Equation of state and sound velocity of hadronic gas with hard-core interaction

Leonid Satarov

with Kyrill Bugaev & Igor Mishustin

Frankfurt Institute for Advanced Studies, Frankfurt am Main Kurchatov Institute, Moscow and BITP, Kiev

Recent results -> arXiv:1411.0959

BITP Kiev

Contents

Introduction

hard sphere interaction

- Virial expansion for Boltzmann gas with HSI
- Analytical approximations for compressibility: van-der-Waals (EVM) vs Carnahan-Starling (CSA)
- e EoS of nucleonic (N) and pionic (π) matter

 $(P,\varepsilon,s,c_V,c_s\ldots)$

- Hadronic mixtures: N+Δ, N+Δ+π ($R_{\pi}=R_{B}$, $R_{\pi}\approx0$)
- Inclusion of heavier hadrons (B+Bbar+M)
- Conclusions

Equation of state in excluded volume approach

Van-der-Waals (1910): $V \rightarrow V - Nb$ in the ideal gas EoS

hard-sphere particles with radius R: excluded volume per particle $b = \frac{1}{2} \times \frac{4\pi}{3} (2R)^3 = 4v$ ($v = 4\pi R^3/3$ - single particle proper volume) In the Boltzmann approximation partition function $\mathcal{Z}(T, V, N) \simeq \mathcal{Z}_{id}(T, V - bN, N) = \frac{\phi^N(T)}{N!}(V - Nb)^N$ ideal gas density at zero chem. pot. $\phi(T) = \frac{g}{(2\pi)^3} \int d^3p \, e^{-\sqrt{m^2 + p^2}/T} = \frac{g m^2 T}{2\pi^2} K_2\left(\frac{m}{T}\right)$ $\implies \text{ pressure } P = T \frac{\partial}{\partial V} \ln \mathcal{Z}(T, V, N) = \frac{NT}{V - Nb} = \frac{nT}{1 - 4n} \qquad (\eta < 0.25)$

n = N/V - number density $\eta = nv$ - packing fraction

this EoS is not applicable at $\eta \gtrsim 0.2$

Excluded volume model in grand canonical variables (µ,T)

Van-der-Waals (canonical ensemble): shift $n \rightarrow n(1-bn)^{-1}$ in the ideal gas EoS Cleymans et al. (1983), Rischke et al. (1991) (equivalent grand canonical formulation): shift of chemical potentials $\mu_i \rightarrow \mu_i - bP$ due to hard sphere interactions (HSI)

 $P = \sum_{i} P_{i}^{id}(\mu_{i} - bP, T) \text{ where } P_{i}^{id}(\mu_{i}, T) \text{ - ideal gas pressure of i-th particles}$

In the Boltzmann approximation: $P_i^{id}(\mu_i, T) = T\phi_i(T)e^{\mu_i/T}$

$$\implies n_i = \frac{\partial P}{\partial \mu_i} = \frac{\phi_i(T) e^{(\mu_i - bP)/T}}{1 + bP/T} \implies n = \sum_i n_i = \frac{P}{T + bP} \implies Z \equiv \frac{P}{nT} = \frac{1}{1 - bn}$$

For chemically equilibrated system of hadrons: $\mu_i = B_i \mu_B + S_i \mu_S$ where $B_i = 0, \pm 1$ - baryon charge, $S_i = 0, \pm 1, \pm 2, \pm 3$ - strangeness of i-th hadron At given μ_B (baryon chem. potential) one can determine μ_S (strange chem. potential) from the condition of strangeness neutrality $\sum S_i n_i = 0 \rightarrow P = P(\mu_B, T)$

this approach is satisfactory only at $bn \ll 1$ (strong overestimation of repulsion effects, superluminal sound velocities at $n \sim b^{-1}$)

Phase diagram of strongly interacting matter

Sensitivity to hadron sizes: Satarov, Dmitriev, Mishustin, Phys. Atom. Nucl. 72 (2009) Gibbs condition for mixed phase (MP) $P_H(\mu_B, \mu_S, T) = P_Q(\mu_B, \mu_S, T)$ P_H is calculated in EVM, P_Q in MIT bag model, μ_S from (global) strangeness neutrality

unrealistic phase diagram at $b \rightarrow 0$

all known hadrons with masses below 2 GeV are taken into account

the same radius R is assumed for all hadrons ($b = 1 \text{ fm}^3$ corresponds to $R \simeq 0.39 \text{ fm}$)

