic hydrodynamics + triangle anomaly

Non-equilibrium — quantum transport theory (Wigner function)

$$W(x,\vec{p}) = \int d^3 \vec{y} e^{i\vec{p}\cdot\vec{y}} \left\langle \psi\left(t,\vec{x}+\frac{\vec{y}}{2}\right) e^{ie\int_{-1/2}^{1/2} dsA(x+sy)\cdot y} \psi^{\dagger}\left(t,\vec{x}-\frac{\vec{y}}{2}\right) \right\rangle = \int dp_0 W(x,p) \gamma^0$$

P.Zhuang and U.Heinz, Ann.Phys.245, 311(1996); PRD57, 6525(1998)

Chiral Kinetic Theory & Berry curvature

Finite mass: Almost all consider chiral case

From massless to massive, not a trivial problem

Dissipation rate – for hydrodynamical modeling D.f.Hou and S.Lin, 1712.08429 [hep-ph].

Modify CKT framework — non-Abel berry curvature

J.W.Chen, J.y.Pang, S.Pu and Q.Wang, PRD 89, 094003 (2014)

t

b

top

bottom

FRAMEWORK

Covariant Kinetic Equation Equal-time equation Semiclassical expansion

Covariant Kinetic Equation

• u, d quark moving in external EM field

$$\mathcal{L} = \bar{\psi} \Big(i\gamma^{\mu} (\partial_{\mu} + ieA_{\mu}) - m \Big) \psi - \frac{1}{4} F^{\mu\nu} F_{\mu\nu}$$

Covariant equation of Wigner operator

$$\left[\gamma^{\mu}\left(\Pi_{\mu} + \frac{1}{2}i\hbar D_{\mu}\right) - m\right]\hat{W}_{4}(x,p) = 0$$

$$D_{\mu}(x,p) = \partial_{\mu} - e\int_{-1/2}^{1/2} dsF_{\mu\nu}(x - i\hbar s\partial_{p})\partial_{p}^{\nu}$$

$$\Pi_{\mu}(x,p) = p_{\mu} - ie\hbar\int_{-1/2}^{1/2} dssF_{\mu\nu}(x - i\hbar s\partial_{p})\partial_{p}^{\nu}$$

Po integrating the covariant equation

 $f(x, \vec{p}) \to W(x, \vec{p})$

$$W(x,\vec{p}) = \int d^3 \vec{y} e^{i\vec{p}\cdot\vec{y}} \left\langle \psi\left(t,\vec{x}+\frac{\vec{y}}{2}\right) e^{ie\int_{-1/2}^{1/2} dsA(x+sy)\cdot y} \psi^{\dagger}\left(t,\vec{x}-\frac{\vec{y}}{2}\right) \right\rangle = \int dp_0 W(x,p) \gamma^0 dx$$

Equal-time transport equation Equal-time constraint equation

$$W(x, \vec{p}) = \int dp_0 W(x, p) \gamma^0$$
$$W^{(1)}(x, \vec{p}) = \int dp_0 \ p_0 W(x, p) \gamma^0$$

Equal-time transport & constraint equations

\odot Spin decomposition – 16 components

$$W(x, \vec{p}) = \frac{1}{4} \Big[f_0 + \gamma_5 f_1 - i\gamma_0 \gamma_5 f_2 + \gamma_0 f_3 + \gamma_5 \gamma_0 \vec{\gamma} \cdot \vec{g}_0 + \gamma_0 \vec{\gamma} \cdot \vec{g}_1 - i\vec{\gamma} \cdot \vec{g}_2 - \gamma_5 \vec{\gamma} \cdot \vec{g}_3 \Big]$$

$$f_0 : \text{ number density} \\ \vec{g}_1 : \text{ number current} \\ \vec{g}_1 : \text{ number current} \\ \vec{f}_1 : \text{helicity density} \\ \vec{g}_3 : \text{ magnetic moment} \\ \vec{f}_3 : \vec{f}_3 : \text{ magnetic moment} \\ \vec{f}_3 : \vec{$$

Massless vs Massive

$$\begin{split} \hbar(D_t f_0 + \vec{D} \cdot \vec{g}_1) &= \\ \hbar(D_t f_1 + \vec{D} \cdot \vec{g}_0) &= \\ \hbar(D_t \vec{g}_0 + \vec{D} f_1) - 2\vec{\Pi} \times \vec{g}_1 &= \\ \hbar(D_t \vec{g}_1 + \vec{D} f_0) - 2\vec{\Pi} \times \vec{g}_0 &= \\ \hbar D_t f_2 - 2\vec{\Pi} \cdot \vec{g}_3 &= \\ \hbar D_t f_3 - 2\vec{\Pi} \cdot \vec{g}_2 &= \\ \hbar(D_t \vec{g}_2 - \vec{D} \times \vec{g}_3) + 2\vec{\Pi} f_3 &= \\ \hbar(D_t \vec{g}_3 + \vec{D} \times \vec{g}_2) + 2\vec{\Pi} f_2 &= \end{split}$$

