Hanbury-Brown Twiss Results from UrQMD

Gunnar Gräf

in collaboration with Mike Lisa, Elliot Mount, Marcus Bleicher, Qingfeng Li

Outline

- General introduction to HBT
- Results & Techniques
 - Hadron formation time
 - Particle emission duration
 - Multiplicity scaling
 - Measuring a twisted emission geometry

The strong interaction

Our probes

Momentum space and multiplicity observables:

- Flow (v₁,v₂, ..., v_n)
- R
- Rapidity spectra
- p spectra
- Particle ratios

•

Shape & Time ← HBT interferometry

Hanbury-Brown Twiss technique

HBT connects momentum space to position space

$$C(q) = \frac{\int d^4x_1 d^4x_2 S(p_1, x_1) S(p_2, x_2) |\psi_{12}|^2}{\int d^4x_1 d^4x_2 S(p_1, x_1) S(p_2, x_2)}$$

$$\psi_{12} = \frac{1}{\sqrt{2}} \left[e^{ip_1(x_1' - x_1)} e^{ip_2(x_2' - x_2)} + e^{ip_2(x_2' - x_1)} e^{ip_1(x_1' - x_2)} \right]$$

$$C(q) = 1 + \langle \cos(x_{\mu}q^{\mu}) \rangle$$

$$q^{\mu} = p_1^{\mu} - p_2^{\mu}$$

$$q^{\mu} = p_1^{\mu} - p_2^{\mu} \qquad x^{\mu} = x_1^{\mu} - x_2^{\mu}$$

Correlation function

Gaussian shape

$$S(p,x) = S(p)e^{-rac{x_{\mu}x_{
u}}{2R_{\mu
u}^2}}$$
 $C(q) = 1 + \lambda e^{-q_{\mu}q_{
u}R^{\mu
u}^2}$

Freeze-out distribution

The Out-Side-Long system

Out: In transverse momentum direction

Long: Along the beam axis

Side: Orthogonal to the other directions

K_{_}: Transverse pair momentum

q: Pair momentum difference

$$R_o^2 = \langle (x_o - \beta_o t)^2 \rangle$$

$$= \langle x_o^2 \rangle - 2 \langle \beta_T t x_o \rangle + \langle \beta_T^2 t^2 \rangle$$

$$R_s^2 = \langle x_s^2 \rangle$$

$$R_l^2 = \langle x_l^2 \rangle$$

Region of homogeneity

$$C(q) = 1 + \langle \cos(x_{\mu}q^{\mu}) \rangle$$

- Oscillations → q and x need to be small for C≠1
- Radial flow
 - Close in momentum → close in space
 - Big pair momentum → small emission region

Hadron formation time

String fragmentation

Formation time

[C.-Y. Wong, Introduction to High-Energy HICs]

Assuming constant τ_f and the formation of two strings

$$\sqrt{s_{\rm pp}} = 62.3 \text{ GeV}$$
 $\tau_f \approx 0.6 \text{ fm/c}$

τ_f dependence of the longitudinal source size

τ_f from p+p at LHC

- Size of the radii scales with τ_f
- Comparison with data yields τ_i<0.8 fm/c

Source lifetime ≠ Collision duration

Zero lifetime

Collision duration

Finite lifetime

$$R_o^2 = \left\langle (x_o - \beta_o t)^2 \right\rangle = \left\langle x_o^2 \right\rangle - 2 \left\langle \beta_T t x_o \right\rangle + \left\langle \beta_T^2 t^2 \right\rangle \qquad R_s^2 = \left\langle x_s^2 \right\rangle \qquad R_l^2 = \left\langle x_l^2 \right\rangle$$

$$R_s^2 = \left\langle x_s^2 \right\rangle$$

$$R_l^2 = \left\langle x_l^2 \right\rangle$$

t from Pb + Pb at LHC

- R_{out} and R_{long} are overestimated by the calculations
- The lifetime is too long by a factor of ≈ 3
- · We attribute this to the missing partonic interactions

$$t = t_i - \overline{t} \to t' = (t_i - \overline{t})/t_{scale} \qquad R_O^{2} = \langle (x - \beta_T t')^2 \rangle = \langle x^2 \rangle - 2 \frac{\langle \beta_T t x \rangle}{t_{scale}} + \frac{\langle \beta_T^2 t^2 \rangle}{t_{scale}^2}$$

Decoupling

Same decoupling density o HBT radii scale with $\left(\frac{dN_{ch}}{d\eta}\right)^{\frac{1}{3}}$

Different crossection → Different decoupling density

Scaling of the HBT radii

Radii dependent on: Chemical composition and density

Azimuthally sensitive HBT

Source looks different from different directions

Fourier coefficients of the radii yield information about the source

Non-central collisions

Eccentricity

$$\epsilon = 2 \frac{R_{s,2}^2}{R_{s,0}^2}$$

Tilt

$$\theta_{\rm s} = \frac{1}{2} \tan^{-1} \left(\frac{-4R_{sl,1}^2}{R_{l,0}^2 - R_{s,0}^2 + 2R_{s,2}^2} \right)$$

Energy dependence

- [A. Schmah for STAR, Central Eur.J.Phys. 10 (2012) 1238]
- $\varepsilon_{\rm F}$ and $\theta_{\rm S}$ decrease with increasing energy
- Longer collision duration → rounder source → smaller ε_□
- Higher energy \rightarrow elongation in beam direction \rightarrow smaller θ_s

Tilt substructure – Twist

$$E_{lab}$$
 = 8 AGeV, b = 3.4 - 6.8 fm, p_T < 0.4 GeV

Twist – Two techniques

HBT fit

Twist – The results

Transformation
$$r = \frac{1}{q_{fit}}$$

- Measurable via asHBT
- Twist caused by Shadowing and Squeeze-out
- Most prominent at FAIR energies

[G. G., M. Lisa, M. Bleicher, arXiv:1302.3408, submitted to PRC]

Shadowing, Flow, Squeeze-out

[G. G., M. Lisa, M. Bleicher, arXiv:1302.3408, submitted to PRC]

Summary

- p+p at LHC suggests τ_f<0.8 fm/c
- Scaling depends on energy as well
- Eccentricity well described, decreases with energy
- Tilt is biggest at FAIR energies
- New observable: Twist

- → Measure the Twist in experiment at FAIR
- → Analyse LHC results with partonic phase