



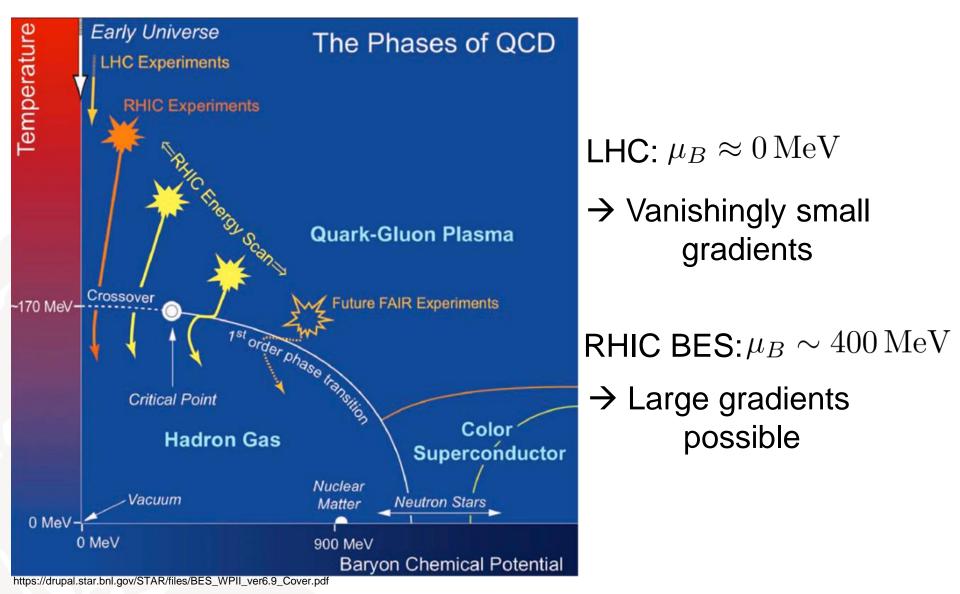
Moving Towards Investigations of Multi-Charge Diffusion in Heavy Ion Collisions

Presented by Jan Fotakis

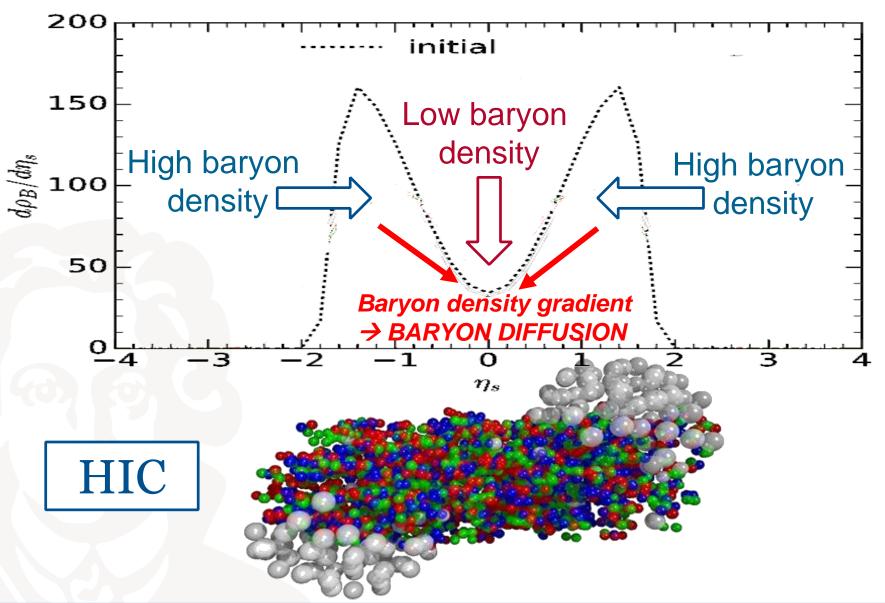
Collaborators Moritz Greif, Gabriel Denicol, Carsten Greiner and Harri Niemi

Greif, Fotakis, Denicol, Greiner, Phys. Rev. Lett. 120, 242301 (2018)

Why could diffusion be important?



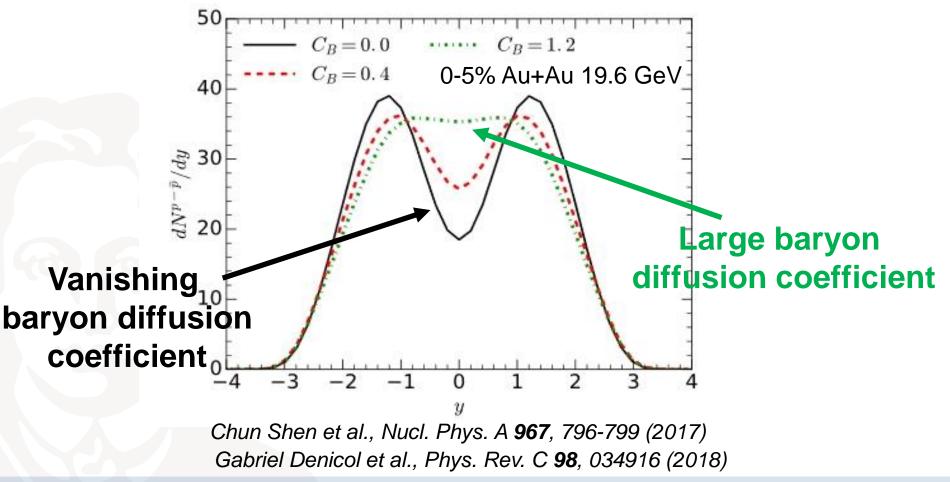
Why could diffusion be important?



GOETHE

Why could diffusion be important?

 During low-energy HIC (e.g. RHIC BES, FAIR): diffusion could have great impact on dynamic evolution



- Dynamic evolution of HIC modeled in relativistic dissipative fluid dynamics
- In Navier-Stokes theory for one conserved charge (q):

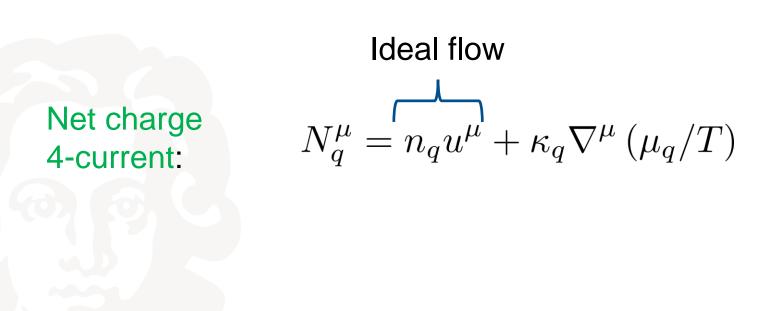
- Dynamic evolution of HIC modeled in relativistic dissipative fluid dynamics
- In Navier-Stokes theory for one conserved charge (q):