$$f_0(x, \mathbf{p}) = \int dp_0 V_0(x, p)$$
$$f_1(x, \mathbf{p}) = -\int dp_0 A_0(x, p)$$
$$g_{0i}(x, \mathbf{p}) = -\int dp_0 A_i(x, p)$$
$$g_{1i}(x, \mathbf{p}) = \int dp_0 V_i(x, p)$$

$$\int dp_{0}p_{0}V_{0} - \vec{\Pi} \cdot \vec{g}_{1} + \widetilde{\Pi}_{0}f_{0} = \int dp_{0}p_{0}A_{0} + \vec{\Pi} \cdot \vec{g}_{0} - \widetilde{\Pi}_{0}f_{1} = \int dp_{0}p_{0}\vec{A} + \frac{1}{2}\hbar\vec{D} \times \vec{g}_{1} + \vec{\Pi}f_{1} - \widetilde{\Pi}_{0}\vec{g}_{0} = \int dp_{0}p_{0}\vec{V} - \frac{1}{2}\hbar\vec{D} \times \vec{g}_{0} + \vec{\Pi}f_{0} - \widetilde{\Pi}_{0}\vec{g}_{1} = \int dp_{0}p_{0}\vec{V} - \frac{1}{2}\hbar\vec{D} \cdot \vec{g}_{0} + \vec{\Pi}f_{0} - \widetilde{\Pi}_{0}f_{2} = \int dp_{0}p_{0}F - \frac{1}{2}\hbar\vec{D} \cdot \vec{g}_{2} + \widetilde{\Pi}_{0}f_{3} = \int dp_{0}p_{0}S^{0i}\vec{e}_{i} - \frac{1}{2}\hbar\vec{D}f_{3} + \vec{\Pi} \times \vec{g}_{3} - \widetilde{\Pi}_{0}\vec{g}_{2} = \int dp_{0}p_{0}S_{jk}\epsilon^{jki}\vec{e}_{i} - \hbar\vec{D}f_{2} + 2\vec{\Pi} \times \vec{g}_{2} + 2\widetilde{\Pi}_{0}\vec{g}_{3} = \int dp_{0}p_{0}S_{jk}\epsilon^{jki}\vec{e}_{i} - \hbar\vec{D}f_{2} + 2\vec{\Pi} \times \vec{g}_{2} + 2\widetilde{\Pi}_{0}\vec{g}_{3} = \int dp_{0}p_{0}S_{jk}\epsilon^{jki}\vec{e}_{i} - \hbar\vec{D}f_{2} + 2\vec{\Pi} \times \vec{g}_{2} + 2\vec{\Pi}_{0}\vec{g}_{3} = \int dp_{0}p_{0}S_{jk}\epsilon^{jki}\vec{e}_{i} - \hbar\vec{D}f_{2} + 2\vec{\Pi} \times \vec{g}_{2} + 2\vec{\Pi}_{0}\vec{g}_{3} = \int dp_{0}p_{0}S_{jk}\epsilon^{jki}\vec{e}_{i} - \hbar\vec{D}f_{2} + 2\vec{\Pi} \times \vec{g}_{2} + 2\vec{\Pi}_{0}\vec{g}_{3} = \int dp_{0}p_{0}S_{jk}\epsilon^{jki}\vec{e}_{i} - \hbar\vec{D}f_{2} + 2\vec{\Pi} \times \vec{g}_{2} + 2\vec{\Pi}_{0}\vec{g}_{3} = \int dp_{0}p_{0}S_{jk}\epsilon^{jki}\vec{e}_{i} - \hbar\vec{D}f_{2} + 2\vec{\Pi} \times \vec{g}_{2} + 2\vec{\Pi}_{0}\vec{g}_{3} = \int dp_{0}p_{0}S_{jk}\epsilon^{jki}\vec{e}_{i} - \hbar\vec{D}f_{2} + 2\vec{\Pi} \times \vec{g}_{2} + 2\vec{\Pi}_{0}\vec{g}_{3} = \int dp_{0}p_{0}S_{jk}\epsilon^{jki}\vec{e}_{i} - \hbar\vec{D}f_{2} + 2\vec{\Pi} \times \vec{g}_{2} + 2\vec{\Pi}_{0}\vec{g}_{3} = \int dp_{0}p_{0}S_{jk}\vec{e}_{jki}\vec{e}_{jki} + \frac{dp_{0}p_{0}p_{0}S_{jk}\vec{e}_{jki}\vec{e}_{jki} + \frac{dp_{0}p_{0}p_{0}S_{jk}\vec{e}_{jki}\vec{e}_{jki} + \frac{dp_{0}p_{0}p_{0}S_{jk}\vec{e}_{jki}\vec{e}_{jki}\vec{e}_{jki} + \frac{dp_{0}p_{0}p_{0}S_{jk}\vec{e}_{jki}\vec{$$

