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Thermodynamics

1. Systems involve macroscopic degrees of freedom ( thermodynamical limit, small fluctuation)

) Small systems

2. Initial and final states of processes are in equilibrium. ) Time evolutions from arbitrary states

v

classical side Stochastic thermodynamics

Attempts to this generalization —J

v

quantal side Quantum thermodynamics

These formulations are yet under construction.
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Stochastic thermodynamics (stochastic energetics)

/ External confinement potential \/ (X, ﬂ“t) Standard Wiener process
(Gaussian white noise)

Standard Brownian motion

P
dx, =L dt
% m 5 v
Interaction with heat bath dpt — _av (qt , /lt)dt —y & dt + %dBt
—m \/

Heat bath of ,3_1 2. fluctuation —




Stochastic thermodynamics (stochastic energetics)

Sekimoto, “Stochastic Energetics” (Springer, 2010)

Heat absorbed by the system is 9
interpreted as a work done thC = jdrofo (FO ) E (—7/ & dt + %j o dXt

by the heat bath on the system. m

E [ : ] : ensemble average for thermal fluctuation (Wiener)

dI', =dq,dp, f,(I",) :initial phase space distribution



Stochastic thermodynamics (stochastic energetics)

Heat absorbed by the system is

interpreted as a work done
by the heat bath on the system.

Energy

Work by heat bath

Sekimoto, “Stochastic Energetics” (Springer, 2010)

: 2
dQ, :jdrofo(ro)E (—y%dt+ %jodxt

E [ : ] : ensemble average for thermal fluctuation (Wiener)

m

U¢ :Idro f, (FO)E|:2p—t+V(Xt,ﬂ.t):|

W :jdrofo (FO)E[thC} dW,° := aV(qt’/lt)d/lt

t 521

dI', =dq,dp, f,(I",) :initial phase space distribution



Stochastic thermodynamics (stochastic energetics)

Sekimoto, “Stochastic Energetics” (Springer, 2010)

Heat absorbed by the system is 2
interpreted as a work done thC = jdrofo (FO ) E (—7/ & dt + %j o dXt

by the heat bath on the system. m

E [ . ] : ensemble average for thermal fluctuation (Wiener)

First law U, -U; =dQ" +dwW
Energy U¢ =[dr,f, (Fo)EB—;nW(XMt)}

Work by heat bath W = [dTfy (To)E[ dW | awije = avéqﬂtt’ﬂ‘) d

dI', =dq,dp, f,(I",) :initial phase space distribution



Stochastic thermodynamics (stochastic energetics)

Sekimoto, “Stochastic Energetics” (Springer, 2010)

Information entropy S = kBdef (T,t)In f(T,t)

C__

Phase space distribution

Second law
dS dQ;

c _k
dt % dt

>0

2
—/{p—mx,zw)]
2m

1
The equality is satisfied for the equilibrium distribution, feq = Ee



Jarzynski equality

2 =b
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Jarzynski equality

Let us consider the external perturbation
ﬂ’o — 3 ﬂl _b characterized by 2,0 — a—)}il —D.Then

\\/ \—/ the averaged work in this process is

equilibrium Wi, = J-drof [I dW }

Then, for the above process, we can show



Jarzynski equality

Let us consider the external perturbation
h terized b — =D.Then
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\\/ \/ the averaged work in this process is

equilibrium Wi, = _[drof [I dW }

Then, for the above process, we can show

Jarzynski equality
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Jarzynski equality is one of fluctuation theorems.



Jarzynski equality

A, =a A =b

V4 N

Let us consider the external perturbation

characterized by 2,0 — a—)ﬂl —D.Then
the averaged work in this process is

equilibrium Woc_>1 J-drof |:j dWC:|
Then, for the above process, we can show
Jarzynski equality second law
[dr, f (T )E[exp(—ﬁ( j:dvvf —AF))} =1 1
“W?, <—-AF
_ﬁ(_w(x A‘)J There always exist stochastic events

AF = (-InZ,+InZ,) Z =] dre

Jarzynski equality is one of fluctuation theorems.

which change in an opposite direction to
the mean behavior of entropy.