MIT bag parameters:

 $B^{1/4} = 227 \text{ MeV}, m_s = 150 \text{ MeV}$

MP: thin strip instead of critical line in μ_B -T plane due to presence of μ_S

(in this case $P_H\,$ increases with T faster than $P_Q\,$)

Virial expansion for one-component Boltzmann gas

change of free energy F due to interaction (β =1/T): $e^{\beta(F_{id}-F)} = V^{-N} \int d^3r_1 \dots d^3r_N \exp\left(-\beta \sum_{i=1}^{N} u_{ij}\right)$ $\exp\left(-\beta \sum_{i < j} u_{ij}\right) = \prod_{i < j} (1 - f_{ij}) \quad \text{Mayer function:} \quad f_{ij} = 1 - e^{-\beta u(r_{ij})} \xrightarrow{}_{\text{HSI}} \Theta(2R - r_{ij}) \quad \text{(no energy scale in HSI)}$ virial expansion of EoS (H.K. Onnes, 1901) compressibility function: $Z \equiv \frac{P}{P_{id}} = 1 + \sum_{i=1}^{\infty} B_{i+1}(T) n^i$ $(P_{id} = nT)$ virial coefficients: HSI: $B_i(T) = \text{const} \propto v^{i-1} \rightarrow Z = Z(\eta), \ \eta = nv$ $B_2 = \frac{1}{2V} \int d^3r_1 d^3r_2 f_{12} \xrightarrow{\to} b = 4v$ - contribution of binary interactions $(v = 4\pi R^3/3)$ $B_3 = \frac{1}{3V} \int d^3r_1 d^3r_2 d^3r_3 f_{12} f_{23} f_{31} \xrightarrow{\rightarrow} 10v^2 \quad \text{- contribution of three particle interactions}$ only first two terms are Monte Carlo calculation for HSI (van Rensburg, 1993): correctly reproduced $Z = 1 + 4\eta + 10\eta^2 + 18.36\eta^3 + 28.23\eta^4 + 39.74\eta^5 + 53.5\eta^6 + 70.8\eta^7 + \dots$ in the EVM: $Z=1/(1-4\eta)$ <u>⊿</u> 4 10 18 28 40 54 70 red numbers - coefficients in the Carnahan-Starling approximation (CSA): J. Chem. Phys. 51 (1969) 635, decomposed in powers of η this expansion works well at $\eta \lesssim 0.5$ 6

Analytic approximations for pressure of Boltzmann gas with HSI

Excluded volume model (EVM)

$$Z = (1 - 4\eta)^{-1}$$

Carnahan-Starling approximation (CSA)

$$Z = \frac{1 + \eta + \eta^2 - \eta^3}{(1 - \eta)^3}$$

at $\eta \ll 1 \longrightarrow Z_{CSA} \simeq Z_{EVM} \simeq 1 + 4\eta$

liquid phase: $0 < \eta < 0.49$ mixed phase: $0.49 < \eta < 0.55$ solid phase: $0.55 < \eta < 0.74$

CSA predicts softer EoS as compared to EVM at $\eta \gtrsim 0.1$ CSA agrees well with numerical calculation at $\eta \lesssim 0.5$

$$\begin{array}{ll} \text{One-component ideal gas in the Boltzmann approximation} \\ e^{-F_{id}/T} = \mathcal{Z}_{id}(T,V,N) = \frac{\phi^N(T)V^N}{N!}, \quad \phi(T) = \frac{gm^2T}{2\pi^2}K_2(x), \quad x \equiv \frac{m}{T} \\ \text{free energy density} \quad f_{id} = \frac{F_{id}}{V} = -\frac{T}{V}\ln\mathcal{Z}_{id} = nT\left[\ln\frac{n}{\phi(T)} - 1\right] \qquad (N \gg 1) \\ \text{chemical potential} \quad \mu_{id} = \left(\frac{\partial f_{id}}{\partial n}\right)_T = T\ln\frac{n}{\phi(T)} \quad \rightarrow \quad n = \phi(T)e^{\mu_{id}/T} \\ \text{pressure} \quad P_{id} = \mu_{id}n - f_{id} = nT \\ \text{entropy density} \quad s_{id} = -\left(\frac{\partial f_{id}}{\partial T}\right)_n = n\left(\ln\frac{\phi(T)}{n} + \xi(T)\right), \quad \xi(T) \equiv T\frac{\phi'(T)}{\phi(T)} + 1 = x\frac{K_3(x)}{K_2(x)} \\ \text{energy density} \quad \varepsilon_{id} = f_{id} + Ts_{id} = nT\left[\xi(T) - 1\right] \\ \text{isochoric heat capacity} \quad C_V = \left(\frac{\partial \varepsilon_{id}}{\partial T}\right)_n = n\left[x^2 + 3\xi - (\xi - 1)^2\right] \equiv n\widetilde{C}(T) \end{array}$$