Expand all 16 constraint + 16 transport equation by order of ħ
 On-shell (quasi-particle) — Classical transport equation @ 0th
 Quantum effects — Quantum transport equation @ 0th+1st

Massless vs Massive

$$\begin{split} \hbar(D_t f_0 + \vec{D} \cdot \vec{g}_1) &= 0\\ \hbar(D_t f_1 + \vec{D} \cdot \vec{g}_0) &= -2mf_2\\ \hbar(D_t \vec{g}_0 + \vec{D} f_1) - 2\vec{\Pi} \times \vec{g}_1 &= 0\\ \hbar(D_t \vec{g}_1 + \vec{D} f_0) - 2\vec{\Pi} \times \vec{g}_0 &= -2m\vec{g}_2\\ \hbar D_t f_2 - 2\vec{\Pi} \cdot \vec{g}_3 &= 2mf_1\\ \hbar D_t f_3 - 2\vec{\Pi} \cdot \vec{g}_2 &= 0\\ \hbar(D_t \vec{g}_2 - \vec{D} \times \vec{g}_3) + 2\vec{\Pi} f_3 &= 2m\vec{g}_1\\ \hbar(D_t \vec{g}_3 + \vec{D} \times \vec{g}_2) + 2\vec{\Pi} f_2 &= 0 \end{split}$$

$$f_0(x, \mathbf{p}) = \int dp_0 V_0(x, p)$$
$$f_1(x, \mathbf{p}) = -\int dp_0 A_0(x, p)$$
$$g_{0i}(x, \mathbf{p}) = -\int dp_0 A_i(x, p)$$
$$g_{1i}(x, \mathbf{p}) = \int dp_0 V_i(x, p)$$

$$\int dp_0 p_0 V_0 - \vec{\Pi} \cdot \vec{g}_1 + \widetilde{\Pi}_0 f_0 = mf_3$$

$$\int dp_0 p_0 A_0 + \vec{\Pi} \cdot \vec{g}_0 - \widetilde{\Pi}_0 f_1 = 0$$

$$\int dp_0 p_0 \vec{A} + \frac{1}{2} \hbar \vec{D} \times \vec{g}_1 + \vec{\Pi} f_1 - \widetilde{\Pi}_0 \vec{g}_0 = -m\vec{g}_3$$

$$\int dp_0 p_0 \vec{V} - \frac{1}{2} \hbar \vec{D} \times \vec{g}_0 + \vec{\Pi} f_0 - \widetilde{\Pi}_0 \vec{g}_1 = 0$$

$$\int dp_0 p_0 P + \frac{1}{2} \hbar \vec{D} \cdot \vec{g}_3 + \widetilde{\Pi}_0 f_2 = 0$$

$$\int dp_0 p_0 F - \frac{1}{2} \hbar \vec{D} \cdot \vec{g}_2 + \widetilde{\Pi}_0 f_3 = mf_0$$

$$\int dp_0 p_0 S^{0i} \vec{e}_i - \frac{1}{2} \hbar \vec{D} f_3 + \vec{\Pi} \times \vec{g}_3 - \widetilde{\Pi}_0 \vec{g}_2 = 0$$

$$\int dp_0 p_0 S_{jk} \epsilon^{jki} \vec{e}_i - \hbar \vec{D} f_2 + 2\vec{\Pi} \times \vec{g}_2 + 2\vec{\Pi}_0 \vec{g}_3 = 2m\vec{g}_0$$

Expand all 16 constraint + 16 transport equation by order of ħ
 On-shell (quasi-particle) — Classical transport equation @ 0th
 Quantum effects — Quantum transport equation @ 0th+1st

RESULTS

Chiral fermion
 Massive fermion
 Solution for CME

1. Chiral fermion

• 8 transport equations + 8 constraint equations $\int dp_0 p_0 V_0 - \vec{\Pi} \cdot \vec{g}_1 + \widetilde{\Pi}_0 f_0 = 0$ $\int dp_0 p_0 A_0 + \vec{\Pi} \cdot \vec{g}_0 - \widetilde{\Pi}_0 f_1 = 0$ $\int dp_0 p_0 A_0 + \vec{\Pi} \cdot \vec{g}_0 - \widetilde{\Pi}_0 f_1 = 0$ $\int dp_0 p_0 \vec{A} + \frac{1}{2} \hbar \vec{D} \times \vec{g}_1 + \vec{\Pi} f_1 - \widetilde{\Pi}_0 \vec{g}_0 = 0$ $\int dp_0 p_0 \vec{V} - \frac{1}{2} \hbar \vec{D} \times \vec{g}_0 + \vec{\Pi} f_0 - \widetilde{\Pi}_0 \vec{g}_1 = 0$

m=0: Axial and Vector still coupled! Decouple by introducing chiral component!

