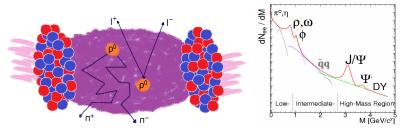
# Studying dilepton production in a coarse-graining approach - What we can learn about in-medium effects?

#### Stephan Endres

#### (in collab. with J. Weil , H. van Hees, M. Bleicher)

Frankfurt Institute for Advanced Studies ITP Uni Frankfurt

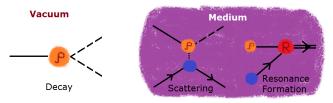

Transport Meeting January 28th, 2015





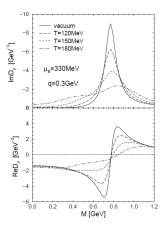
# Why Dileptons...?

- Dileptons represent a clean and penetrating probe of hot and dense nuclear matter
- Reflect the whole dynamics of a collision → Correct description of dynamics essential!
- Aim of studies:
  - In-medium modification of vector meson properties Hadronic many-body effects Baryon vs. meson-driven modifications Vector Meson Dominance
  - Chiral symmetry restoration




# Medium-modifications of hadrons - why are they interesting?

- $\bullet\,$  Basic theory of strong interactions is QCD  $\to\,$  running coupling
  - $\bullet\,$  Large coupling at small momenta  $\rightarrow$  no description from first principles
- The relevant degrees at low energies are hadrons
- $\bullet\,$  Hadron in a dense and / or hot environment  $\to\,$  More and more fundamental degrees of freedom dominate
  - How are the "two faces" of QCD connected?
  - Important for understanding the non-perturbative region of QCD
- Role of **symmetries** is important
- Relevant quantity is the hadron spectral function  $\rightarrow$  coupling to current J(x) carrying the hadron's quantum numbers
- Vacuum spectral functions can be measured (e<sup>+</sup>e<sup>-</sup> → hadrons) ⇒ What for in-medium case?

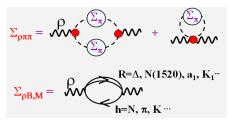

# Vacuum vs. Medium

- What is different, when comparing vacuum processes with medium?
  - $\Rightarrow$  **<u>Vacuum</u>**: Probe can only decay, Lorentz invariance
  - $\Rightarrow$  <u>Medium</u>: Scattering with particles (mesons, baryons) which constitute the medium, explicit dependence on *E* and  $\vec{q}$

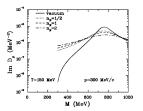


- $\bullet$  Unified language: Scattering is decay into particle and hole  $\rightarrow$  Resonance-hole excitation
- Challenge is to determine the **self-energy** Π of a particle undergoing all those medium effects

# Hadronic Many-Body Theory




#### • Medium modifications of the $\rho$ propegator


$$\mathsf{D}_{
ho} \propto rac{1}{\mathsf{M}^2 - \mathsf{m}_{
ho}^2 - \Sigma^{
ho\pi\pi} - \Sigma^{
ho\mathsf{M}} - \Sigma^{
ho\mathsf{B}}}$$

include interactions with pion cloud with hadrons ( $\Sigma^{\rho\pi\pi}$ ) and direct scatterings off mesons and baryons ( $\Sigma^{\rho M}$ ,  $\Sigma^{\rho B}$ )

[R. Rapp, J. Wambach, Eur.Phys.J. A6, 415-420 (1999)]



# Alternative Approach: Spectral Function from Resonance Dominance



| Resonance      | Mass<br>(GeV) | Width<br>(GeV) | Branching ratio<br>( $\rho N$ or $\rho \pi$ ) |
|----------------|---------------|----------------|-----------------------------------------------|
| N(1700)        | 1.737         | 0.249          | 0.13                                          |
| N(1720)        | 1.717         | 0.383          | 0.87                                          |
| N(1900)        | 1.879         | 0.498          | 0.44                                          |
| N(2000)        | 1.903         | 0.494          | 0.60                                          |
| N(2080)        | 1.804         | 0.447          | 0.26                                          |
| N(2090)        | 1.928         | 0.414          | 0.49                                          |
| N(2100)        | 1.885         | 0.113          | 0.27                                          |
| N(2190)        | 2.127         | 0.547          | 0.29                                          |
| $\Delta(1700)$ | 1.762         | 0.599          | 0.08                                          |
| $\Delta(1900)$ | 1.920         | 0.263          | 0.38                                          |
| $\Delta(1905)$ | 1.881         | 0.327          | 0.86                                          |
| $\Delta(1940)$ | 2.057         | 0.460          | 0.35                                          |
| $\Delta(2000)$ | 1.752         | 0.251          | 0.22                                          |
| $\phi(1020)$   | 1.020         | 0.0045         | 0.13                                          |
| $h_1(1170)$    | 1.170         | 0.36           | 1                                             |
| a1(1260)       | 1.230         | 0.40           | 0.68                                          |
| $\pi(1300)$    | 1.300         | 0.40           | 0.32                                          |
| a2(1320)       | 1.318         | 0.107          | 0.70                                          |
| $\omega(1420)$ | 1.419         | 0.174          | 1                                             |

