Sub Threshold strange hadron production in UrQMD

Jan Steinheimer and Marcus Bleicher

10.05.2016

Recent measurements on near and below threshold production.

ϕ production

HADES and FOPI reported unexpected large ϕ contribution to the K^- yield.

G. Agakishiev *et al.* [HADES Collaboration], Phys. Rev. C **80**, 025209 (2009)

Jan Steinheimer and Marcus Bleicher (FIAS

Recent measurements on near and below threshold production.

ϕ production

HADES and FOPI reported unexpected large ϕ contribution to the K^- yield.

Ξ production

 Ξ^- yield, measured in Ar+KCl much larger than thermal model.

Confirmed in p+Nb \rightarrow No Y+Y exchange!!

G. Agakishiev et al. [HADES Collaboration], Phys. Rev. Lett. 103, 132301 (2009)

Recent measurements on near and below threshold production.

ϕ production

HADES and FOPI reported unexpected large ϕ contribution to the K^- yield.

Ξ production

 Ξ^- yield, measured in Ar+KCl much larger than thermal model.

Confirmed in p+Nb \rightarrow No Y+Y exchange!!

G. Agakishiev et al. [HADES Collaboration], Phys. Rev. Lett. 103, 132301 (2009)

Recent measurements on near and below threshold production.

ϕ production

HADES and FOPI reported unexpected large ϕ contribution to the K^- yield.

Ξ production

 Ξ^- yield, measured in Ar+KCl much larger than thermal model. Confirmed in p+Nb \rightarrow No Y+Y exchange!!

Both particles are not well described in microscopic transport models and thermal fits are also not convincing.

G. Agakishiev et al. [HADES Collaboration], Phys. Rev. Lett. 103, 132301 (2009)

Does the ϕ have a small hadronic cross section?

- The idea that the ϕ has a small hadronic cross section is not new. A. Shor, Phys. Rev. Lett. 54, 1122 (1985).
- The ϕ would be an important probe of hadronization.

Does the ϕ have a small hadronic cross section?

- The idea that the ϕ has a small hadronic cross section is not new. A. Shor, Phys. Rev. Lett. 54, 1122 (1985).
- The ϕ would be an important probe of hadronization.
- COSY and LEPS experiments have found large nuclear absorption cross sections

M. Hartmann et al., Phys. Rev. C 85, 035206 (2012)

T. Ishikawa et al., Phys. Lett. B 608, 215 (2005)

The extracted cross sections depend on model assumptions

SPring-8

Used a Glauber model for the absorption.

The extracted cross sections depend on model assumptions

SPring-8

Used a Glauber model for the absorption.

ANKE

- 1: The eikonal approximation of the Valencia group.
- 2: Paryev developed the spectral function approach for φ production in both the primary proton- nucleon and secondary pion nucleon channels.
- BUU transport calculation of the Rossendorf group. Accounts for baryon baryon and meson baryon φ production processes.

The Kaon-Nuclear potential

An example

• The K^-/K^+ ratio is used to determine the Kaon nuclear potentials.

The Kaon-Nuclear potential

An example

- The K^-/K^+ ratio is used to determine the Kaon nuclear potentials.
- Quantitative result relies on the baseline of non-potential case.

The Kaon-Nuclear potential

An example

- The K^-/K^+ ratio is used to determine the Kaon nuclear potentials.
- Quantitative result relies on the baseline of non-potential case.
- ϕ contribution to the K^- found to be important.

Charm at high baryon densities

• Study properties of charmed hadrons in dense nuclear matter.

- Study properties of charmed hadrons in dense nuclear matter.
- Study hadronic charm rescattering.

- Study properties of charmed hadrons in dense nuclear matter.
- Study hadronic charm rescattering.
- Study charm in cold nuclear matter.

- Study properties of charmed hadrons in dense nuclear matter.
- Study hadronic charm rescattering.
- Study charm in cold nuclear matter.
- Big part of CBM program...but that was SIS300!

- Study properties of charmed hadrons in dense nuclear matter.
- Study hadronic charm rescattering.
- Study charm in cold nuclear matter.
- Big part of CBM program...but that was SIS300!

UrQMD

UrQMD is a microscopic transport model

• We will use it in cascade mode.

UrQMD

UrQMD is a microscopic transport model

- We will use it in cascade mode.
- Particles follow a straight line until they scatter.

UrQMD

UrQMD is a microscopic transport model

- We will use it in cascade mode.
- Particles follow a straight line until they scatter.
- No long range interactions like potentials.