Net charge 4-current:

$$N_q^{\mu} = n_q u^{\mu} + \kappa_q \nabla^{\mu} \left(\mu_q / T \right)$$

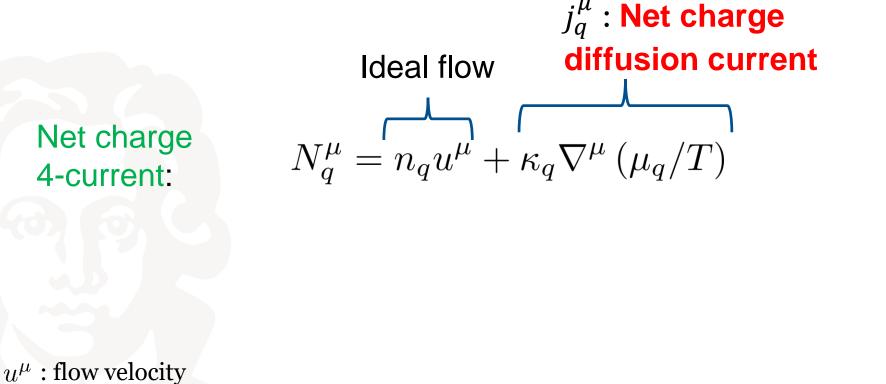
 u^{μ} : flow velocity n_q : net charge density

- Dynamic evolution of HIC modeled in relativistic dissipative fluid dynamics
- In Navier-Stokes theory for one conserved charge (q):



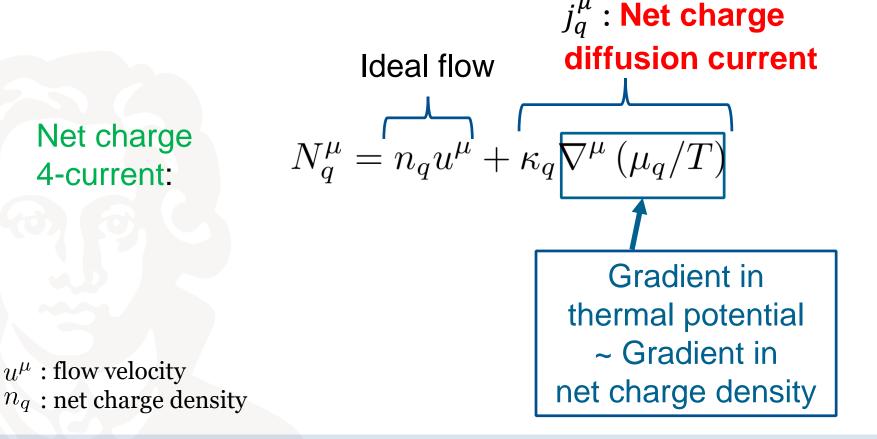
 u^{μ} : flow velocity n_q : net charge density

- Dynamic evolution of HIC modeled in relativistic dissipative fluid dynamics
- In Navier-Stokes theory for one conserved charge (q):

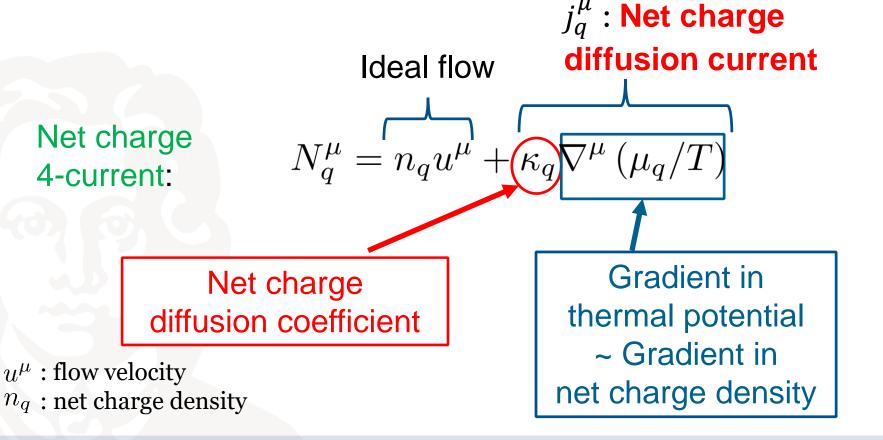


 n_q : net charge density

- Dynamic evolution of HIC modeled in relativistic dissipative fluid dynamics
- In Navier-Stokes theory for one conserved charge (q):



- Dynamic evolution of HIC modeled in relativistic dissipative fluid dynamics
- In Navier-Stokes theory for one conserved charge (q):



- In multi-component system with multiple conserved charges: particles can have any combination of charges (e.g. proton: electric and baryon charge)
- Net charge diffusion currents effect each other

- In multi-component system with multiple conserved charges: particles can have any combination of charges (e.g. proton: electric and baryon charge)
- Net charge diffusion currents effect each other

$$\begin{pmatrix} j^{\mu}_{B} \\ j^{\mu}_{Q} \\ j^{\mu}_{S} \end{pmatrix} = \begin{pmatrix} \kappa_{BB} & \kappa_{BQ} & \kappa_{BS} \\ \kappa_{QB} & \kappa_{QQ} & \kappa_{QS} \\ \kappa_{SB} & \kappa_{SQ} & \kappa_{SS} \end{pmatrix} \cdot \begin{pmatrix} \nabla^{\mu} \alpha_{B} \\ \nabla^{\mu} \alpha_{Q} \\ \nabla^{\mu} \alpha_{S} \end{pmatrix}$$

Off-diagonal coefficients: gradients of given charge can Are the offeffect diffusion currents of other charges diagonal coefficients