 $\bullet\,$  In-medium self energies of the  $\rho$ 

$$\Sigma_{
ho} = \Sigma^0 + \Sigma^{
ho\pi} + \Sigma^{
hoN}$$

were calculated using empirical scattering amplitudes from **resonance dominance** 

[V. L. Eletsky et al., Phys. Rev. C64, 035303 (2001)]

- For  $\rho N$  scattering  $N^*$  and  $\Delta^*$  resonances from Manley and Saleski
- Additional inclusion of the Δ<sub>1232</sub> and the N<sub>1520</sub> subthreshold resonances
   ⇒ Important, as they significantly contribute!

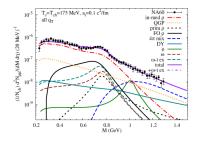
# Theoretical approaches

- General assumption when calculating spectral functions: **Equilibrated stage** (heat bath with fixed  $T, \mu_B, ...$ )
  - $\rightarrow$  <u>But</u>: Situation in heavy-ion collision will be dominated by non-equilibrium evolution!



- Phenomenological approaches are necessary to model the heavy-ion reaction
  - Transport approaches  $\rightarrow$  Treat the dynamics microscopically and account for non-equilibrium, but implementation of full medium-effects is difficult
  - Fireball parametrizations  $\rightarrow$  Probably rather too simplifying...
  - **Hydrodynamics** Need initial state, description of final state interactions applicability at low energies?

#### **Fireball Parametrization**


• Calculations with a **fireball model** achieved very good agreement with dilepton data from SPS and RHIC

[H. van Hees, R. Rapp, Nucl. Phys. A806, 339 (2008)]

• The zone of hot and dense matter is described by an isentropic expanding cylindrical volume

$$V_{\mathrm{FB}}(t)=\pi\left(r_{\perp,0}+rac{1}{2}m{a}_{\perp}t^2
ight)^2\left(z_0+v_{z,0}t+rac{1}{2}m{a}_zt^2
ight)$$

- Problem: How to choose parameters? Is it a plausible description or a too simple picture?
- ⇒ Calculations with better constrained dynamics?



### Transport Models

- Hadronic non-equilibrium approaches
- Include baryons and mesons with masses up to 2 GeV
- Hadrons are propagated on classical trajectories
- Two processes for resonance production (at low energies)
  - Collisions (e.g.  $\pi\pi \to \rho$ )
  - Higher resonance decays (e.g.  $N^* \rightarrow N + \rho$ )
- String excitation possible above  $\sqrt{s} \approx 3 \text{ GeV}$
- Resonances either decay after a certain time or are absorbed in another collision (e.g. ρ + N → N<sup>\*</sup><sub>1520</sub>)

#### UrQMD resonances

| Resonance                      | Mass  | Width |
|--------------------------------|-------|-------|
| N <sup>*</sup> <sub>1440</sub> | 1.440 | 350   |
| $N_{1520}^{*}$                 | 1.515 | 120   |
| $N_{1535}^{*}$                 | 1.550 | 140   |
| $N_{1650}^{*}$                 | 1.645 | 160   |
| $N_{1675}^{*}$                 | 1.675 | 140   |
| $N_{1680}^{*}$                 | 1.680 | 140   |
| $N^{*}_{1700}$                 | 1.730 | 150   |
| $N_{1710}^{*}$                 | 1.710 | 500   |
| $N^{*}_{1720}$                 | 1.720 | 550   |
| $N_{1900}^{*}$                 | 1.850 | 350   |
| $N_{1990}^{*}$                 | 1.950 | 500   |
| $N_{2080}^{*}$                 | 2.000 | 550   |
| $N^*_{2190}$                   | 2.150 | 470   |
| $N_{2220}^{*}$                 | 2.220 | 550   |
| $N^{*}_{2250}$                 | 2.250 | 470   |
| $\Delta_{1232}$                | 1.232 | 115   |
| $\Delta_{1600}^{*}$            | 1.700 | 350   |
| $\Delta^{*}_{1620}$            | 1.675 | 160   |
| $\Delta^{*}_{1700}$            | 1.750 | 350   |
| $\Delta_{1900}^{*}$            | 1.840 | 260   |
| $\Delta^{*}_{1905}$            | 1.880 | 350   |
| $\Delta^{*}_{1910}$            | 1.900 | 250   |
| $\Delta_{1920}^{*}$            | 1.920 | 200   |
| $\Delta^*_{1020}$              | 1.970 | 350   |
| $\Delta^*_{1950}$              | 1.990 | 350   |