UrQMD is a microscopic transport model

• Only $2 \leftrightarrow 2$, $2 \leftrightarrow 1$, $2 \rightarrow N$ and $1 \rightarrow N$ interactions allowed.

UrQMD is a microscopic transport model

- Only $2 \leftrightarrow 2$, $2 \leftrightarrow 1$, $2 \rightarrow N$ and $1 \rightarrow N$ interactions allowed.
- Resonance decays according to PDG values + guesstimates.

UrQMD is a microscopic transport model

- Only $2 \leftrightarrow 2$, $2 \leftrightarrow 1$, $2 \rightarrow N$ and $1 \rightarrow N$ interactions allowed.
- Resonance decays according to PDG values + guesstimates.
- Detailed balance. (Violated in string excitations, annihilations and some dacays)

Strange particle production goes ONLY via

Resonance excitation:

- $N + N \rightarrow X$
- $N+M \rightarrow X$
- $M+M \rightarrow X$

Relevant channels:

- $NN \to N\Delta_{1232}$
- $2 NN \to NN^*$
- $\bigcirc NN \to N\Delta^*$
- $NN \to \Delta_{1232} \Delta_{1232}$
- $NN \to \Delta_{1232} N^*$
- $NN \to \Delta_{1232} \Delta^*$
- $NN \to R^*R^*$

Strange particle production goes ONLY via

Resonance excitation:

- $N+N \rightarrow X$
- $N+M \rightarrow X$
- $\bullet \ M{+}M{\rightarrow} \ X$

N*(1650)	$\Delta(1232)$
N*(1710)	$\Delta(1600)$
N*(1720)	$\Delta(1620)$
N*(1875)	$\Delta(1700)$
N*(1900)	$\Delta(1900)$
N*(1990)	$\Delta(1905)$
N*(2080)	$\Delta(1910)$
N*(2190)	$\Delta(1920)$
N*(2220)	$\Delta(1930)$
N*(2250)	$\Delta(1950)$
N*(2600)	$\Delta(2440)$
N*(2700)	$\Delta(2750)$
N*(3100)	$\Delta(2950)$
N*(3500)	$\Delta(3300)$
N*(3800)	$\Delta(3500)$
N*(4200)	$\Delta(4200)$

N+N Cross section

$$\sigma_{1,2\to3,4}(\sqrt{s}) \propto (2S_3+1)(2S_4+1)\frac{\langle p_{3,4}\rangle}{\langle p_{1,2}\rangle} |M(m3,m4)|^2$$

with

$$|M(m3, m4)|^{2} = \frac{A}{(m_{4} - m_{3})^{2}(m_{4} + m_{3})^{2}}$$

Jan Steinheimer and Marcus Bleicher (FIAS

Strangeness exchange reactions

In addition Strange hadrons may be created in strangeness exchange reactions.

First the ϕ

On the probability of sub threshold production

Sub-threshold production in UrQMD

- Fermi momenta lift the collision energy above the threshold.
- Secondary interactions accumulate energy.

On the probability of sub threshold production

Sub-threshold production in UrQMD

- Fermi momenta lift the collision energy above the threshold.
- Secondary interactions accumulate energy.

On the probability of sub threshold production

Sub-threshold production in UrQMD

- Fermi momenta lift the collision energy above the threshold.
- Secondary interactions accumulate energy.

Why not introduce these decays for the less known resonances?

We use ANKE data on the ϕ production cross section to fix the $N^* \to N + \phi$ branching fraction.

A. Sibirtsev, J. Haidenbauer and U. G. Meissner, Eur. Phys. J. A 27, 263 (2006) [arXiv:nucl-th/0512055].

We use ANKE data on the ϕ production cross section to fix the $N^* \to N + \phi$ branching fraction.

Branching fraction consistent with extracted OZI suppression (from ω/ϕ) Y. Maeda *et al.* [ANKE Collaboration], Phys. Rev. C **77**, 015204 (2008) [arXiv:0710.1755 [nucl-ex]].

Detailed balance \rightarrow absorption cross section

$$\frac{d\sigma_{b\to a}}{d\Omega} = \frac{\left\langle p_a^2 \right\rangle}{\left\langle p_b^2 \right\rangle} \frac{(2S_1 + 1)(2S_2 + 1)}{(2S_3 + 1)(2S_4 + 1)} \sum_{J=J_-}^{J_+} \frac{\left\langle j_1 m_1 j_2 m_2 \right| |JM \right\rangle^2}{\left\langle j_3 m_3 j_4 m_4 \right| |JM \right\rangle^2} \frac{d\sigma_{a \to b}}{d\Omega}$$

 φ + p cross section from detailed balance is very small.