ightarrow ideal Boltzmann gas: energy (arepsilon/n) and heat capacity (C_V/n) per particle depend only on T

Sound velocity of ideal classic gas

Adiabatic sound velocity squared
$$c_s^2 = \left(\frac{\partial P}{\partial \varepsilon}\right)_{\sigma}$$
 the derivative is taken along the Poisson adiabat $\sigma = s/n = \text{const}$
in general case $c_s^2 = \frac{(\partial P/\partial n)_T + (\partial P/\partial T)_n (\partial T/\partial n)_\sigma}{(\partial \varepsilon/\partial n)_T + (\partial \varepsilon/\partial T)_n (\partial T/\partial n)_\sigma}$

slope of Poisson adiabat for an ideal gas
$$\left(\frac{\partial T}{\partial n}\right)_{\sigma} = \frac{T}{n\widetilde{C}(T)} \implies c_s^{id} = \sqrt{\xi^{-1}\left(1 + \widetilde{C}^{-1}\right)}$$

nonrelativistic limit (x=m/T>>1):

$$\xi \simeq x + \frac{5}{2} + \frac{15}{8x} + \dots, \quad \tilde{C} \simeq \frac{3}{2} + \frac{15}{4x} - \frac{15}{2x^2} + \dots \to \quad c_s^{id} \simeq \sqrt{\frac{5T}{3m}}$$

ultrarelativistic case (x<<1): (more appropriate for pions)

$$\xi \simeq 4 + \frac{x^2}{2} + \dots, \quad \widetilde{C} \simeq 3 - \frac{x^2}{2} + \dots \rightarrow c_s^{id} \simeq 1/\sqrt{3} \simeq 0.577$$

 c_s^{id} - monotonously increasing function of T with asymptotic value $1/\sqrt{3}$

Chemical potential of one-component matter with HSI

$$d\mu = \frac{1}{n}(dP - sdT) \rightarrow \Delta\mu(T, n) \equiv \mu - \mu_{id} = \int_{0}^{n} \frac{dn_{1}}{n_{1}} \frac{\partial\Delta P(T, n_{1})}{\partial n_{1}} = \frac{T\psi(n)}{\partial n_{1}}$$

thermodynamic consistency

$$\Delta P = nT(Z-1) \rightarrow \psi(n) = Z(n) - 1 + \int_{0}^{\infty} \frac{dn_1}{n_1} \left[Z(n_1) - 1 \right] \quad \text{A. Mulero et al. (1999)}$$

n

 $\implies \mu = T \left[\ln \frac{n}{\phi(T)} + \psi(n) \right]$ - equation for n(T, μ): transition to grand canonical ensemble Equivalent form of this equation: $n = e^{-\psi(n)} \phi(T) e^{\mu/T}$ $(n < n_{id})$

Excluded volume model
$$\left(Z = \frac{1}{1 - bn}\right)$$

 $\rightarrow \mu = T \left[\ln \frac{P}{T\phi(T)} + bP \right]$ is equivalent to $P = P_{id}(T, \mu - bP)$

these relations are not valid in CSA

Shift of chemical potential for non-ideal Boltzmann gas

 $egin{aligned} \mu &= \mu_{\,id}\,(n,T) + \Delta\mu\ \Delta\mu &= T\psi(n) \end{aligned}$

similar to mean field with $U = T\psi(n) \propto T$

$$\mu_{id} = T \ln \frac{n}{\phi(T)}$$
$$\psi_{EVM} = \frac{4\eta}{1 - 4\eta} + \ln \frac{1}{1 - 4\eta}$$
$$\psi_{CSA} = \frac{3 - \eta}{(1 - \eta)^3} - 3$$