$$J_{\chi}^{\mu} = \frac{1}{2} (V^{\mu} - \chi A^{\mu}) \qquad \begin{array}{l} f_{\chi} = f_0 + \chi f_1 \\ \vec{g}_{\chi} = \vec{g}_1 + \chi \vec{g}_0 = G[f_{\chi}] \end{array} \qquad \begin{array}{l} \text{Equations of 0th, 1st order} \\ \text{Combine } f_{\chi} = f_{\chi}^{(0)} + \hbar f_{\chi}^{(1)} \end{array}$$

m=0: Chiral kinetic theory & Berry curvature from hbar orac

$$\begin{aligned} \partial_t f_{\chi}^{\pm} + \dot{\vec{x}} \cdot \nabla f_{\chi}^{\pm} + \dot{\vec{p}} \cdot \nabla_p f_{\chi}^{\pm} &= 0 \\ \dot{\vec{x}} &= \frac{1}{\sqrt{G}} \left(\vec{v}_p + \hbar(\vec{v}_p \cdot \vec{b}) \vec{B} + \hbar \vec{E} \times \vec{b} \right) \\ \dot{\vec{p}} &= \frac{1}{\sqrt{G}} \left(\vec{v}_p \times \vec{B} + \vec{E} + \hbar(\vec{E} \cdot \vec{B}) \vec{b} \right) \end{aligned} \qquad \vec{b} &= \chi \frac{\hat{p}}{2p^2} \\ \epsilon_p &= p(1 - \hbar \vec{B} \cdot \vec{b}) \\ \vec{v}_p &= \nabla_p \epsilon_p = \hat{p}(1 + 2\hbar \vec{b} \cdot \vec{B}) - \hbar(\hat{p} \cdot \vec{b}) \vec{B} \end{aligned}$$

2. massive fermion?

2. massive fermion

$$\partial_t f_{\chi}^{\pm} + \dot{\vec{x}} \cdot \nabla f_{\chi}^{\pm} + \dot{\vec{p}} \cdot \nabla_p f_{\chi}^{\pm} = -m\chi \frac{\vec{E} \cdot \vec{g}_3^{(0)\pm}}{\sqrt{G}p^2} - m\hbar\chi \frac{\vec{E} \cdot \vec{g}_3^{(1)\pm}}{\sqrt{G}p^2} + m\hbar \frac{F_2\left[\vec{g}_3^{(0)\pm}\right]}{\sqrt{G}}$$
$$F_2\left[\vec{g}_3^{(0)\pm}\right] = \frac{1}{2p^4} (\vec{p} \cdot \vec{D}) (\vec{B} \cdot \vec{g}_3^{(0)\pm}) \pm \frac{1}{2p^3} \vec{D} \cdot (\vec{E} \times \vec{g}_3^{(0)\pm}) \mp \frac{3}{2p^5} (\vec{B} \times \vec{p}) \cdot (\vec{E} \times \vec{g}_3^{(0)\pm})$$

- First oder of mass Framework of CKT with small mass
- Dissipation terms related to : EM field, magnetic moment g3, inhomogeneous
- Same phase space factor, berry curvature, structure comparable with m=0
- Kinetic theory pre-thermal evolution

- offer initial condition for hydrodynamics

- Compare to other framework solvable as initial value problem
- Application to different physical condition CME, CSE...

3. CME & Solution

 \circ Berry curvature — s follows p, \hbar order — semiclassical expansion

Non-equilibrium evolution is dissipative

Analytically Solvable !

BACKUP

Constraint equations Transport equations Analytical solution for CME

Backup I. Constraint equations @ Oth and 1st order

• Oth Constraint equations

$$f_1^{(0)\pm} = \pm \frac{\vec{p}}{E_p} \cdot \vec{g}_0^{(0)\pm}, \qquad \qquad \vec{g}_1^{(0)\pm} = \pm \frac{\vec{p}}{E_p} f_0^{(0)\pm}, \\ f_2^{(0)\pm} = 0, \qquad \qquad \vec{g}_2^{(0)\pm} = \frac{\vec{p} \times \vec{g}_0^{(0)\pm}}{m}, \\ f_3^{(0)\pm} = \pm \frac{m}{E_p} f_0^{(0)\pm}, \qquad \qquad \vec{g}_3^{(0)\pm} = \pm \frac{E_p^2 \vec{g}_0^{(0)\pm} - (\vec{p} \cdot \vec{g}_0^{(0)\pm})\vec{p}}{E_p m}.$$