4 )

Of course, stochastic thermodynamics is not applicable to
extremely small systems where quantum fluctuation should be
considered.

N\ /

L

pga |

\
e How do we introduce a guantum dissipative
\:\/ model which is thermodynamically
7 [ consistent?
I =\ /




Quantum Thermodynamics



C PTP m a p What is the requirements for the density matrix in open

quantum systems (system + environment)?

o
%

Dynamical map (time evolution)

p>M[p]

1. Linear time evolution

M[ap, +bp,|=aM[p,|+bM |5, ]

2. Completely positive

Prg 20 — MA®IB[15AB]ZO

3. Trace conservation

Ti(p]=Tr[M []

The time evolutions satisfying these conditions are called completely positive and trace-preserving (CPTP) maps.
We require that open quantum dynamics is described by the CPTP evolution.



How do we obtain non-eq. dynamics?

There is no systematic method to obtain non-equilibrium dynamics
consistent with the CPTP map for arbitrary Hamiltonian.

Systematic coarse-graining of environment degrees of freedom
1. Projection operator method (Nakajima-Zwanzig, Mori, Kawasaki-Gunton, Shibata-Hashitsume, etc)

2. Coarse-graining based on path integrals (influence functional, closed time path, etc)

Die@Schu(h' <k e

. . L Quantum
Quantization of classical dissipative system Theorr ok
aNon inear
1. Canonical quantization (Caldirola, Kanai, Bateman, etc) Perspective

Riccati Equations in Fundamental =
Physics t

2. Non-linear Schrodinger equation through the Ehrenfest theorem (Kostin, Hasse, Schuch, etc oy

Non-Hermitian (PT-symmetric) quantum mechanics



GKSL equation

In the standard discussions of quantum thermodynamics, we often employ the equation
proposed by Lindblad (1976) and Gorini-Kossakowski-Sudarshan (1976).

irreversible current

4, ol ]
h

. y. > (0 : Dissipative coefficients
reversible current '

N

Li : jump (Lindblad) operator

1. The Gorini-Kossakowski-Sudarshan-Lidblad (GKSL) equation is an example of the CPTP evolution.
2. Thereis no systematic method to define the Lindblad operator.

3. Itis not clear whether this is applicable to describe thermal relaxation processes.



Application to harmonic oscillator

For the harmonic oscillator Hamiltonian, we can find the Lindblad operator which is consistent with
thermodynamics

L =4a="L .
H:ha)(éTé-Fij - ) A
2 L :éT:LT i

Detailed balance condition



Application to harmonic oscillator

For the harmonic oscillator Hamiltonian, we can find the Lindblad operator which is consistent with
thermodynamics

L =a=L
H :hw(a*a%j :

Detailed balance condition

Even if this is not satisfied, the equation is CPTP,
but does not describe thermal equilibration.



Application to harmonic oscillator

For the harmonic oscillator Hamiltonian, we can find the Lindblad operator which is consistent with
thermodynamics

VaN N /\T
L1 L =a=L"
H=fwn| 4'd+= .
L =a"=L
Detailed balance condition
Even if this is not satisfied, the equation is CPTP,
but does not describe thermal equilibration.
Quantum heat thq =1T1r |: Hd ﬁt:| dSq d
-1 Qt
= Joi >0
B
q . Va N V2N dt
von Neumann entropy St = —kBTr [pt In ,Ot]

The GKSL equation is consistent with thermodynamics at least in the
application to the harmonic oscillator.



We want to find a systematic procedure to obtain
open quantum dynamics which is consistent with

CPTP and describe thermal relaxation processes.
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CPTP evolution — Quantum thermodynamics
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Our strategy is......

More general theory of Brownian motion (but in flat spacetime)

1) pr@pose 2) Thermo ically consistent

Brownian motion M=) Stochastic thermodynamics

3) Canonical quantization

CPTP evolution — Quantum thermodynamics



Generalized Brownian Motion



Generalized Brownian motion

Koide&Nicacio, Phys. Lett. A494, 129277 (2024).