Results

# Dilepton Sources

#### • Coupling to photon?

- Straightforward for direct decays (  $\rho, \omega, \phi)$
- What about the Dalitz decays?  $(\pi^0,\eta,\eta',\omega)$

$$ho \rightarrow \gamma + e^+e^-$$

$$V 
ightarrow P + e^+ e^-$$

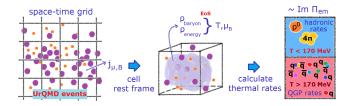
- $\Rightarrow$  Form factors necessary!
- Assumption: Vector Meson Dominance → Coupling between hadron and (virtual) photon via vector mesons



- Form factors for the Dalitz decays can be obtained from the **vector-meson dominance** model
- Baryon Resonances:  $B^* \to B + \rho \to B + e^+e^-$ , but  $\Delta_{1232}$  traditionally treated explicitly

# Challenges

- Large variety of parameters
- Many cross-sections and branchings are unmeasured or unmeasurable (especially for  $\rho$  and  $\Delta$  lack of data)
- Consistency of description when going from resonances to strings?
- General difficulties of the transport approach at high density:
  - Off-shell effects
  - Multi-particle collisions
- ⇒ How can we avoid (some of) these problems but still have a good description of the reaction dynamics?

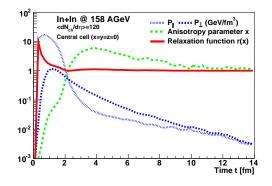

# The Idea: Coarse-Graining

- Combining a realistic 3+1 dimensional expansion of the system with full in-medium spectral functions for the emission of dileptons
- $\bullet$  Idea: Microscopic description  $\rightarrow$  Average over a many single events
- Sufficiently large number of events  $\rightarrow$  Distribution function  $f(\vec{x}, \vec{p}, t)$  takes a smooth form

$$f(\vec{x},\vec{p},t) = \left\langle \sum_{h} \delta^{3}(\vec{x}-\vec{x}_{h}(t))\delta^{3}(\vec{p}-\vec{p}_{h}(t)) \right\rangle$$

• UrQMD model constitutes a non-equilibrium approach  $\rightarrow$  the equilibrium quantities have to be extracted locally at each space-time point

#### Coarse Graining




- Take an ensemble of UrQMD events and span a grid of small space time cells.
- For those cells we determine baryon and energy density and use Eckart's definition to determine the **rest frame** properties
   → use equation of state to calculate T and µ<sub>B</sub>
- Two EoS: Free hadron gas with UrQMD-like degrees of freedom + Lattice EoS for *T* > 170 MeV

[D. Zschiesche et al., Phys. Lett. B547, 7 (2002); M. He et al., Phys. Rev. C 85 (2012)]

• Extract  $\mu_{\pi}$  via simple Boltzmann approximation

# Anisotropy



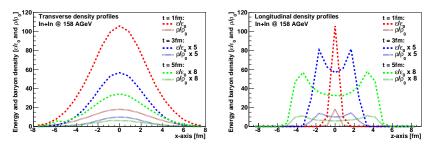
Large pressure anisotropy in the early stages of the reactionDescription developed for anisotropic hydrodynamics

[W. Florkowski and R. Ryblewski, Phys.Rev. C83 (2011)]

• Energy-momentum tensor takes the form  $T^{\mu\nu} = (\varepsilon + P_{\perp}) u^{\mu} u^{\nu} - P_{\perp} g^{\mu\nu} - (P_{\perp} - P_{\parallel}) v^{\mu} v^{\nu}$ 

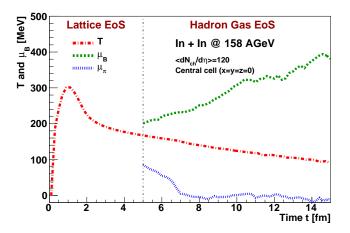
Results

# **Dilepton Rates**


- Lepton pair emission is calculated for each cell of 4-dim. grid, using thermal equilibrium rates per four-volume and four-momentum from a bath at T and  $\mu_B$
- The  $\rho$  dilepton emission (similar for  $\omega$ ,  $\phi$ ) of each cell is accordingly calculated using the expression