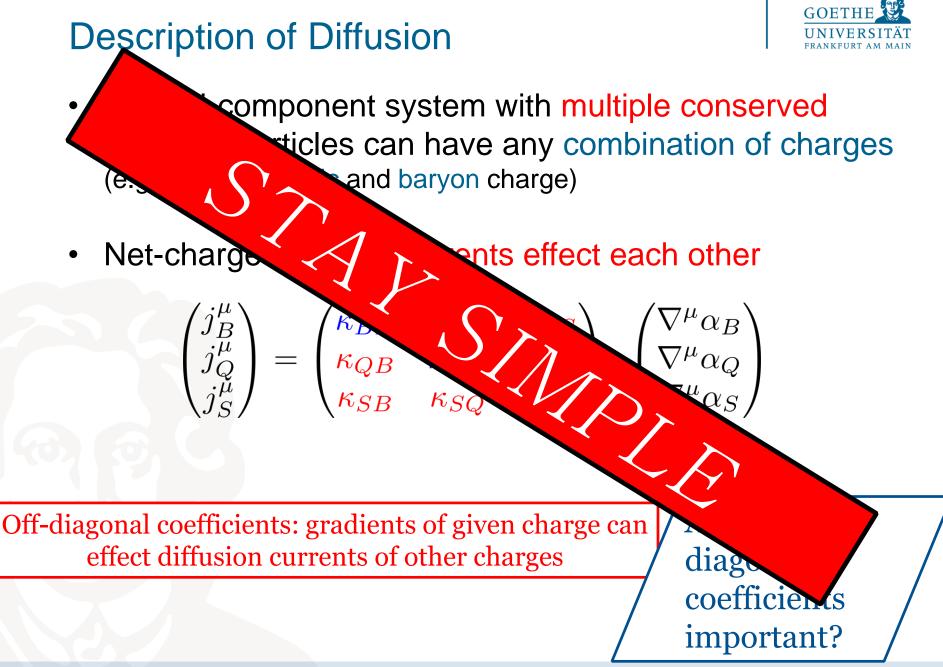
7. Februar 2019 Moving Towards Investigations of Multi-Charge Diffusion in Heavy Ion Collisions

Jan Fotakis

CRC-TR 211 Transport Meeting 2019 1

important?

12 of 58



Consider massless, conformal QGP $(u, \bar{u}, d, \bar{d}, s, \bar{s}, g)$ with conserved baryon (B) and strangeness (S) charge only

Consider massless, conformal QGP ($u, \bar{u}, d, d, s, \bar{s}, g$) with conserved baryon (B) and strangeness (S) charge only

Particle	Mass	В	S	Degeneracy
Gluon	0	0	0	16
Up	0	+1/3	0	6
Anti-Up	0	-1/3	0	6
Down	0	+1/3	0	6
Anti-Down	0	-1/3	0	6
Strange	0	+1/3	-1	6
Anti-Strange	0	-1/3	+1	6

Consider massless, conformal QGP $(u, \bar{u}, d, \bar{d}, s, \bar{s}, g)$ with conserved baryon (B) and strangeness (S) charge only

$$\epsilon_0 = 3P_0 = 3n_{\rm tot}T$$

$$n_{\rm B} \sim T^3 \left(2 \sinh\left(\frac{1}{3}\frac{\mu_B}{T}\right) + \sinh\left(\frac{1}{3}\frac{\mu_B}{T} - \frac{\mu_S}{T}\right) \right)$$
$$n_{\rm S} \sim -T^3 \sinh\left(\frac{1}{3}\frac{\mu_B}{T} - \frac{\mu_S}{T}\right)$$
$$n_{\rm tot} \sim T^3 \left(2 \cosh\left(\frac{1}{3}\frac{\mu_B}{T}\right) + \cosh\left(\frac{1}{3}\frac{\mu_B}{T} - \frac{\mu_S}{T}\right) \right)$$

Consider massless, conformal QGP ($u, \bar{u}, d, d, s, \bar{s}, g$) with conserved baryon (B) and strangeness (S) charge only

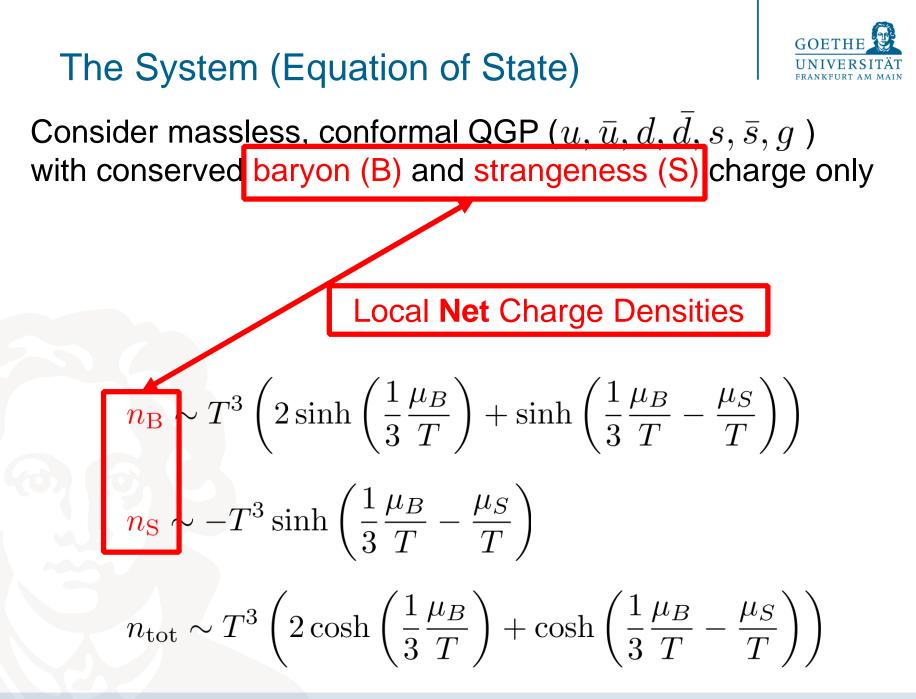
$$\epsilon_{0} = 3P_{0} = 3n_{\text{tot}}T$$

$$n_{\text{B}} \sim T^{3} \left(2 \sinh\left(\frac{1}{3}\frac{\mu_{B}}{T}\right) + \sinh\left(\frac{1}{3}\frac{\mu_{B}}{T} - \frac{\mu_{S}}{T}\right)\right)$$

$$\text{Local Total Number Density}$$

$$n_{\text{S}} \sim -T^{3} \sinh\left(\frac{1}{3}\frac{\mu_{B}}{T} - \frac{\mu_{S}}{T}\right)$$

$$n_{\text{tot}} \sim T^{3} \left(2 \cosh\left(\frac{1}{3}\frac{\mu_{B}}{T}\right) + \cosh\left(\frac{1}{3}\frac{\mu_{B}}{T} - \frac{\mu_{S}}{T}\right)\right)$$