Ist Constraint equations

$$\begin{aligned} f_1^{(1)\pm} &= \pm \frac{\vec{p} \cdot \vec{g}_0^{(1)\pm}}{E_p} \pm \frac{\vec{p} \cdot \vec{B}}{2E_p^3} f_0^{(0)\pm} \\ \vec{g}_1^{(1)\pm} &= \pm \frac{\vec{p}}{E_p} f_0^{(1)} + \left(\frac{\vec{E}}{2E_p^2} \times \vec{g}_0^{(0)\pm} \pm \frac{\vec{B}(\vec{p} \cdot \vec{g}_0^{(0)\pm})}{2E_p^3}\right) \pm \frac{1}{2E_p} \vec{D} \times \vec{g}_0^{(0)} \\ \vec{g}_2^{(1)\pm} &= \frac{\vec{p} \times \vec{g}_0^{(1)\pm}}{m} \pm \left(\frac{\vec{p}(\vec{p} \cdot \vec{E})}{2mE_p^3} - \frac{\vec{E}}{2mE_p}\right) f_0^{(0)\pm} + \frac{\vec{p}}{2mE_p^2} \vec{p} \cdot \vec{D} f_0^{(0)\pm} - \frac{1}{2m} \vec{D} f_0^{(0)\pm} \\ \vec{g}_3^{(1)\pm} &= \pm \left(\frac{E_p}{m} \vec{g}_0^{(1)\pm} - \frac{\vec{p} \cdot \vec{g}_0^{(1)\pm}}{mE_p} \vec{p}\right) + \left(\frac{\vec{E} \times \vec{p}}{2mE_p^2} \mp \frac{m\vec{B}}{2E_p^3}\right) f_0^{(0)\pm} \mp \frac{1}{2mE_p} \vec{p} \times \vec{D} f_0^{(0)\pm} \end{aligned}$$

Backup II. Transport equations @ 0th and 1st order

Transport equation of the classical components

$$\begin{pmatrix} D_t \pm \frac{\vec{p}}{E_p} \cdot \vec{D} \end{pmatrix} f_0^{(0)\pm} = 0 \begin{pmatrix} D_t \pm \frac{\vec{p}}{E_p} \cdot \vec{D} \end{pmatrix} \vec{g}_0^{(0)\pm} - \frac{1}{E_p^2} \left[\vec{p} \times \left(\vec{E} \times \vec{g}_0^{(0)\pm} \right) \mp E_p \vec{B} \times \vec{g}_0^{(0)\pm} \right] = 0 \frac{\vec{p}}{m} \vec{p} \cdot \left(D_t \pm \frac{\vec{p}}{E_p} \cdot \vec{D} \right) \vec{g}_3^{(0)\pm} + m \left(D_t \pm \frac{\vec{p}}{E_p} \cdot \vec{D} \right) \vec{g}_3^{(0)\pm} + \frac{\vec{p}}{m} \vec{g}_3^{(0)\pm} \cdot \vec{E} \pm m \frac{\vec{B} \times \vec{g}_3^{(0)\pm}}{E_p} \pm \frac{\vec{p} \cdot (\vec{B} \times \vec{g}_3^{(0)\pm})}{mE_p} \vec{p} = 0$$

Transport equation of the first order components

$$\begin{split} \left(D_t \pm \frac{\vec{p}}{E_p} \cdot \vec{D} \right) f_0^{(1)\pm} &= \frac{\vec{E}}{2E_p^2} \cdot \vec{D} \times \vec{g}_0^{(0)\pm} \mp \frac{1}{2E_p^3} \vec{B} \cdot (\vec{p} \cdot \vec{D}) \vec{g}_0^{(0)\pm} + \frac{(\vec{B} \times \vec{p})}{E_p^4} \cdot (\vec{E} \times \vec{g}_0^{(0)\pm}) \\ \left(D_t \pm \frac{\vec{p}}{E_p} \cdot \vec{D} \right) \vec{g}_0^{(1)\pm} - \frac{1}{E_p^2} \left[\vec{p} \times \left(\vec{E} \times \vec{g}_0^{(1)\pm} \right) \mp E_p \vec{B} \times \vec{g}_0^{(1)\pm} \right] \\ &= \mp \left(\frac{\vec{B}}{2E_p^3} \pm \frac{\vec{E} \times \vec{p}}{2E_p^4} \right) \vec{p} \cdot \vec{D} f_0^{(0)\pm} \mp \left(\frac{(\vec{p} \cdot \vec{E})(\vec{E} \times \vec{p})}{E_p^5} \pm \frac{\vec{p} \times (\vec{B} \times \vec{E})}{2E_p^4} \right) f_0^{(0)\pm} \\ \frac{\vec{p}}{m} \vec{p} \cdot \left(D_t \pm \frac{\vec{p}}{E_p} \cdot \vec{D} \right) \vec{g}_3^{(1)\pm} + m \left(D_t \pm \frac{\vec{p}}{E_p} \cdot \vec{D} \right) \vec{g}_3^{(1)\pm} + \frac{\vec{p}}{m} \left(\vec{E} \pm \frac{\vec{p}}{E_p} \times \vec{B} \right) \cdot \vec{g}_3^{(1)\pm} \pm \frac{m}{E_p} \vec{B} \times \vec{g}_3^{(1)\pm} \\ &= \left(\frac{\vec{p} (\vec{p} \cdot \vec{B})}{2E_p^4} + \frac{m^2 \vec{B}}{2E_p^4} \right) (\vec{p} \cdot \vec{D} f_0^{(0)\pm}) \mp \left(\frac{\vec{p} \vec{p} \cdot (\vec{E} \times \vec{D} f_0^{(0)\pm})}{2E_p^3} + \frac{m^2 \vec{E} \times \vec{D} f_0^{(0)\pm}}{2E_p^3} \right) \\ &\pm \frac{3(m^2 \vec{B} + \vec{p} \ \vec{p} \cdot \vec{B})}{2E_p^5} (\vec{p} \cdot \vec{E}) f_0^{(0)\pm} \pm \frac{\vec{p} (\vec{B} \cdot \vec{E})}{2E_p^3} f_0^{(0)\pm} \end{split}$$