 $\stackrel{\rightarrow}{\rightarrow}$

for both approximations $\ \Delta\mu\simeq 8\eta T \ {
m at} \ \eta\lesssim 0.1$

at given T,n deviation of chem. potential from the ideal gas value is larger in EVM

Chemical potential of nucleonic matter

at fixed T,µ: $n_{EVM} < n_{CSA} < n_{id}$, $P_{EVM} < P_{CSA} < P_{id}$ this follows from $\psi_{EVM}(n) > \psi_{CSA}(n)$

Thermodynamic functions of nucleonic matter

$$\begin{split} \Delta f &= n \Delta \mu - \Delta P \quad \rightarrow \quad f = nT \Big\{ \ln \frac{n}{\phi(T)} - 1 + \int_{0}^{n} \frac{dn_{1}}{n_{1}} \left[Z(n_{1}) - 1 \right] \Big\} \qquad \begin{array}{l} \text{free energy} \\ \text{density} \\ s &= -\left(\frac{\partial f}{\partial T} \right)_{n} = n \Big\{ \ln \frac{\phi(T)}{n} + \xi(T) - \int_{0}^{n} \frac{dn_{1}}{n_{1}} \left[Z(n_{1}) - 1 \right] \Big\}, \quad \xi(T) = x \frac{K_{3}(x)}{K_{2}(x)} \quad (x = m/T) \\ \text{energy density} \quad \varepsilon = f + Ts = nT \left[\xi(T) - 1 \right] = \varepsilon_{id}(T, n) \quad \rightarrow \quad \begin{array}{l} \text{energy per particle } \varepsilon/n = F(T) \\ \text{is not changed by HSI } ! \\ \text{heat capacity} \quad C_{V} &= (\partial \varepsilon / \partial T)_{n} = C_{V}^{id}(n, T) = n \widetilde{C}(T) \\ \text{slope of Poisson adiabat} \quad n (\partial T / \partial n)_{\sigma} = Z(n) T \widetilde{C}^{-1}(T) \quad \text{increases with density} \quad (\sigma = s/n) \end{split}$$

at large enough densities (Z>>1): $c_s>1$

Sound velocity of nucleonic matter

→ strong sensitivity to nucleon size (R = 0.31 fm → b = 4v = 0.5 fm³, R = 0.39 fm → b = 1 fm³)
 → superluminal sound velocity at $n \gtrsim b^{-1}$ in CSA (and even earlier in EVM)

EoS of pion matter with HSI

inelastic scattering and resonance decays:
$$N_{\pi}=N_{\pi}(T)\neq const$$

condition of chemical equilibrium $\mu_{\pi} = T \left[ln \frac{n_{\pi}}{\phi_{\pi}(T)} + \psi(n_{\pi}) \right] = 0$
 $m_{\pi} = 140 \text{ MeV}, g_{\pi} = 3$
 $m_{\pi} = \phi_{\pi}(T) e^{-\psi(n_{\pi})}$ - equation for equilibrium pion density $n_{\pi} = n_{\pi}(T) < \phi_{\pi}(T)$
Using further $P_{\pi} = n_{\pi}TZ(n_{\pi})$ we get $s_{\pi} = dP_{\pi}/dT = n_{\pi}(Z + \xi_{\pi} - 1) \rightarrow$
Pion energy density $\varepsilon_{\pi} = Ts_{\pi} - P_{\pi} = n_{\pi}T [\xi_{\pi}(T) - 1] = \varepsilon_{\pi}^{id}(T, n_{\pi})$
Sound velocity $c_{s} = \sqrt{dP_{\pi}/d\varepsilon_{\pi}} = \sqrt{(Z + \xi_{\pi} - 1)/\widetilde{C}_{\pi}} \xrightarrow{\rightarrow} c_{s}^{id} = (3 + x_{\pi}^{2}/\xi_{\pi})^{-1/2}$
 $where \widetilde{C}_{\pi} = n_{\pi}^{-1}d\varepsilon_{\pi}/dT = x_{\pi}^{2} + 3\xi_{\pi} + (\xi_{\pi} - 1)^{2} [1/(n_{\pi}Z)' - 1]$

Problems to be considered:

1) significance of quantum effects? $\lambda_{\pi} \sim \hbar/\sqrt{m_{\pi}T} \gtrsim 2R_{\pi}$ for realistic T and R_{π}

2) strong isospin dependence of ππ interaction: attractive (I=0) and repulsive (I=2) channels nearly cancel each other (Gorenstein et al., 2000)
 3) Lorentz contraction of relativistic pions in lab frame (Bugaev et al., 2008)