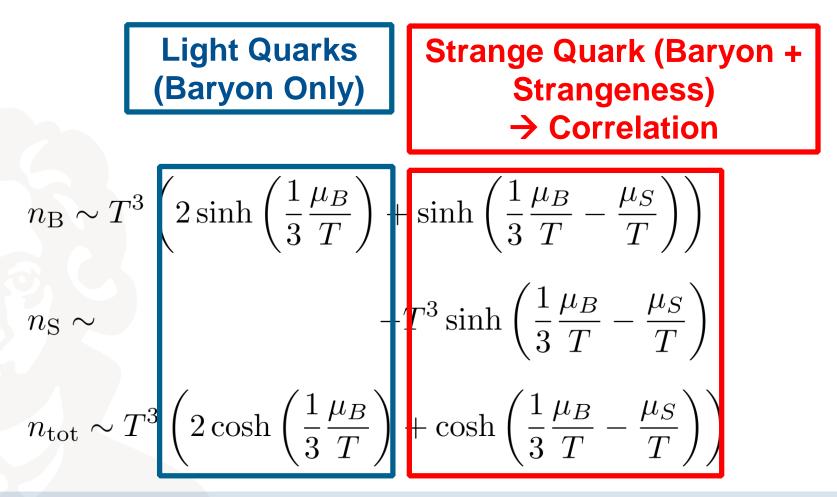


Consider massless, conformal QGP ($u, \bar{u}, d, d, s, \bar{s}, g$) with conserved baryon (B) and strangeness (S) charge only

Light Quarks (Baryon Only)

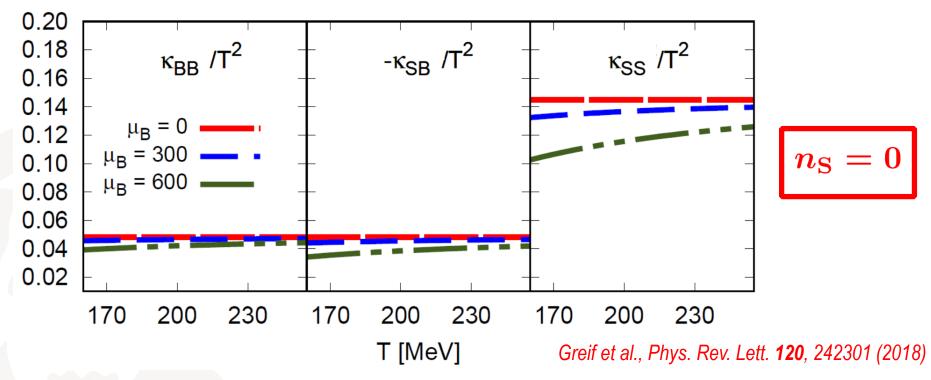
$$n_{\rm B} \sim T^3 \left(2 \sinh\left(\frac{1}{3}\frac{\mu_B}{T}\right) + \sinh\left(\frac{1}{3}\frac{\mu_B}{T} - \frac{\mu_S}{T}\right) \right)$$
$$n_{\rm S} \sim -T^3 \sinh\left(\frac{1}{3}\frac{\mu_B}{T} - \frac{\mu_S}{T}\right)$$
$$n_{\rm tot} \sim T^3 \left(2 \cosh\left(\frac{1}{3}\frac{\mu_B}{T}\right) + \cosh\left(\frac{1}{3}\frac{\mu_B}{T} - \frac{\mu_S}{T}\right) \right)$$

Consider massless, conformal QGP ($u, \bar{u}, d, d, s, \bar{s}, g$) with conserved baryon (B) and strangeness (S) charge only



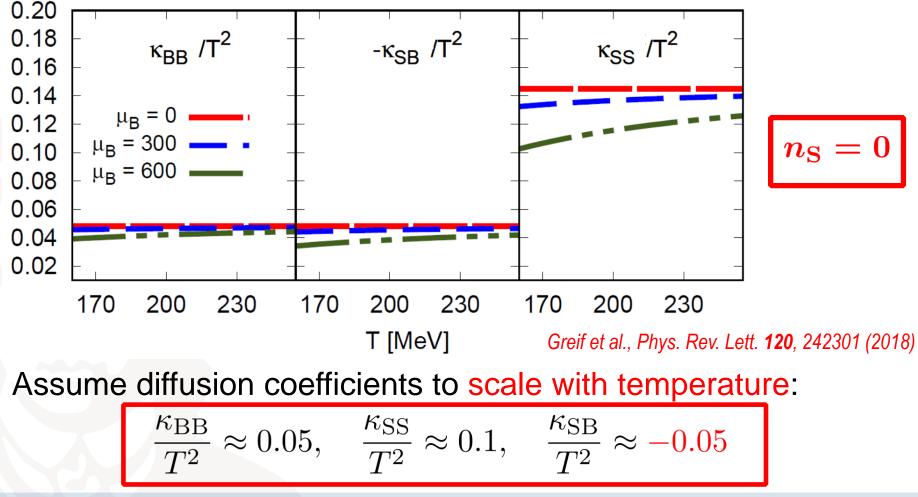
The System (Diffusion Coefficients)

Consider massless, conformal QGP ($u, \bar{u}, d, d, s, \bar{s}, g$) with conserved baryon (B) and strangeness (S) charge only



The System (Diffusion Coefficients)

Consider massless, conformal QGP ($u, \bar{u}, d, d, s, \bar{s}, g$) with conserved baryon (B) and strangeness (S) charge only



The System (Diffusion Coefficients)

Consider massless, conformal QGP ($u, \bar{u}, d, d, s, \bar{s}, g$) with conserved baryon (B) and strangeness (S) charge only

Assume diffusion coefficients to scale with temperature:

$$\frac{\kappa_{\rm BB}}{T^2} \approx 0.05, \quad \frac{\kappa_{\rm SS}}{T^2} \approx 0.1, \quad \frac{\kappa_{\rm SB}}{T^2} \approx -0.05$$

Strangeness and Baryon Diffusion Currents = Anti-Correlated

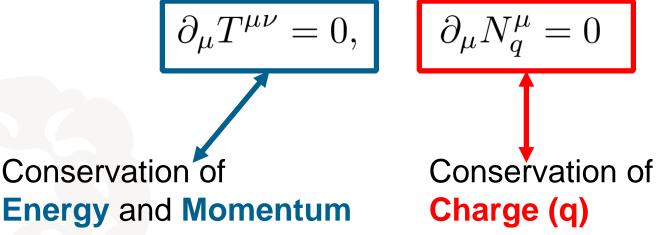
Is there Baryon-Strangeness (Anti-)Correlation in a dynamic setting? → Use Fluid Dynamics!