Let us consider a thermal relaxation process with a general Hamiltonian H .

Our new model of Brownian motion for the i-th particle




Generalized Brownian motion

Koide&Nicacio, Phys. Lett. A494, 129277 (2024).

Let us consider a thermal relaxation process with a general Hamiltonian H .

Our new model of Brownian motion for the i-th particle

dq(i)t = ?—Hdt
Pyt
2 .
0By =it -y, 2 dt+ [ PdB
0y Pyt b
E _ng(i)tdBcﬁj)t'} = E[ng(i)tdB&j)t'} - dt5ij5aﬂ5tt'
E|dBY,, |=E| dBY;, |=0 i
E _ng(i)tdBpﬂ(j)t'} =0




Generalized Brownian motion

Koide&Nicacio, Phys. Lett. A494, 129277 (2024).

Let us consider a thermal relaxation process with a general Hamiltonian H .

Our new model of Brownian motion for the i-th particle

E[ dB%. dB’ . |=E[dB%. dB’ . |=dt5.S. .5,
E[dB§<'>t]:E[dB§(u)t]:O i 1( : q,;m] [ S pW} i00%k
= _dBw)tdBp(j)t'] =0




Thermodynamical quantities

Energy

Work

Heat

1.

U¢ = [dI, fy (T E[H (T, 4)]

Koide&Nicacio, Phys. Lett. A494, 129277 (2024).

thc _ J’dro fo (FO)E[dV\ZC] dWw e — oH(T',, 4,) dﬂt

dQqy: = Idro fo () 2 E [_7/p.

(04

a

—jdro o (To) Y E E_yq'

t 5&

P

These are reduced to standard quantities by using H =%+V and 7, =0.

2. We can choose even interacting and relativistic Hamiltonians.

Phys. Rev. E83,061111 (2011), J. Phys. Commun. 2, 021001 (2018)



Stochastic energetics

Koide&Nicacio, Phys. Lett. A494, 129277 (2024).

First law Utc+dt —UtC = ZdQ(CI)t + thC
i

N

Second law dSC Q |
. Z B/B ( )t S

>0 S =—k, [dTf (I,t)Inf (Tt)

We can still apply thermodynamical
interpretations to this generalized BM.




Canonical quantization and new
guantum master equation



Our strategy is......

Most general theory of Brownian motion (but in flat spacetime)

1) pr@pose 2) Thermo ically consistent

Brownian motion msssssssss=) Stochastic thermodynamics

3) Canonical quantization

GKSL equation — Quantum thermodynamics

Apply quantization to phase space distribution.



Generalized Kramers equation

Koide&Nicacio, Phys. Lett. A494, 129277 (2024).

The phase space distribution

f(

Idr f HE[é(q(|) q(l)t)5( p(l) p(l)t)] Components of vectors

The differential equation of the phase space distribution (generalized Kramers equation) is

N D
+ZZ)/—q—‘{eﬂiH {eﬁiH i pg)}PB ’ pg)}PB

N D
_{ f, H}PB "'Zzﬁ{e_ﬁﬁ {eﬁiH f’qg)}PB ’qg)}PB

=1 a=1 ﬂ|

I
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Canonical quantization

Koide&Nicacio, Phys. Lett. A494, 129277 (2024).

I !

p(t)

eiﬂilfl /215 (t) emlﬁl /2




New qguantum master equation

Koide&Nicacio, Phys. Lett. A494, 129277 (2024).

-[5A]+D[4]

N D A : : : -
D[Ib]:_zz /4 |:e—ﬂiH/2|:eﬂiH/2be,BiH/2’q\g):|e—,8iH/2’q\g)_

| —ph2[ g2 A pHI2 A _BHI2 aAa |
[e [e pEe ,p(ﬂe  Pay




|s this time evolution CPTP?