[R. Rapp, J. Wambach, Adv. Nucl. Phys. 25, 1 (2000)]

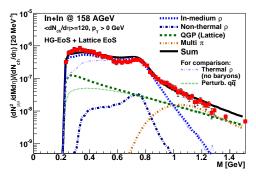
$$\frac{\mathsf{d}^8\mathsf{N}_{\rho\to\mathsf{II}}}{\mathsf{d}^4\mathsf{x}\mathsf{d}^4\mathsf{q}} = -\frac{\alpha^2\mathsf{m}_\rho^4}{\pi^3\mathsf{g}_\rho^2}\frac{\mathsf{L}(\mathsf{M}^2)}{\mathsf{M}^2}\mathsf{z}_\pi^2\mathsf{f}_\mathsf{B}(\mathsf{q}_0;\mathsf{T})\mathsf{Im}\mathsf{D}_\rho(\mathsf{M},\mathsf{q};\mathsf{T},\mu_\mathsf{B})$$


- Multi-pion lepton pair production and QGP emission are also included in the calculations
- For cells with T < 50 MeV (mainly late stage)  $\rightarrow$  Directly take the  $\rho$  contribution from transport

#### UrQMD Energy and Baryon Density as Input...



- The UrQMD input we use gives a more realistic and nuanced picture of the collision evolution than e.g. the fireball approach
- $\rightarrow\,$  Energy and baryon density are by no means homogeneous in the whole fireball!

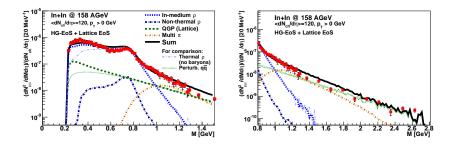

#### Temperature and Chemical Potential from Coarse Graining



• <u>Note</u>: Maximum values (central cell), not average  $\rightarrow$  Different T and  $\mu$  obtained for each space-time cell

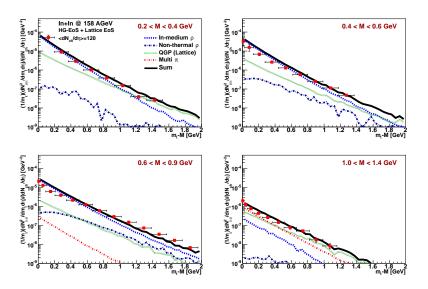
Results Out

#### NA60 Excess Invariant Mass Spectra

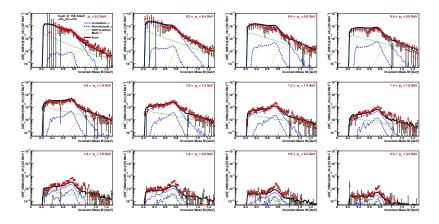



- In-medium ρ shows broadening compared to case without baryons
- 4π and QGP contribution dominate especially above 1 GeV
- Significant part of the excess at low masses also stems from the QGP
- ⇒ Good overall agreement between coarse-graining result and NA60 data
- ⇒ Results similar to fireball approach in spite of different dynamics

Results


Outlook

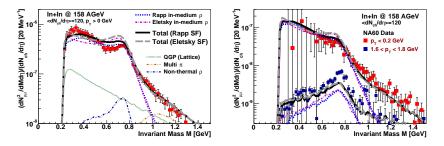
#### Intermediate Mass Region (M > 1 GeV)




- QGP and multi-pion annihilation are the relevant sources in the intermediate mass region
- $\bullet~{\rm For}~{\rm M}>1.5~{\rm Gev}~{\rm QGP}$  contribution clearly dominates
- Duality between hadronic and partonic emission rates?