Backup III. Solution for CME

Solution for gO

$$\vec{g}_{0z}^{(0)\pm}(x,\vec{p}) = \sum_{n} \int \frac{dk^{t} dk^{z} k_{T} dk_{T}}{2\pi} c_{z,n} e^{i(k^{t}x^{t}-k^{z}x^{z})} e^{i\frac{(k^{t}p^{t}-k^{z}p^{z})\phi_{p}}{B}} \\ \times e^{in \arctan\left(\frac{p^{y}+Bx^{x}}{p^{x}-Bx^{y}}\right)} J_{n} \left[k_{T} \sqrt{\left(x^{x}+\frac{p^{y}}{B}\right)^{2}+\left(x^{y}-\frac{p^{x}}{B}\right)^{2}}\right] \\ \vec{g}_{0x}^{(0)\pm}(x,\vec{p}) = \sum_{n} \int \frac{dk^{t} dk^{z} k_{T} dk_{T}}{2\pi} c_{z,n} e^{i(k^{t}x^{t}-k^{z}x^{z})} e^{i\frac{(k^{t}p^{t}-k^{z}p^{z})\phi_{p}}{B}} \cos(\phi_{p}-\phi_{c}) \\ \times e^{in \arctan\left(\frac{p^{y}+Bx^{x}}{2\pi}\right)} J_{n} \left[k_{T} \sqrt{\left(x^{x}+\frac{p^{y}}{B}\right)^{2}+\left(x^{y}-\frac{p^{x}}{B}\right)^{2}}\right] \\ \vec{g}_{0y}^{(0)\pm}(x,\vec{p}) = \sum_{n} \int \frac{dk^{t} dk^{z} k_{T} dk_{T}}{2\pi} c_{z,n} e^{i(k^{t}x^{t}-k^{z}x^{z})} e^{i\frac{(k^{t}p^{t}-k^{z}p^{z})\phi_{p}}{B}} \sin(\phi_{p}-\phi_{c}) \\ \times e^{in \arctan\left(\frac{p^{y}+Bx^{x}}{p^{x}-Bx^{y}}\right)} J_{n} \left[k_{T} \sqrt{\left(x^{x}+\frac{p^{y}}{B}\right)^{2}+\left(x^{y}-\frac{p^{x}}{B}\right)^{2}}\right] \\ \end{cases}$$

Method of characteristics.

Physics Letters B Volume 777, 10 February 2018, Pages 177-183 open access

Out-of-equilibrium chiral magnetic effect from chiral kinetic theory

Anping Huang ^{a, b}, Yin Jiang ^c, Shuzhe Shi ^b, Jinfeng Liao ^b $\stackrel{\diamond}{\sim} \boxtimes$, Pengfei Zhuang ^a $\stackrel{\diamond}{\sim} \boxtimes$

E Show more

https://doi.org/10.1016/j.physletb.2017.12.025

Mass Correction to CKT

Chiral Phase Transition in an Expanding System

BACKGROUND

Phase transition signals
 Solve Vlasov equation
 Shell-like structure

Vlasov equation & gap equation

$$\frac{\partial f}{\partial t} + \frac{\mathbf{p}}{E} \cdot \boldsymbol{\nabla}_{\boldsymbol{r}} f - \boldsymbol{\nabla}_{\boldsymbol{r}} E \cdot \boldsymbol{\nabla}_{\boldsymbol{p}} f = 0$$

$$M_{c}(\mathbf{r},t) = m + g^{2} M_{c}(\mathbf{r},t) \int_{0}^{\Lambda} \frac{\mathrm{d}^{3} p}{\sqrt{\mathbf{p}^{2} + M_{c}^{2}(\mathbf{r},t)}} \left(\frac{2N_{c}N_{f}}{(2\pi)^{3}} - f(\mathbf{r},\mathbf{p},t) - \tilde{f}(\mathbf{r},\mathbf{p},t)\right)$$