Koide&Nicacio, Phys. Lett. A494, 129277 (2024).

A D .
m ] m 24 lates CPTP
Let us consider a harmonic oscillator, H = 2p—+ 5 o°§° violates C
m /

: 1 ¢ - - .
D[] memp —=-% 5, [CL,. 5] 20,50 n,, =Diag(t11,-1)

2h uv=1 "
mw i
= — | d+—P

L 1 2?’1( Mo :\/(5+2)7/p (~1)"*! Bhaor/ 2

M i 2 mw
[, =T, | 4-— ‘
2 2 Zh( ma)p
SNEY 5= (mo) -1

p

=0,



|s this time evolution CPTP?

Koide&Nicacio, Phys. Lett. A494, 129277 (2024).

A2 .
Let us consider a harmonic oscillator,  H = 2+ 1 2¢? violates CPTP
2m 2
/
1 < AL A A
A .}. A A T . -
D[] b >, [LL, 4] 20,50 7, =Diagt11,-1)
pv=
a)(A i
L o r = (6+2)y, (- prol2 For our master equation to be CPTP,
Mo ( A B | 2 M we need to set
ETS Gl >
h Mo
2
5=ﬁ(ma))2—l 6=0-y,=y,(Mw)

Vv



Reproduction of GKSL equation

Koide&Nicacio, Phys. Lett. A494, 129277 (2024).
Our master equation is finally reduced to the GKSL equation with the detailed balance condition

— eiﬂﬁa}/Z L

218

L _ e—ﬂha)
I/

I

We can show the laws analogous to the first and second law.

N

GKSL equation >

Our master equation ———

CPTP, but not always converges toward equilibrium

Not always CPTP, but converges toward equilibrium

/




CPTP even in other interactions?

Nicacio&Koide in preparation.

Model for heat conduction (network model)




CPTP even in other interactions?

Nicacio&Koide in preparation.

hop, hop,

e ; b ol o i Model for heat conduction (network model)
Not CPTP (a)

. .
4 - l
i >~ | 18 ;
| \.\ :‘ :
l N\ Y ¢
‘i N ]
hopf, el CPTP |
|
SICPIP 1 } ; ”
{ L *,

We can find appropriate parameters where our quantum master equation conforms to a CPTP evolution
even in the network model.






Stochastic energetics in Field theory

Brownian motion for the scalar field

3 oH SH | 2y,
d¢(xi’t)_(dt)él'[(xi,t) (dt)y¢5¢(xﬂt)+ (dx),BdB (x,t)

SH 5H 27 o
o0 S0 o™ Y

dIT(x;,t)=—(dt)




Stochastic energetics in Field theory

Brownian motion for the scalar field

oH
dt — ?_dB? (x,t
- oH oH 2V0 o
dIT(x,t)= (dt)5¢(xi,t) (dt)y,, (Xi’t)+ (dx)ﬂdB (%,t)

Heat

. SH |2y, dB" SH |2y, dB’
4Q? 4"*(‘”15%/&2 dt JO(M Jd ( £ \/dx; dt ]Odn

Law analogous to the second law

dsz Q

-1
Formulation of quantum thermodynamics is under
investigation.....

Information entropy




Thermodynamics in (modified) gravity
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Thermodynamics in (modified) gravity

-
7

TS Intesdinopfinary Soence Senes
o0 (lwf Hovit Stibou

David Vasak

Dark matter, g kel
Dark energy, ... P
&Y Covariant
Canonical
Gauge
Free diffusion (Brownian motion) Grawty

Flat space without torsion 0,0 =VAp

Curved space with torsion 0,p =—V, (p(vginkjk))—l—VgijViVjp Viuj = 8in +{|ii}uk + Kjkiuk



Thermodynamics in (modified) gravity

TS Intesdinopfinary Soence Senes
Flor o (b’ Hasit Stboum

David Vasak

Gravity = Curvature + Torsion Dark matter, irgen e
Dark energy, ... P

, Covariant

ontorsion ten 3 Canonical
Gauge
Free diffusion (Brownian motion) GraWtV

Flat space without torsion 0,0 =VAp

Curved space with torsion 0,p =—V, (p(vg”Kkjk))+vg”ViVjp vV.ul=0.u’ +{ki u* +KJkiuk

1. Torsion (vierbein) is considered exclusively associated with the spin degrees of freedom. However,
itis also noteworthy that we cannot avoid introducing vierbein to construct Brownian motionin
generalized coordinates.

