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1. Systems involve macroscopic degrees of freedom ( thermodynamical limit, small fluctuation ) 

2. Initial and final states of processes are in equilibrium.

Attempts to this generalization

classical side Stochastic thermodynamics

quantal side Quantum thermodynamics

These formulations are yet under construction.

Small systems

Time evolutions from arbitrary states
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Stochastic thermodynamics (stochastic energetics)

External confinement potential ( , )tV x 
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Interaction with heat bath
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Standard Brownian motion

Standard Wiener process
(Gaussian white noise)



Stochastic thermodynamics (stochastic energetics)

Heat absorbed by the system is 
interpreted as a work done 
by the heat bath on the system.
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Stochastic thermodynamics (stochastic energetics)
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Sekimoto, “Stochastic Energetics” (Springer, 2010)
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Jarzynski equality is one of fluctuation theorems.

second law

There always exist stochastic events 
which change in an opposite direction to 
the mean behavior of entropy.
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Of course, stochastic thermodynamics is not applicable to 
extremely small systems where quantum fluctuation should be 
considered.

How do we introduce a quantum dissipative 
model which is thermodynamically 
consistent?



Quantum Thermodynamics



CPTP map What is the requirements for the density matrix in open 
quantum systems (system + environment)?

1. Linear time evolution 

2. Completely positive

3. Trace conservation 

ˆ 0AB   ˆ 0A B ABM I  

 ˆ ˆM →

     1 2 1 2
ˆ ˆ ˆ ˆM a b aM bM   + = +

   ˆ ˆTr =Tr M   

The time evolutions satisfying these conditions are called completely positive and trace-preserving (CPTP) maps.
We require that open quantum dynamics is described by the CPTP evolution.

Dynamical map (time evolution)



How do we obtain non-eq. dynamics?

Systematic coarse-graining of environment degrees of freedom

1. Projection operator method (Nakajima-Zwanzig, Mori, Kawasaki-Gunton, Shibata-Hashitsume, etc)

2. Coarse-graining based on path integrals (influence functional, closed time path, etc)

Quantization of classical dissipative system

There is no systematic method to obtain non-equilibrium dynamics 
consistent with the CPTP map for arbitrary Hamiltonian. 

1. Canonical quantization (Caldirola, Kanai, Bateman, etc )

2. Non-linear Schrödinger equation through the Ehrenfest theorem (Kostin, Hasse, Schuch, etc)

Non-Hermitian (PT-symmetric) quantum mechanics



GKSL equation
In the standard discussions of quantum thermodynamics, we often employ the equation 
proposed by Lindblad (1976) and Gorini-Kossakowski-Sudarshan (1976).
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ˆ
iL : jump (Lindblad) operator

1. The Gorini-Kossakowski-Sudarshan-Lidblad (GKSL) equation is an example of the CPTP evolution.

2. There is no systematic method to define the Lindblad operator.

3. It is not clear whether this is applicable to describe thermal relaxation processes.

reversible current

irreversible current

0i  : Dissipative coefficients 



Application to harmonic oscillator
For the harmonic oscillator Hamiltonian, we can find the Lindblad operator which is consistent with 
thermodynamics
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Even if this is not satisfied, the equation is CPTP, 
but does not describe thermal equilibration.

The GKSL equation is consistent with thermodynamics at least in the 
application to the harmonic oscillator.



We want to find a systematic procedure to obtain 
open quantum dynamics which is consistent with 
CPTP and describe thermal relaxation processes.
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Generalized Brownian Motion



Generalized Brownian motion
Let us consider a thermal relaxation process with a general Hamiltonian         .
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Our new model of Brownian motion for the i-th particle

H
Koide&Nicacio, Phys. Lett. A494, 129277 (2024).
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Thermodynamical quantities
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Heat

Work

Energy

1. These are reduced to standard quantities by using                         and              .

2. We can choose even interacting and relativistic Hamiltonians.
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Phys. Rev. E83,061111 (2011), J. Phys. Commun. 2, 021001 (2018)
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Stochastic energetics
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We can still apply thermodynamical 
interpretations to this generalized BM.

Koide&Nicacio, Phys. Lett. A494, 129277 (2024).



Canonical quantization and new 
quantum master equation



Stochastic thermodynamicsBrownian motion

GKSL equation Quantum thermodynamics

Most general theory of Brownian motion (but in flat spacetime)
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Our strategy is……

Apply quantization to phase space distribution.



Generalized Kramers equation
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Canonical quantization
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New quantum master equation
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When all particles interacts with the same beat bath (                                                  ),
the stationary solution is given by thermal equilibrium state,
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Is this time evolution CPTP?

Let us consider a harmonic oscillator,
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Reproduction of GKSL equation
Our master equation is finally reduced to the GKSL equation with the detailed balance condition
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GKSL equation

Our master equation

CPTP, but not always converges toward equilibrium

Not always CPTP, but converges toward equilibrium

We can show the laws analogous to the first and second law.

Koide&Nicacio, Phys. Lett. A494, 129277 (2024).



CPTP even in other interactions? 

Model for heat conduction (network model)
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We can find appropriate parameters where our quantum master equation conforms to a CPTP evolution 
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Stochastic energetics in Field theory
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Stochastic energetics in Field theory
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Heat

Law analogous to the second law

Information entropy

Formulation of quantum thermodynamics is under 
investigation…..



Thermodynamics in (modified) gravity
Gravity = Curvature  + Torsion

Free diffusion (Brownian motion)
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Thermodynamics in (modified) gravity

1. Torsion (vierbein) is considered exclusively associated with the spin degrees of freedom. However, 
it is also noteworthy that we cannot avoid introducing vierbein to construct Brownian motion in 
generalized coordinates.