# m<sub>t</sub> Spectra



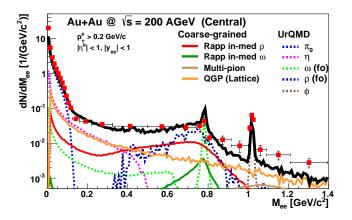

# Spectra in $p_t$ Slices



- Strongest broadening at low  $p_t$
- Note the momentum dependence of and thermal and non-thermal  $\rho$  contribution

Results OL

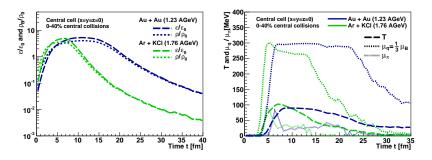
#### Comparison of Spectral Functions




• In-medium self energies of the  $\rho$  were calculated using empirical scattering amplitudes from resonance dominance

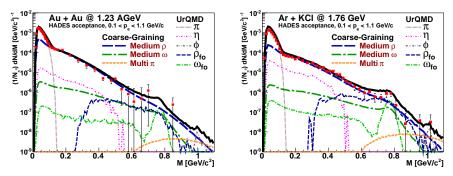
[V. L. Eletsky et al., Phys. Rev. C64, 035303 (2001)]

- Not enough broadening due to low-density expansion of the self energies → Overshoots data at peak
- Note: Different quantities spectral function ( $\mu_B$  vs.  $\rho_{eff}$ )


#### Comparison to STAR results

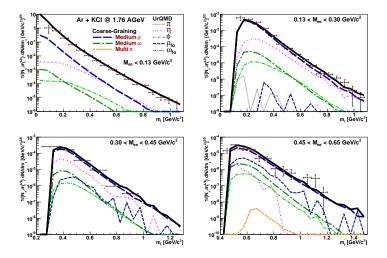


- QGP dominates thermal emission at low and high masses
- Also significant non-thermal ρ
- Missing contribution from charm at higher masses


Results Ou

#### Reaction Dynamics SIS Energies

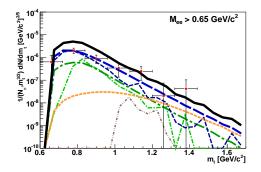



- Huge lifetimes of the hot and dense fireball (for Au+Au more than 20 fm/c!)
- Moderate temperatures and very high baryon density respectively baryochemical potential  $\rightarrow$  Ideal situation to study in-medium modifications

### HADES Results



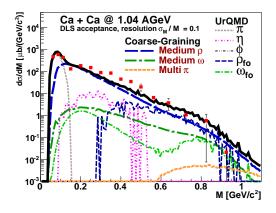
- At those low collision energies a significant in-medium broadening of the ρ spectral function appears
- $\bullet\,$  High baryon chemical potential  $\to$  Good check for baryonic effects in spectral functions
- Note the strong broadening of the  $\omega$  as well!


#### $Ar+KCI @ 1.76 AGeV - m_t$ -Spectra



• Good agreement here with data up to  $M_{ee} = 0.65 \text{ GeV}/c^2$ • Note: Model completely the same as for NA60 and STAR

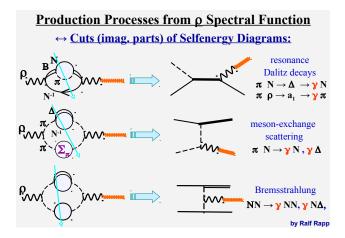
Results Out


# Ar+KCl @ 1.76 AGeV - $m_t$ -Spectra



- Overshoot data at low  $m_t$  around the  $\rho$  pole mass for  $M>0.65~{\rm GeV/c^2}$
- Probably due to "freeze-out"  $\rho$  from UrQMD  $\rightarrow$  Known fact that implemented cross-sections are too high at threshold
- <u>However</u>: Coarse-graining works also for SIS 18 energies  $\rightarrow$  Same physical description as for NA60

Results Out


# What about the old DLS data ...?



- Experimental excess in mass range 0.2 to 0.6  $\text{GeV}/\text{c}^2$
- Possible reasons: Bremsstrahlung (low energy!), limits of thermal description, quality of filter and data, ...

Outlook

#### Connection to microscopic / transport description?



 Spectral function includes contributions (Bremsstrahlung, Δ Dalitz decays) that are usually explicitly treated in transport models → To which extend comparable?

# Outlook

- Explanation of dilepton measurements is still a challenge for theory ⇒ Need for more experimental input!
- High precision data necessary to constrain model calculations which still have large uncertainties
  - $\rightarrow$  Study of pion-induced reactions (at SIS / HADES) will be essential for better determination of baryonic resonance properties
- CBM will enable to explore physics in an up-to-now uninvestigated energy range
  - $\bullet\,$  Very high baryonic densities  $\to\,$  Better constraints for spectral functions?
  - Not only low-mass regime but also M  $> 1~{\rm GeV}$  might be worth being intensively studied  $\rightarrow$  deconfinement / phase-transition?
- Improve Coarse-Graining approach  $\rightarrow$  Hydro + coarse-grained transport (for better consistency when using QGP rates)