Density and sound velocity of pion gas

strong sensitivity of n_{π} and c_s to pion size

significant differences between the EVM and CSA results only at $T\gtrsim400~{
m MeV}$

Multi-component Boltzmann gas with HSI

Virial expansion
$$P = P(T, n_1, n_2...) = P_{id} \cdot \left(1 + \sum_{i,j} b_{ij} x_i x_j + ...\right)$$

 $P_{id} = nT, \quad n = \sum_i n_i, \quad x_i = \frac{n_i}{n}, \quad b_{ij} = \frac{2\pi n}{3} (R_i + R_j)^3$

higher order terms $\sum b_{ijk} x_i x_j x_k + \dots$

are not known

$$\rightarrow$$

old results if radii are the same (R_i=R for all i)

 2^{nd} term $\rightarrow 4\eta$ =4nv

Shift of free energy density
$$\Delta f = f - f_{id} = \int_{0}^{1} \frac{d\alpha}{\alpha^2} \Delta P(T, \alpha n_1, \alpha n_2...)$$

$$\Delta \mu_i = \frac{\partial \Delta f}{\partial n_i}, \quad \Delta s = -\frac{\partial \Delta f}{\partial T}, \quad \Delta \varepsilon = \Delta f + T \Delta s$$

n '

Two-component mixture with $R_2 << R_1$

Important limiting case: large difference in particle sizes particles of second component (i=2) can be considered as point-like, but in the reduced volume $V_{red}=V-N_1v_1$

$$\implies P(T, n_1, n_2) = Tn_1 Z(n_1) + \underbrace{\binom{n_2 T}{1 - \eta_1}} (\eta_1 \equiv n_1 v_1)$$

Partial pressure of 2nd component is determined by 'local' density $N_2/V_{red} > n_2 = N_2/V$

$$\Delta f = T \left\{ n_1 \int_0^{n_1} \frac{dn}{n} [Z(n) - 1] + n_2 \ln \frac{1}{1 - \eta_1} \right\}$$

$$\Delta \mu_1 = \frac{\partial \Delta f}{\partial n_1} = T \left[\psi(n_1) + \frac{n_2 v_1}{1 - \eta_1} \right] = T \psi(n_1) + P_2 v_1$$

Additional energy for creating a cavity with volume v_1 inside a gas of particles i=2 This term exists even at small n_1 !

N+∆ matter

 $m_{\Delta} = 1232 \text{ MeV}, \ g_{\Delta} = 16$ $\Gamma_{\Delta} \rightarrow 0$

assuming $R_N = R_\Delta \equiv R \rightarrow P = n_B T Z(n_B)$ (conserved) baryon density $n_B = n_N + n_\Delta$ similarly to one-component matter: $\mu_i = T \left[\ln \frac{n_i}{\phi_i(T)} + \psi(n_B) \right]$ $(i = N, \Delta)$ From the condition of chemical equilibrium $\mu_N = \mu_\Delta = \mu_B$ \implies baryon chemical potential $\mu_B = T \left[\ln \frac{n_B}{\phi_N + \phi_\Delta} + \psi(n_B) \right]$ (alitsky & Mishustin, 1979) relative concentration of Δ -isobars: $n_\Delta/n_B = w_\Delta(T) \equiv \phi_\Delta(\phi_N + \phi_\Delta)^{-1} = 1 - w_N(T)$ increases with T

$$\varepsilon = n_B T \langle \xi - 1 \rangle$$

$$C_V / n_B = \langle x^2 + 3\xi \rangle - \langle \xi - 1 \rangle^2 \equiv \widetilde{C}(T)$$

where $\langle A \rangle \equiv A_N w_N + A_\Delta w_\Delta$

General formula for sound velocity

For arbitrary thermodynamically equilibrium matter at fixed n_B and T

$$c_s^2 = \frac{1}{\varepsilon + P} \left[n_B \left(\frac{\partial P}{\partial n_B} \right)_T + \frac{T}{C_V} \left(\frac{\partial P}{\partial T} \right)_{n_B}^2 \right] \qquad \text{one should know } \varepsilon, P \\ \text{as functions of } n_B, T \\ \sigma = s/n_B$$

can be derived by using thermodynamic identity $(\partial T/\partial n_B)_{\sigma} = T(\partial P/\partial T)_{n_B}(n_B C_V)^{-1}$