Solution — analytical solution, constant mass

C. Greiner and D. Rischke, Phys.Rev. C54 (1996)

numerical solution, test particle method

A. Abada and J. Aichelin, Phys. Rev. Lett. 74 (1995)

H. van Hees, C. Wesp, A. Meistrenko and C. Greiner, Acta Phys.Polon.Supp. 7 (2014)

Physical content

- shell-like structure in 3D expansion

Relativistic, sensitive to mass

— thermal anomalous at phase transition

From hydrodynamics & TN, TA equation of state

Vlasov equation & gap equation

$$\frac{\partial f}{\partial t} + \frac{\mathbf{p}}{E} \cdot \boldsymbol{\nabla}_{\boldsymbol{r}} f - \boldsymbol{\nabla}_{\boldsymbol{r}} E \cdot \boldsymbol{\nabla}_{\boldsymbol{p}} f = 0$$

$$M_{c}(\mathbf{r},t) = m + g^{2} M_{c}(\mathbf{r},t) \int_{0}^{\Lambda} \frac{\mathrm{d}^{3} p}{\sqrt{\mathbf{p}^{2} + M_{c}^{2}(\mathbf{r},t)}} \left(\frac{2N_{c}N_{f}}{(2\pi)^{3}} - f(\mathbf{r},\mathbf{p},t) - \tilde{f}(\mathbf{r},\mathbf{p},t)\right)$$

Solution — analytical solution, constant mass

C. Greiner and D. Rischke, Phys.Rev. C54 (1996)

numerical solution, test particle method

A. Abada and J. Aichelin, Phys. Rev. Lett. 74 (1995)

H. van Hees, C. Wesp, A. Meistrenko and C. Greiner, Acta Phys. Polon. Supp. 7 (2014)

Physical content

- shell-like structure in 3D expansion

Relativistic, sensitive to mass

thermal anomalous at phase transition

From hydrodynamics & TN, TA equation of state

Vlasov equation & gap equation

$$\frac{\partial f}{\partial t} + \frac{\mathbf{p}}{E} \cdot \boldsymbol{\nabla}_{\boldsymbol{r}} f - \boldsymbol{\nabla}_{\boldsymbol{r}} E \cdot \boldsymbol{\nabla}_{\boldsymbol{p}} f = 0$$

$$M_{c}(\mathbf{r},t) = m + g^{2} M_{c}(\mathbf{r},t) \int_{0}^{\Lambda} \frac{\mathrm{d}^{3} p}{\sqrt{\mathbf{p}^{2} + M_{c}^{2}(\mathbf{r},t)}} \left(\frac{2N_{c}N_{f}}{(2\pi)^{3}} - f(\mathbf{r},\mathbf{p},t) - \tilde{f}(\mathbf{r},\mathbf{p},t)\right)$$

Solution — analytical solution, constant mass

C. Greiner and D. Rischke, Phys.Rev. C54 (1996)

- numerical solution, simultaneously, test particle method

A. Abada and J. Aichelin, Phys. Rev. Lett. 74 (1995)

H. van Hees, C. Wesp, A. Meistrenko and C. Greiner, Acta Phys. Polon. Supp. 7 (2014)

Physical content

- shell-like structure in 3D expansion

Relativistic, sensitive to mass

thermal anomalous at phase transition

From hydrodynamics & TN, TA equation of state

FRAMEWORK

Longitudinal expansion - 1D
 Numerical solution
 Thermal quantities

Transport Equation

Simultaneously solve transport equation & gap equation Force term

$$\partial_t f^{\pm} \mp \frac{\boldsymbol{\nabla}_{\boldsymbol{r}} m^2}{2E_p} \cdot \boldsymbol{\nabla}_{\boldsymbol{p}} f^{\pm} \pm \frac{\boldsymbol{p}}{E_p} \cdot \boldsymbol{\nabla}_{\boldsymbol{r}} f^{\pm} = 0$$
$$m \left(1 + 2G \int \frac{\mathrm{d}^3 \boldsymbol{p}}{(2\pi)^3} \frac{f^+(x, \boldsymbol{p}) - f^-(x, \boldsymbol{p})}{E_p} \right) = m_0$$

Mass involves in (1) force term, (2) energy

• Simplify: 1D Longitudinal expansion

$$\frac{\boldsymbol{\nabla}_{\boldsymbol{r}}m^2}{2E_p} \cdot \boldsymbol{\nabla}_{\boldsymbol{p}} f^{\pm} \rightarrow \frac{\partial_z m^2}{2E_p} \frac{\partial}{\partial p_z} f^{\pm} \\
\frac{\boldsymbol{p}}{E_p} \cdot \boldsymbol{\nabla}_{\boldsymbol{r}} f^{\pm} \rightarrow \frac{p_z}{E_p} \frac{\partial}{\partial z} f^{\pm}$$

f(t, x, y, z, px, py, pz) reduces to f(t, z, pz, pT)

Self-consistent numerical solution

Finite difference & f(t, z, pz, pT) discrete on a fixed grid (z, pz, pT)