2. One way to study thermodynamical behavior in curved (spacetime) geometry with or without 
torsion, is to consider Brownian motion.

3. Is it possible to construct stochastic and quantum thermodynamics in this case?

Gravity = Curvature  + Torsion

Free diffusion (Brownian motion)

t   = 
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j j k j
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Flat space without torsion

Giordano, Eur. Phys. J. B 92, 174 (2019).

Dark matter,
Dark energy, …

Contorsion tensor

No torsion
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Thermodynamics and Universe
1) Expansion of universe

2) Self gravitating system

2 ( )matT R t− ( )3 3/ 2lnmatS R T const=

1( )radT R t−
3 3 3

rads R R T const=

What is the non-equilibrium effect?

Can this be modeled using Brownian motion?
Fluctuation effect in self-gravitating systems?

From the virial theorem, 

kin totE E = −T Heat capacity is negative

gravitational contraction 
(collapse)

Thermo. inhomogeneity 
is enhanced.

3) Brownian motion and Black Hole populations in globular clusters

4) Black hole and entropy

Sakagami&Taruya,Contiuum Mech. Thermodyn. 16, 279 (2004)

Roupas, A&A 646 A20 (2021).
Chavanis&Mannella, Eur. Phys. J. B 78, 139 (2010).

Chavanis et al.,Phys.Rev.E66, 036105 (2002)

Different from the expansion 
of volume of gas
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Thermo. work and Q. measurement

†

S Cat S CatU U     

S

Cat

1. What is the relation between classical and quantum optimal controls for external perturbation?

2. What is the role of  quantum measurement (Maxwell Deamon) and what is its classical limit?

Elouard et al., Phys. Rev. Lett. 118, 260603 (2017).

Sekimoto&Sasa, J. Phys. Soc. Japan, 66, 3658 (2001)
Schmiedl&Seifert, Phys. Rev. Lett. 98, 108301 (2007)
Koide, J. Phys. A50, 325001 (2017, Berry’s phase)

?????

Scully et al., Science 299, 862 (2003).Classical limit?
Kammerlander&Anders, Scientific reports 6, 22174 (2016).



TUR (thermodynamical uncertainty relations)

1. A particle trajectory in a nonequilibrium steady state

2. An observable        satisfying                                             

3. The probability distribution of the trajectories

4. The fluctuation theorem 
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TUR (thermodynamical uncertainty relations)

1. A particle trajectory in a nonequilibrium steady state

2. An observable        satisfying                                             

3. The probability distribution of the trajectories

4. The fluctuation theorem 
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=
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Hasagawa&Van Vu, PRL123,20001 (2017)Barato&Seifert, PRL114, 158101 (2015)

Is there TUR induced by non-differentianility?

de Matos et al., WATER12,3263 (2020)

Entropy production



Furthermore…..

1. Efficiency of heat engine in finite-time operations (Cruzon-Ahlborn efficiency, 
Am. J. Phys. 43, 22, 1975) 

2. How can we take the thermodynamical limit in stochastic and quantum 
thermodynamics?

3. Finite chemical potential? (Neidig,et al., arXiv:2308.07659)

4. Relation between the GKSL equation and the quantization of damped HO

5. Entanglement in classical stochastic mechanics (Reciprocal process)? 
(Schrödinger, Akad.Phys.Math.Klasse 1,144 (1931), Koide, J. Phys. Commun. 2, 021001 (2018))

1 c
Car

h

T

T
 = − 1 c

CA

h

T

T
 = −



Concluding remarks
1. We develop a general model of Brownian motion in flat spacetime.

2. We can define heat and entropy so that the behaviors of the model are consistent with 
thermodynamics.

3. A quantum master equation is derived from the model by applying the canonical quantization.

4. Given a system Hamiltonian, the form of our quantum master equation is determined except for a few 
parameters. (Advantage 1)

5. Regardless of the choice of the system Hamiltonian, the classical limit of the quantum master 
equation always describes a thermal relaxation process. (Advantage 2)

6. The derived master equation does not always satisfy the CPTP condition but, in several applications, 
we can find the parameters where the quantum master equation becomes a GKSL equation.

7. Our approach enables us formulate a unified framework of  stochastic and quantum 
thermodynamics. 
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Let us consider the double-slit experiment.

1. The wave function of this system

2. Then we define a vector field by 

( , )x t

    ( , ) Re ln ( , ) Im ln ( , )u x t x t x t
m

 =  +
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The probability distribution is reproduced by the frequency 

distribution of Brownian motion,
Nelson, PR150,1079(‘66)

( ) ( ( ), ) ( )dr t u r t t dW t
m

= +

The position of a quantum particle
Gaussian white noise

Planck constant

    ( , ) Re ln ( , ) Im ln ( , )u x t x t x t
m

 =  +
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We can find, at least, two velocities.
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Suppose that the fluctuation of the 

observed momentum is given by the 

average of the two fluctuations.

(2) (2)

(2)

2

mu mu

p
+ −

 +
 =

Koide&Kodama, PLA382, 1472 (‘18)
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Suppose that the fluctuation of the 

observed momentum is given by the 

average of the two fluctuations.
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The Kennard inequality in quantum mechanics
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75

Suppose that the fluctuation of the 

observed momentum is given by the 

average of the two fluctuations.

2
(2) (2)

4
x p  

The Kennard inequality in quantum mechanics

(2) (2)

(2)

2

mu mu

p
+ −

 +
 =

The uncertainty relation can be 
induced from the non-differentiability 
of observables.

Koide&Kodama, PLA382, 1472 (‘18)
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