2. One way to study thermodynamical behavior in curved (spacetime) geometry with or without
torsion, is to consider Brownian motion. .

3. Isit possible to construct stochastic and quantum thermodynamics in this case? No torsion

Giordano, Eur. Phys. J. B92, 174 (2019).



Thermodynamics and Universe
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rad Different from the expansion
T ocR?(t) S, ~In ( RT 3’2) _ const  ©f volume of gas

1) Expansion of universe

What is the non-equilibrium effect?



Thermodynamics and Universe

-1 3 _p3T3 _
Trad oc R (t) Srad R R™T " = const Different from the expansion

1) Expansion of universe
T ocR?(t) S, ~In ( RT 3/2) _const ©f volume of gas

What is the non-equilibrium effect?

2) Self gravitating system Sakagami&Taruya,Contiuum Mech. Thermodyn. 16, 279 (2004)

Chavanis et al.,Phys.Rev.E66, 036105 (2002)
From the virial theorem,

AT ~ AE, =—AE

v

tot Heat capacity is negative
0

\ 4

Thermo. inhomogeneity
Is enhanced.

Can this be modeled using Brownian motion? » gravitational contraction
Fluctuation effect in self-gravitating systems? (collapse)




Thermodynamics and Universe

-1 3 _ p3T3_
Trad * R (t) Srad R AT e Different from the expansion
T ocR?(t) S, ~In ( RT 3/2) _const ©f volume of gas

1) Expansion of universe

What is the non-equilibrium effect?

2) Self gravitating system Sakagami&Taruya,Contiuum Mech. Thermodyn. 16, 279 (2004)

Chavanis et al.,Phys.Rev.E66, 036105 (2002)
From the virial theorem,

AT ~ AE, =—AE

v

tot Heat capacity is negative
0

\ 4

Thermo. inhomogeneity
Is enhanced.

Can this be modeled using Brownian motion? gravitational contraction
Fluctuation effect in self-gravitating systems? (collapse)

\ 4

3) Brownian motion and Black Hole populations in globular clusters

Roupas, A&A 646 A20 (2021).
Chavanis&Mannella, Eur. Phys. J. B 78, 139 (2010).

4) Black hole and entropy



Thermo. work and Q. measurement
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Ps @ Peay = U ps ® pyU T



Thermo. work and Q. measurement

pCat
\\-//\‘
i : |

" "  p

Ps ® poo = U ps ® p, U’

1. What s the relation between classical and quantum optimal controls for external perturbation?

Sekimoto&Sasa, J. Phys. Soc. Japan, 66, 3658 (2001)
Schmiedl&Seifert, Phys. Rev. Lett. 98, 108301 (2007) ??7?7°7
Koide, J. Phys. A50, 325001 (2017, Berry’s phase)

2. Whatisthe role of quantum measurement (Maxwell Deamon) and what is its classical limit?

Classical limit?  Scully et al., Science 299, 862 (2003).
Kammerlander&Anders, Scientific reports 6, 22174 (2016).
Elouard et al., Phys. Rev. Lett. 118, 260603 (2017).