Greif et al., Phys. Rev. Lett. 120, 242301 (2018)

Assume system to be close to local equilibrium with multiple conserved charges → Apply Dissipative Relativistic Fluid Dynamics

Assume system to be close to local equilibrium with multiple conserved charges

→ Apply Dissipative Relativistic Fluid Dynamics



Assume system to be close to local equilibrium with multiple conserved charges

→ Apply Dissipative Relativistic Fluid Dynamics

$$\partial_{\mu}T^{\mu\nu} = 0, \qquad \partial_{\mu}N^{\mu}_{q} = 0$$

with

$$T^{\mu
u} = \epsilon_0 u^{\mu} u^{
u} - P_0 \left(g^{\mu
u} - u^{\mu} u^{
u} \right)$$
 Energy-Momentum Tensor

$$N_q^\mu = n_q u^\mu + j_q^\mu$$

Net Charge Flow

Assume system to be close to local equilibrium with multiple conserved charges

→ Apply Dissipative Relativistic Fluid Dynamics

$$\partial_{\mu}T^{\mu\nu} = 0, \qquad \partial_{\mu}N^{\mu}_{q} = 0$$

with

$$T^{\mu
u} = \epsilon_0 u^{\mu} u^{
u} - P_0 \left(g^{\mu
u} - u^{\mu} u^{
u}
ight)$$
 Energy-Momentum Tensor

$$N_q^{\mu} = n_q u^{\mu} + j_q^{\mu}$$
 Net Charge Flow
Net Charge Diffusion Current

Here: We do not consider any viscous corrections!

- Conservation of Energy-Momentum and Charge = exact!
- Extract dissipative currents from Boltzmann equation

Denicol et al., Phys.Rev. D85 (2012) 114047, Erratum: Phys.Rev. D91 (2015) no.3, 039902

- Conservation of Energy-Momentum and Charge = exact!
- Extract dissipative currents from Boltzmann equation

Denicol et al., Phys.Rev. **D85** (2012) 114047, Erratum: Phys.Rev. **D91** (2015) no.3, 039902

Source term of dissipative currents ~ Expansion in Knudsen Number and inverse Reynolds Number

 ${\rm Kn} \sim {\rm microscopic\ scale}\over {\rm macroscopic\ scale}}$, ${\rm Rn}^{-1} \sim {\rm dissipative\ field}\over {\rm equilibrium\ field}}$

- Conservation of Energy-Momentum and Charge = exact!
- Extract dissipative currents from Boltzmann equation

Denicol et al., Phys.Rev. **D85** (2012) 114047, Erratum: Phys.Rev. **D91** (2015) no.3, 039902

Source term of dissipative currents ~ Expansion in Knudsen Number and inverse Reynolds Number

 ${\rm Kn} \sim {{\rm microscopic\ scale}\over {\rm macroscopic\ scale}}$, ${\rm Rn}^{-1} \sim {{\rm dissipative\ field}\over {\rm equilibrium\ field}}$

Fluid Dynamics: close local equilibrium + mean free path smaller fluid cell

$$\Rightarrow$$
 Kn, Rn⁻¹ $\ll 1$

Impose transient equation of first order in Knudsen number for diffusion currents (neglect higher orders)

$$\begin{pmatrix} \tau_{\rm B} \frac{\mathrm{d}}{\mathrm{d}\tau} j_{\rm B}^{\langle\mu\rangle} + j_{\rm B}^{\mu} \\ \tau_{\rm S} \frac{\mathrm{d}}{\mathrm{d}\tau} j_{\rm S}^{\langle\mu\rangle} + j_{\rm S}^{\mu} \end{pmatrix} = \begin{pmatrix} \kappa_{\rm BB} & \kappa_{\rm SB} \\ & & \\ \kappa_{\rm SB} & \kappa_{\rm SS} \end{pmatrix} \begin{pmatrix} \nabla^{\mu} \alpha_{\rm B} \\ \nabla^{\mu} \alpha_{\rm S} \end{pmatrix} + \mathcal{O}(\mathrm{Kn}^2)$$

Impose transient equation of first order in Knudsen number for diffusion currents (neglect higher orders)

Impose transient equation of first order in Knudsen number for diffusion currents (neglect higher orders)

$$\begin{pmatrix} \tau_{\rm B} \frac{\mathrm{d}}{\mathrm{d}\tau} j_{\rm B}^{\langle \mu \rangle} + j_{\rm B}^{\mu} \\ \tau_{\rm S} \frac{\mathrm{d}}{\mathrm{d}\tau} j_{\rm S}^{\langle \mu \rangle} + j_{\rm S}^{\mu} \end{pmatrix} = \begin{pmatrix} \kappa_{\rm BB} & \kappa_{\rm SB} \\ \kappa_{\rm SB} & \kappa_{\rm SS} \end{pmatrix} \begin{pmatrix} \nabla^{\mu} \alpha_{\rm B} \\ \nabla^{\mu} \alpha_{\rm S} \end{pmatrix}$$

$$\mathbf{Relaxation Times} \qquad \mathbf{Navier-Stokes term}$$

Use vSHASTA solver to solve fluid dynamics numerically Molnar, Niemi, Rischke, Eur. Phys. J. C65, 615-635 (2010)

GOETHE UNIVERSITÄT FRANKFURT AM MAIN

The Setup

- (1+1)-hydrodynamic evolution in longitudinal setup
- In hyperbolic coordinates (proper time $\tau \equiv \sqrt{t^2 - z^2}$ and spacetime rapidity $\eta_s = \operatorname{arctanh}(z/t)$)

GOETHE UNIVERSITÄT FRANKFURT AM MAIN

The Setup

- (1+1)-hydrodynamic evolution in longitudinal setup
- In hyperbolic coordinates (proper time $\tau \equiv \sqrt{t^2 - z^2}$ and spacetime rapidity $\eta_s = \operatorname{arctanh}(z/t)$)
- Probe purely diffusive case!

The Setup

- (1+1)-hydrodynamic evolution in longitudinal setup
- In hyperbolic coordinates (proper time $\tau \equiv \sqrt{t^2 - z^2}$ and spacetime rapidity $\eta_s = \operatorname{arctanh}(z/t)$)
- Probe purely diffusive case!
 - Constant initial energy density (here 30 GeV/fm^3)

The Setup

- (1+1)-hydrodynamic evolution in longitudinal setup
- In hyperbolic coordinates (proper time $\tau \equiv \sqrt{t^2 - z^2}$ and spacetime rapidity $\eta_s = \operatorname{arctanh}(z/t)$)
- Probe purely diffusive case!
 - Constant initial energy density (here 30 GeV/fm^3)
 - Spatially varying initial net charge densities (here: Double-Gaussian profile in net baryon density and vanishing initial net strangeness density)