Initial Condition & Thermal Quantities

Initial condition

(1)
$$f(t_0, z, p_z, p_T) = (e^{E_p/T(z)} + 1)^{-1}$$
 $T(z) = T_0 \exp\left(-\frac{z^2}{z_0^2}\right)$ $E_p = \sqrt{p_z^2 + p_T^2 + m_0^2}$

(2)
$$f(t_0, z, p_z, p_T) = (e^{E_p/T_0} + 1)^{-1}$$
 when $z \le r_0$
 $f(t_0, z, p_z, p_T) = 0$ when $z > r_0$

Thermal quantities

Current & energy-momentum tensor

$$\partial_{\mu}J^{\mu} = \int \frac{\mathrm{d}^{3}\mathbf{p}}{E_{p}}p^{\mu}\partial_{\mu}f(\mathbf{p}) = 0$$
$$\partial_{\nu}T^{\mu\nu} = \int \frac{\mathrm{d}^{3}\mathbf{p}}{E_{p}}p^{\mu}p^{\nu}\partial_{\nu}f(\mathbf{p}) = 0$$

$$J^{\mu}(t, \mathbf{x}) = \int f(t, \mathbf{x}, \mathbf{p}) (p^{\mu}/E_p) d^3 \mathbf{p}$$

$$T^{\mu\nu}(t, \mathbf{x}) = \int f(t, \mathbf{x}, \mathbf{p}) p^{\mu} p^{\nu} d^3 \mathbf{p}/E_p = \begin{bmatrix} T^{tt} & -T^{tz} & 0 & 0\\ T^{tz} & -T^{zz} & 0 & 0\\ 0 & 0 & -T^{xx} & 0\\ 0 & 0 & 0 & -T^{yy} \end{bmatrix}$$

Velocity & energy density

$$u^{\mu} = \gamma_{v}\{1, v\} \equiv \gamma_{v}\left\{1, \frac{2T^{tz}}{T^{tt} + T^{zz} + \sqrt{(T^{tt} + T^{zz})^{2} - 4(T^{tz})^{2}}}\right\}$$
$$\epsilon = \frac{T^{tt} - T^{zz} + \sqrt{(T^{tt} + T^{zz})^{2} - 4(T^{tz})^{2}}}{2}$$

RESULTS

Gaussian, real case
 Step function, real case
 Step function, chiral limit

Result 1 — Gaussian, real case

$$f(t_0, z, p_z, p_T) = (e^{E_p/T(z)} + 1)^{-1} \qquad T(z) = T_0 \exp\left(-z^2/z_0^2\right) \qquad E_p = \sqrt{p_z^2 + p_T^2 + m_0^2}$$
$$T_0 = 300 \text{ MeV}, T_0 = 240 \text{ MeV with } z_0 = 4\text{fm} \qquad \texttt{t from t=0 to t=10fm}$$

Constituent mass m(t, z)

TO = 300 MeV

TO = 240 MeV

Result 1 — Gaussian, real case

Current and Energy-momentum tensor Conservation checked! 0

Result 1 — Gaussian, real case

Number density & energy density

There is no shell-like structure in the 1D expansion

Velocity and the "fold"

A "fold" in the velocity at the phase transition

$$\partial_t f^{\pm} \mp \frac{\boldsymbol{\nabla}_{\boldsymbol{r}} m^2}{2E_p} \cdot \boldsymbol{\nabla}_{\boldsymbol{p}} f^{\pm} \pm \frac{\boldsymbol{p}}{E_p} \cdot \boldsymbol{\nabla}_{\boldsymbol{r}} f^{\pm} = 0$$

A strong force at the phase transition

 $\frac{dm}{dz} = \frac{dm}{dT}\frac{dT}{dz}$

Result 2 — Step function, real case

 $f(t_0, z, p_z, p_T) = (e^{E_p/T_0} + 1)^{-1} \text{ when } z \le r_0 \qquad f(t_0, z, p_z, p_T) = 0 \text{ when } z > r_0$ $T_0 = 240 \text{ MeV}, z_0 = 2 \text{ fm} \qquad \qquad \texttt{t from t=0 to t=10fm}$

Result 3 — Step function, chiral limit

 $f(t_0, z, p_z, p_T) = (e^{E_p/T_0} + 1)^{-1} \text{ when } z \le r_0 \qquad f(t_0, z, p_z, p_T) = 0 \text{ when } z > r_0$ $T_0 = 120 \text{ MeV}, z_0 = 2 \text{ fm} \qquad \text{t from t=0 to t=10fm}$

NEXT STEP

1) Spherical expansion — shell-like structure

Longitudinal-boost-invariant Transverse-rotational-symmetric Expansion

- 2) Collisions relaxation time approximation
- 3) Together with transport equation of sigma and pion

Mass Correction to SKT **Chiral Phase** LANR Irostonin Expanding System