TUR (thermodynamical uncertainty relations)

Barato&Seifert, PRL114, 158101 (2015) Hasagawa&Van Vu, PRL123,20001 (2017)

—

. A particle trajectory in a nonequilibrium steady state [’ < 2
(4=(0)))

Time reversed trajectory
. TR o
. Anobservable @ satisfying ¢(F )‘—WF)/ B <¢>2 2 o 1

. The probability distribution of the trajectories P(S, @)

. The fluctuationtheorem  P(S,¢) o Entropy production

P(-s,~4)

—




TUR (thermodynamical uncertainty relations)

Barato&Seifert, PRL114, 158101 (2015) Hasagawa&Van Vu, PRL123,20001 (2017)

—

1. A particle trajectory in a nonequilibrium steady state I 5
((o=(0)))
2. Anobservable @ satisfying ¢(FTR) =—¢ F) [ <¢>2 > 1
3. The probability distribution of the trajectories P(S, @)
4. The fluctuation theorem  P(S, @) e Entropy production | <S> -
P(=s,—¢)

Is there TUR induced by non-differentianility?

de Matos et al., WATER12,3263 (2020)




Furthermore.....

T T
ar — 1-—~ =1- |—=
770 Th UCA -I-h

1. Efficiency of heat engine in finite-time operations (Cruzon-Ahlborn efficiency,
Am. J. Phys. 43, 22, 1975)

2. How can we take the thermodynamical limit in stochastic and quantum
thermodynamics?

3. Finite chemical potential? (Neidig,et al., arXiv:2308.07659)
4. Relation between the GKSL equation and the quantization of damped HO

5. Entanglement in classical stochastic mechanics (Reciprocal process)?
(Schrodinger, Akad.Phys.Math.Klasse 1,144 (1931), Koide, J. Phys. Commun. 2, 021001 (2018))



Concluding remarks

. We develop a general model of Brownian motion in flat spacetime.

. We can define heat and entropy so that the behaviors of the model are consistent with

thermodynamics.
. A quantum master equation is derived from the model by applying the canonical quantization.

. Given a system Hamiltonian, the form of our quantum master equation is determined except for a few
parameters. (Advantage 1)

Regardless of the choice of the system Hamiltonian, the classical limit of the quantum master
equation always describes a thermal relaxation process. (Advantage 2)

. The derived master equation does not always satisfy the CPTP condition but, in several applications,
we can find the parameters where the quantum master equation becomes a GKSL equation.

. Our approach enables us formulate a unified framework of stochastic and quantum
thermodynamics.






Let us consider the double-slit experiment.

1. The wave function of this system ¢()?, t)

2. Then we define a vector field by

0(%,t) = %V{Re[ln A(X, )]+ Im[Ing(x,1)]}



The probability distribution is reproduced by the frequency

distribution of Brownian motion, Nelson, PR150.1079('66)

dr(t) = G(F(t),t) + \/%dvv (t)

Vs .

The position of a quantum particle Gaussian white noise

Planck constant

0(X,t) = %V{Re[ln A(X,0)]+ Im[Inp(%,1)]}
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Bohmian trajectory

electrons

screen with optical optical screen
two slits screen front view)
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Brownian motion
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200000 Brownian particles
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Exact result







r(t)



r(t)

We can find, at least, two velocities.



F(t—dt)

F(t+ dt)

10
Momentum fluctuation 1
(2)
Amu+

We can find, at least, two velocities.



F(t—dt)

F(t+ dt)

r(t)

Momentum fluctuation 2
A(Z)
i Momentum fluctuation 1
(2)
Amu+

We can find, at least, two velocities.



Suppose that the fluctuation of the o o
S A Ans TA

observed momentum is given by the A@ — Zmu T P

average of the two fluctuations.

Koide&Kodama, PLA382, 1472 (‘18)



Suppose that the fluctuation of the o o
= AT Ans TA

observed momentum is given by the A@ — Zmu T P

average of the two fluctuations.

A(Z)A(Z) > h_z
X —p 4

The Kennard inequality in quantum mechanics

Koide&Kodama, PLA382, 1472 (‘18)



Suppose that the fluctuation of the o o
= AT Ans TA

observed momentum is given by the A@ — Zmu T P

average of the two fluctuations.

ADAD > n
X p 4

The Kennard inequality in quantum mechanics

The uncertainty relation can be
induced from the non-differentiability
of observables.

Koide&Kodama, PLA382, 1472 (*18) R
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