Rosenfeld (1998): analogous relation for one-component matter with nonrelativistic particles

The above expression:

- is applicable for any form of short-range interaction
- is valid for arbitrary number of particle species $(B, \overline{B}, M...)$
- works even in the case of quantum statistics
- can be used to check constraints from the causality condition $c_s \leqslant 1$

Example: polytropic EoS $P = an_B^{\gamma}$ at T = 0 $d\mu_B = \frac{dP}{n_B} \rightarrow \mu_B = \frac{\varepsilon + P}{n_B} = \frac{a\gamma}{\gamma - 1}n_B^{\gamma - 1}$ $\implies c_s^2 = \gamma - 1 \rightarrow 1 \leq \gamma \leq 2$ \implies the hardest polytropic EoS: $P \propto n_B^2$ (Zeldovich, 1962)

 $(n_B \rightarrow n, \ \varepsilon + P \rightarrow mn)$

Sound velocity of N+ Δ matter

 $\implies c_s^{(id)} < c_s^{(CSA)} < c_s^{(EVM)}, \text{ superluminal } c_s \text{ in CSA only for } n_B \gtrsim 1 \text{ fm}^{-3}$ $\implies \text{ noticeable reduction of sound velocity due to excitation of } \Delta's \text{ (right panel)}$

π +N+ Δ matter

1) first calculation: same sizes of hadrons $(R_N = R_\Delta = R_\pi)$ $\rightarrow P = nTZ(n), n \equiv n_B + n_\pi, \mu_i = T \{ \ln [n_i/\phi_i(T)] + \psi(n) \} \quad (i = \pi, N, \Delta)$ at given n_B and T, we get from $\mu_\pi = 0, \ \mu_N = \mu_\Delta \equiv \mu_B$ $n_\pi = \phi_\pi(T) e^{-\psi(n_\pi + n_B)}, \ \mu_B = T \{ \ln [n_B/(\phi_N + \phi_\Delta)] + \psi(n_\pi + n_B) \}$ $\rightarrow n_i, P, \varepsilon, c_s, \mu_B$ as functions of n_B and T

2) second calculation: point-like pions $(R_{\pi} = 0)$ + finite-size baryons $(R_N = R_{\Delta})$

$$\rightarrow \begin{array}{l} P = T \left[\phi_{\pi}(T) + n_{B}Z(n_{B}) \right], & n_{\Delta}/\phi_{\Delta} = n_{N}/\phi_{N} = n_{B}/(\phi_{N} + \phi_{\Delta}), & n_{\pi} = \phi_{\pi}(1 - v_{B}) \right] \\ \mu_{B} = T \left\{ \ln \left[n_{B}/(\phi_{N} + \phi_{\Delta}) \right] + \psi(n_{B}) + v_{\Phi} \right\} \\ \varepsilon = T \left[n_{\pi}(\xi_{\pi} - 1) + n_{B} \left\langle \xi - 1 \right\rangle \right] \\ \varepsilon = c_{s}(n_{B}, T) \end{array}$$
 baryon volume

in both cases $\varepsilon(n_B, T)$ has the same form as for ideal π +N+ Δ gas, but with reduced pion density $n_{\pi} < \phi_{\pi}(T)$

Pion density and sound velocity in π +N+ Δ matter

strong sensitivity to pion size

 c_s >1 in CSA calculation only at very large n_B and T

Sound velocity of π +N+ Δ matter

 $\implies c_s^{(id)} < c_s^{(CSA)} < c_s^{(EVM)}, \quad c_s(R_\pi = 0) < c_s(R_\pi = R_B)$

acausal states in CSA are shifted to larger n_B as compared to EVM

Conclusions

EVM calculations become unrealistic at packing fractions $\eta\gtrsim 0.2$

- The Carnahan-Starling EoS:
- agrees with EVM at $~\eta \lesssim 0.1$
- is much softer than in the EVM $% \eta$ at larger η
- becomes acausal only at very high n_B, T (presumably outside the region of hadronic phase)
- The strong sensitivity of sound velocities to finite sizes of hadrons
- First results for pion-baryon mixtures with $R_{\pi} \ll R_B$

Outlook

In the future we are going to:

- include heavier hadrons in CSA calculations
- investigate sensitivity of phase diagram to finite sizes of hadrons
- include quantum-statistical effects for systems with HSI