- φ + p cross section from detailed balance is very small.
- Still the transparency ratio is well reproduced. Remember: this is what lead to the 20 mb cross section from ANKE.

- φ + p cross section from detailed balance is very small.
- Still the transparency ratio is well reproduced. Remember: this is what lead to the 20 mb cross section from ANKE.
- Even the shape of the spectra looks good.

- φ + p cross section from detailed balance is very small.
- Still the transparency ratio is well reproduced. Remember: this is what lead to the 20 mb cross section from ANKE.
- Even the shape of the spectra looks good.

where the mass of IV < IV * so no ϕ ca be produced.

When applied to nuclear collisions:

When applied to nuclear collisions:

- Qualitative behavior nicely reproduced
- Predicted maximum at 1.25 A GeV

When applied to nuclear collisions:

- Qualitative behavior nicely reproduced
- Predicted maximum at 1.25 A GeV
- High energies: too low due to string production
- HADES preliminary results for 1.23 A GeV, see HADES DPG talk.

Even centrality dependence works well:

Data from: K. Piasecki et al., arXiv:1602.04378 [nucl-ex].

Even centrality dependence works well:

- Centrality dependence nicely reproduced.
- Good indicator for multi step production.

Data from: K. Piasecki et al., arXiv:1602.04378 [nucl-ex].

Kaon Potentials

- To constrain the Kaon potentials from kaon spectra one needs to understand the baseline
- For example the ϕ contribution to the $K^-.$

Kaon Potentials

- To constrain the Kaon potentials from kaon spectra one needs to understand the baseline
- For example the ϕ contribution to the K^- .
- But also the general shape of the spectra may depend on the model.

Kaon Potentials

- To constrain the Kaon potentials from kaon spectra one needs to understand the baseline
- For example the ϕ contribution to the K^- .
- But also the general shape of the spectra may depend on the model.

UrQMD results

- K^-/K^+ ratio as function of Kaon energy.
- With and without the ϕ the ratio is much closer to the data already as in a comparable study with K^- potential.

Kaon Potentials

- To constrain the Kaon potentials from kaon spectra one needs to understand the baseline
- For example the ϕ contribution to the K^- .
- But also the general shape of the spectra may depend on the model.

UrQMD results

- K^-/K^+ ratio as function of Kaon energy.
- With and without the ϕ the ratio is much closer to the data already as in a comparable study with K^- potential.
- Can we make robust quantitative statements?

Now the Ξ

How to fix the $N^* \rightarrow \Xi^- + K + K$ decay?

No elementary measurements near threshold. We use p+Nb at $E_{lab} = 3.5$ GeV data $\rightarrow \Gamma_{N^* \rightarrow \Xi + K + K} / \Gamma_{tot} = 3.0\%$

How to fix the $N^* \rightarrow \Xi^- + K + K$ decay?

No elementary measurements near threshold.

We use p+Nb at $E_{\rm lab}=3.5~{\rm GeV}$ data $\rightarrow \Gamma_{N^*\rightarrow \Xi+K+K}/\Gamma_{tot}=3.0\%$

Table: Ξ^- production yield and Ξ^-/Λ ratio for minimum bias p + Nb collision at a beam energy of $E_{\text{lab}} = 3.5$ GeV, compared with recent HADES results

Note:

G. Agakishiev et al., arXiv:1501.03894 [nucl-ex].

How to fix the $N^* \rightarrow \Xi^- + K + K$ decay?

No elementary measurements near threshold.

We use p+Nb at $E_{\rm lab}=3.5~{\rm GeV}$ data $\rightarrow \Gamma_{N^*\rightarrow \Xi+K+K}/\Gamma_{tot}=3.0\%$

Table: Ξ^- production yield and Ξ^-/Λ ratio for minimum bias p + Nb collision at a beam energy of $E_{\text{lab}} = 3.5$ GeV, compared with recent HADES results

Note:

• Branching ratio seems large, however may be contributed to the limited number of heavy states in the model.

G. Agakishiev et al., arXiv:1501.03894 [nucl-ex].

- Ξ[−] yield in Ar+KCl collisions is nicely reproduced
- Consistent with the p+Nb data.
- Indication for Ξ production from non-thermal 'tails' of particle production.

- Ξ[−] yield in Ar+KCl collisions is nicely reproduced
- Consistent with the p+Nb data.
- Indication for Ξ production from non-thermal 'tails' of particle production.
- All other strange particle ratios are also in line with experiment

Predictions for Au+Au at $E_{lab} = 1.23$ A GeV

 Ξ^-/Λ does not decrease much.

Can we make predictions about sub threshold charm production?