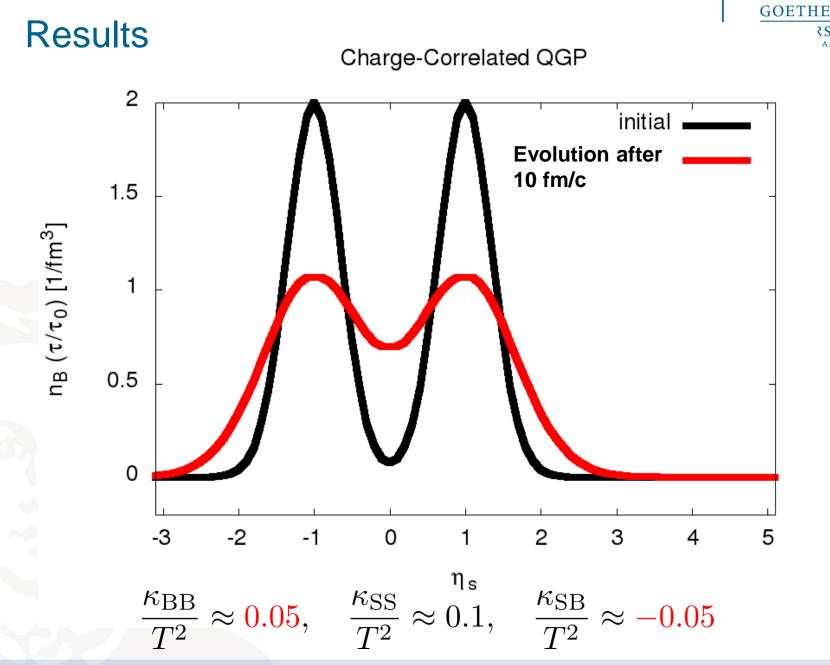
The Setup

- (1+1)-hydrodynamic evolution in longitudinal setup
- In hyperbolic coordinates (proper time $\tau \equiv \sqrt{t^2 - z^2}$ and spacetime rapidity $\eta_s = \operatorname{arctanh}(z/t)$)
- Probe purely diffusive case!
 - Constant initial energy density (here 30 GeV/fm^3)
 - Spatially varying initial net charge densities (here: Double-Gaussian profile in net baryon density and vanishing initial net strangeness density)
 - No initial flow

The Setup

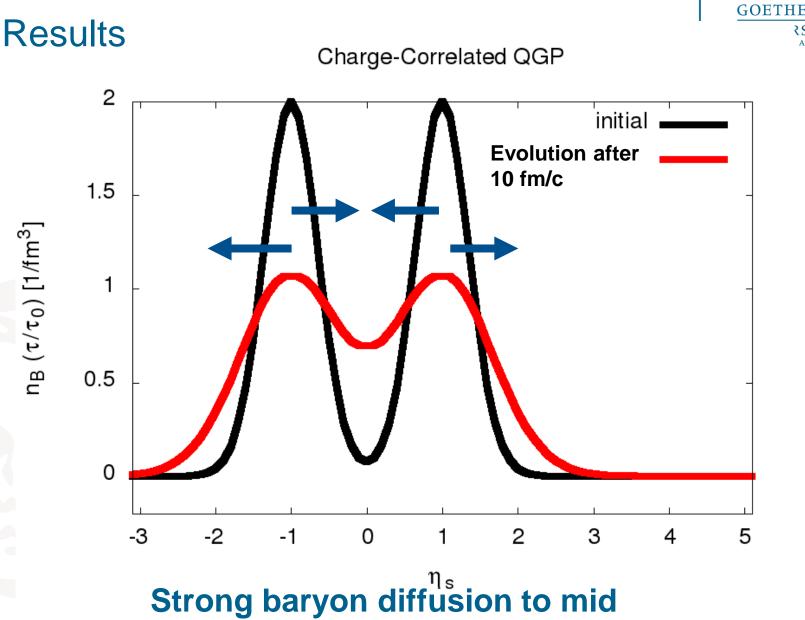
- (1+1)-hydrodynamic evolution in longitudinal setup
- In hyperbolic coordinates (proper time $\tau \equiv \sqrt{t^2 - z^2}$ and spacetime rapidity $\eta_s = \operatorname{arctanh}(z/t)$)
- Probe purely diffusive case!
 - Constant initial energy density (here 30 GeV/fm^3)
 - Spatially varying initial net charge densities (here: Double-Gaussian profile in net baryon density and vanishing initial net strangeness density)
 - No initial flow