We use data from p+p at $\sqrt{s}=6.7~{\rm GeV}$ to fix the $N^*\to N+J/\Psi$ branching fraction.

We use data from p+p at $\sqrt{s}=6.7~{\rm GeV}$ to fix the $N^*\to N+J/\Psi$ branching fraction.

Assumptions

• We assume the associated production of $N^* \rightarrow \Lambda_c + \overline{D}$ to be a factor 15 larger at that beam energy and to contribute about the half of the total charm production.

We use data from p+p at $\sqrt{s}=6.7~{\rm GeV}$ to fix the $N^*\to N+J/\Psi$ branching fraction.

Assumptions

- We assume the associated production of $N^* \rightarrow \Lambda_c + \overline{D}$ to be a factor 15 larger at that beam energy and to contribute about the half of the total charm production.
- We neglect $D + \overline{D}$ pair production as it has a significantly higher threshold

We use data from p+p at $\sqrt{s}=6.7~{\rm GeV}$ to fix the $N^*\to N+J/\Psi$ branching fraction.

Assumptions

- We assume the associated production of $N^* \rightarrow \Lambda_c + \overline{D}$ to be a factor 15 larger at that beam energy and to contribute about the half of the total charm production.
- We neglect $D + \overline{D}$ pair production as it has a significantly higher threshold
- We neglect string production

We use data from p+p at $\sqrt{s}=6.7~{\rm GeV}$ to fix the $N^*\to N+J/\Psi$ branching fraction.

Assumptions

- We assume the associated production of $N^* \rightarrow \Lambda_c + \overline{D}$ to be a factor 15 larger at that beam energy and to contribute about the half of the total charm production.
- We neglect $D + \overline{D}$ pair production as it has a significantly higher threshold
- We neglect string production
- All the contributions should even increase the expected yield.

Detailed balance \rightarrow absorption cross section

• $J/\Psi + p$ cross section from detailed balance is very small.

Detailed balance \rightarrow absorption cross section

- $J/\Psi + p$ cross section from detailed balance is very small.
- Not 'absorption' of the J/Ψ , but of the mother resonance.
- Reactions of the type: $\begin{aligned} N^* + N &\to N'^* + N'^* \\ N^* + N &\to N'^* + N'^* \\ \text{where the mass of } N'^* < N^* \text{ so no} \\ J/\Psi \text{ can be produced.} \end{aligned}$

Comparable to: D. Kharzeev and H. Satz, Phys. Lett. B **334**, 155 (1994).

J/Ψ and open charm production in nuclear collisions below the p+p threshold

When applied to central nuclear collisions (min. bias: divide by 5):

J/Ψ and open charm production in nuclear collisions below the p+p threshold

When applied to central nuclear collisions (min. bias: divide by 5):

 $E_{\rm lab} = 6 \text{ A GeV}$

- $3\cdot 10^{-7}~J/\Psi$ per event or $3\cdot 10^4$ in 10 weeks
- $4 \cdot 10^{-6} \Lambda_c$ per event or 121 in 10 weeks

$$ullet pprox 6-8\cdot 10^{-6} \ \overline{D}$$
 per event

Measured yields are according to specifications in "'The CBM physics book"'

J/Ψ and open charm production in nuclear collisions below the p+p threshold

When applied to central nuclear collisions (min. bias: divide by 5):

 $E_{\rm lab} = 11 \text{ A GeV}$

- $1.5\cdot 10^{-6}~J/\Psi$ per event or $1.5\cdot 10^5$ in 10 weeks
- $2 \cdot 10^{-5} \Lambda_c$ per event or 600 in 10 weeks

$$oldsymbol{
ho}pprox 3-4\cdot 10^{-5}\ \overline{D}$$
 per event

Measured yields are according to specifications in "'The CBM physics book"'

- We introduced a new mechanism of ϕ and Ξ production in elementary and nuclear collisions, through the decay of heavy resonances.
- We can nicely describe the ϕ and Ξ^- production in elementary and nuclear collisions near and below the ϕ production threshold.
- To successfully describe Ξ^- production in p+Pb and Ar+KCl reactions a large branching fraction of 10% is required.

- We introduced a new mechanism of ϕ and Ξ production in elementary and nuclear collisions, through the decay of heavy resonances.
- We can nicely describe the ϕ and Ξ^- production in elementary and nuclear collisions near and below the ϕ production threshold.
- To successfully describe Ξ^- production in p+Pb and Ar+KCl reactions a large branching fraction of 10% is required.
- For the first time we made predictions for sub threshold J/Ψ , Λ_c and \overline{D} production in sub threshold collisions at the SIS100.

Backup