 \rightarrow Fluid velocity is always zero during the evolution



7. Februar 2019 Moving Towards Investigations of Multi-Charge Diffusion in Heavy Ion Collisions

AM MAIN

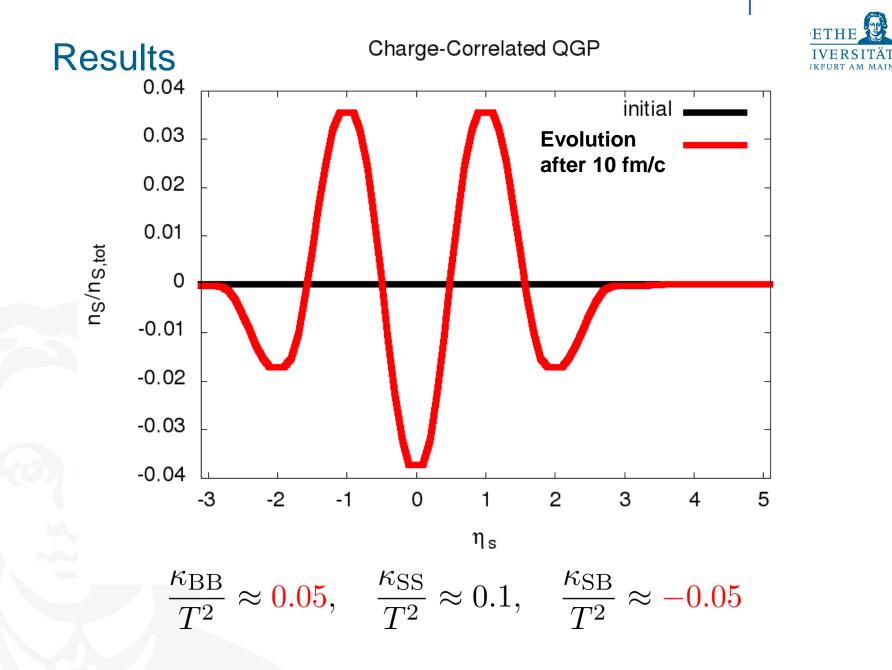


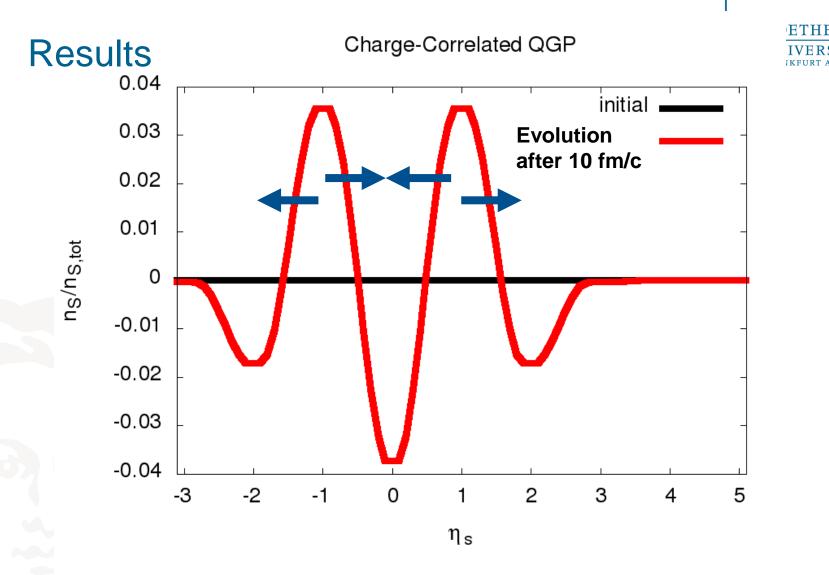
and outward spacetime rapidities

7. Februar 2019 Moving Towards Investigations of Multi-Charge Diffusion in Heavy Ion Collisions

Jan Fotakis

AM MAIN



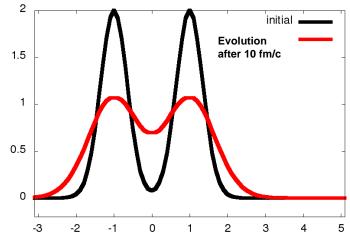


There is induced strangeness separation through Baryon-Strangeness anti-correlation!?!

7. Februar 2019 Moving Towards Investigations of Multi-Charge Diffusion in Heavy Ion Collisions

Jan Fotakis CRC-TR 211 Transport Meeting 2019 43 of 58

n_B (τ/τ_0) [1/fm³]



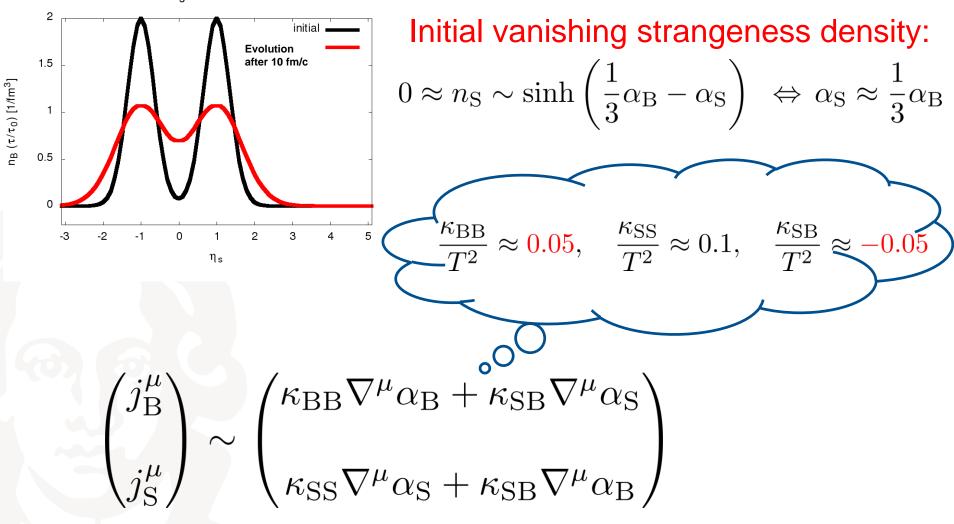
Charge-Correlated QGP

Initial vanishing strangeness density:

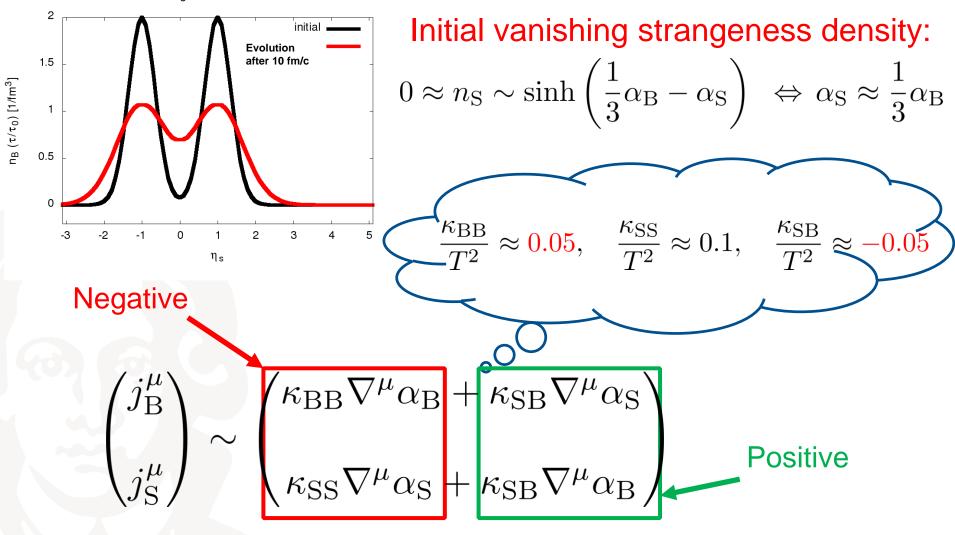
$$0 \approx n_{\rm S} \sim \sinh\left(\frac{1}{3}\alpha_{\rm B} - \alpha_{\rm S}\right) \iff \alpha_{\rm S} \approx \frac{1}{3}\alpha_{\rm B}$$

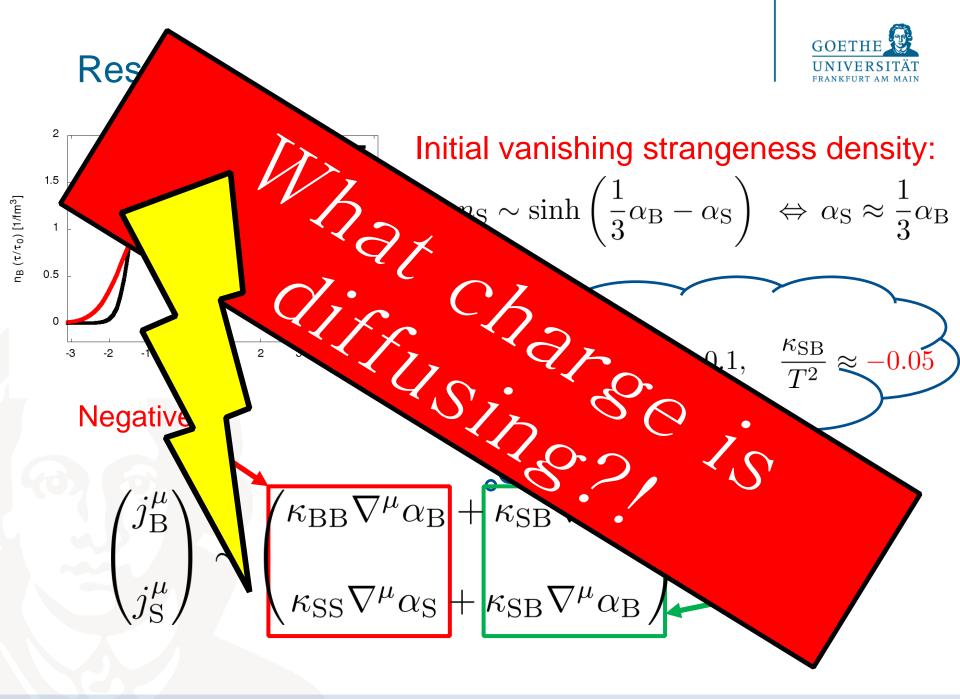
 η_{s}

Charge-Correlated QGP



Charge-Correlated QGP



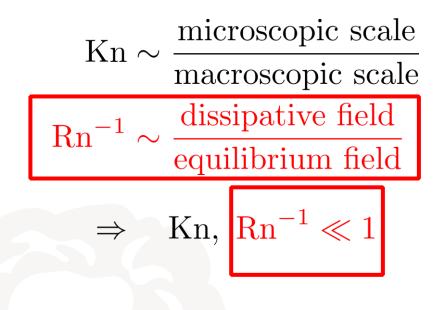


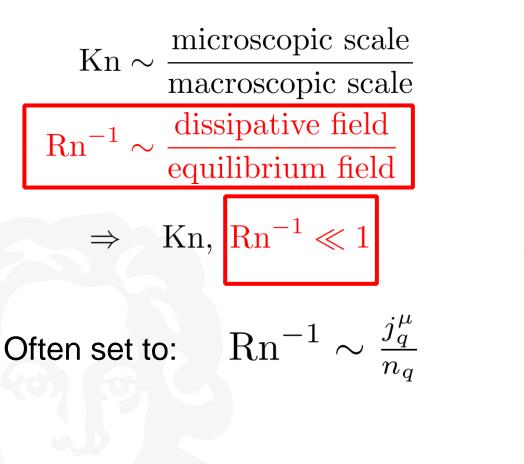
- Initially vanishing net strangeness density → as many s-quarks as anti-s-quarks everywhere!
- Current of light quarks carrying baryon charge towards mid rapidities and outwards

- Initially vanishing net strangeness density → as many s-quarks as anti-s-quarks everywhere!
- Current of light quarks carrying baryon charge towards mid rapidities and outwards
- Microscopically: qq- and qq̄-vertices equal → no reason orientated current of light quarks should carry away more s-quarks than anti-s-quarks

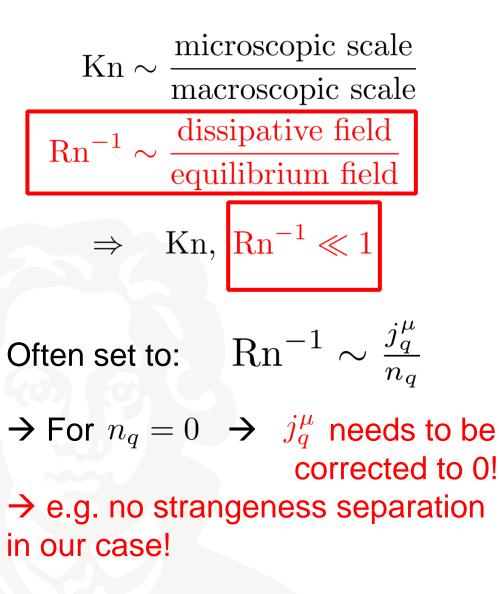
- Initially vanishing net strangeness density → as many s-quarks as anti-s-quarks everywhere!
- Current of light quarks carrying baryon charge towards mid rapidities and outwards
- Microscopically: qq- and qq̄-vertices equal → no reason orientated current of light quarks should carry away more s-quarks than anti-s-quarks

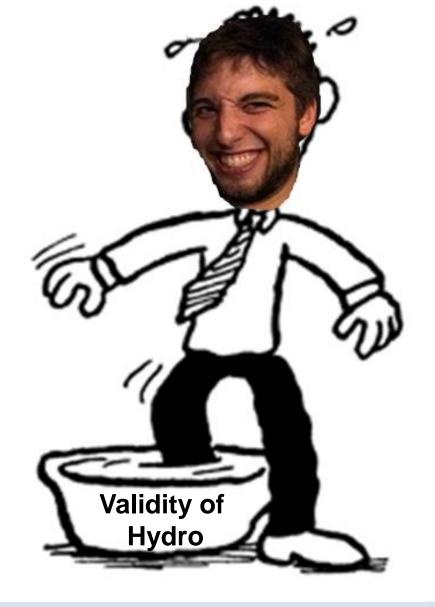
→ Expectation: no induced strangeness separation in this case!





My View on the Problem





My View on the Problem

However several problems:

1. The choice of Reynolds number is ambiguous $\operatorname{Rn}^{-1} \sim \frac{j_q^{\mu}}{n_{q,\text{tot}}}$??

My View on the Problem

However several problems:

- 1. The choice of Reynolds number is ambiguous $\operatorname{Rn}^{-1} \sim \frac{j_q^{\mu}}{n_{q,\text{tot}}}$??
- 2. No natural way of limiting the diffusion current!
- → Is hydro the appropriate model to use to do the investigations in the case of HIC (low density regions in strangeness)?!?

Validity of

Hydro

Conclusion

- First investigations of the (fluid) dynamic effects of the diffusion matrix
- Diffusive evolution of a massless, conformal QGP with conserved baryon number and strangeness and constant diffusion coefficients was examined in a dissipative fluid dynamic framework without viscous corrections

Conclusion

- First investigations of the (fluid) dynamic effects of the diffusion matrix
- Diffusive evolution of a massless, conformal QGP with conserved baryon number and strangeness and constant diffusion coefficients was examined in a dissipative fluid dynamic framework without viscous corrections

- We found signals of strong baryon diffusion and separation of strangeness
- Baryon diffusion could be important in describing the evolution of heavy ion collisions at low collisional energies
- More realistic investigations are needed
- However: hydro does seems to lead to misleading results

Outlook

- Compare to kinetic models: SMASH? BAMPS?
- Improve investigations with dissipative hydro:
 - Use more realistic initial state with fluctuating strangeness
 - Allow viscous corrections in evolution
 - Include higher-order terms in source term in diffusion equations
 - Use more realistic equation of state (IQCD+HRG)
 - Include freeze-out stage in order to compare to experiments
- Extend investigations to (3+1)-fluid dynamics
 - Initial state correlations (flow harmonics?)